Neuropediatrics 2020; 51(01): 006-021
DOI: 10.1055/s-0039-1698422
Review Article
Georg Thieme Verlag KG Stuttgart · New York

Neuroimaging Spectrum of Inherited Neurotransmitter Disorders

1   Department of Diagnostic Imaging, National University Health System, Singapore, Singapore
,
Kshitij Mankad
2   Department of Neuroradiology, Great Ormond Street Hospital NHS Foundation Trust, London, United Kingdom
,
Maria Kinali
3   Chiswick Medical Centre, The Portland Hospital, London, United Kingdom
,
1   Department of Diagnostic Imaging, National University Health System, Singapore, Singapore
› Author Affiliations
Funding Source No funding was secured for this study.
Further Information

Publication History

14 December 2018

20 August 2019

Publication Date:
21 October 2019 (online)

Abstract

Inherited neurotransmitter disorders are rare neurometabolic conditions which encompass genetic disorders of neurotransmitter metabolism or transport. The clinical manifestations of these rare disorders are often nonspecific, ranging from encephalopathies and seizures to movement disorders. As a consequence, neurotransmitter disorders are underrecognized and often misdiagnosed. Accurate and timely diagnosis is, however, of utmost importance, given the availability of therapeutic strategies. A high index of clinical suspicion and familiarity with the neuroimaging phenotypes is therefore crucial. While the imaging features of various neurotransmitter disorders often overlap and are nonspecific, imaging can be helpful in providing useful clues to guide the diagnostic algorithm for uncommon conditions in a neonate presenting with nonspecific neurological symptoms. In this review paper, we aim to bring together current knowledge of neuroimaging phenotypes associated with inherited (primary) disorders of neurotransmitter biosynthesis. Magnetic resonance imaging phenotypes of disorders of monoamine biosynthesis, primary cerebral folate deficiency, disorders of pyridoxine metabolism, disorders of gamma-aminobutyric acid metabolism, nonketotic hyperglycinemia (glycine encephalopathy), disorders of serine biosynthesis, and cerebral creatine deficiency syndrome will be discussed and illustrated with case examples.

Financial Disclosure

The authors have no financial relationships relevant to this article to disclose.


 
  • References

  • 1 Brennenstuhl H, Jung-Klawitter S, Assmann B, Opladen T. Inherited disorders of neurotransmitters: classification and practical approaches for diagnosis and treatment. Neuropediatrics 2019; 50 (01) 2-14
  • 2 Anikster Y, Haack TB, Vilboux T. , et al. Biallelic mutations in DNAJC12 cause hyperphenylalaninemia, dystonia, and intellectual disability. Am J Hum Genet 2017; 100 (02) 257-266
  • 3 Werner ER, Blau N, Thöny B. Tetrahydrobiopterin: biochemistry and pathophysiology. Biochem J 2011; 438 (03) 397-414
  • 4 Friedman J, Roze E, Abdenur JE. , et al. Sepiapterin reductase deficiency: a treatable mimic of cerebral palsy. Ann Neurol 2012; 71 (04) 520-530
  • 5 Brismar J, Aqeel A, Gascon G, Ozand P. Malignant hyperphenylalaninemia: CT and MR of the brain. AJNR Am J Neuroradiol 1990; 11 (01) 135-138
  • 6 Pietz J, Meyding-Lamadé UK, Schmidt H. Magnetic resonance imaging of the brain in adolescents with phenylketonuria and in one case of 6-pyruvoyl tetrahydropteridine synthase deficiency. Eur J Pediatr 1996; 155 (Suppl. 01) S69-S73
  • 7 Elsayed SM, Thöny B. BH4 deficiency with unusual presentations: challenges and lessons. Egypt J Med Hum Genet 2016; 17 (03) 241-242 . Doi: 10.1016/j.ejmhg.2015.10.003
  • 8 Zhixin Z, Zhongshu Z, Weimin Y, Lin W, Xuezhe Z. MR study of the brain in patients with tetrahydrobiopterin deficiency. Chin J Radiol 2005; 39 (04) 399-402
  • 9 Schmidt H, Ullrich K, Korinthenberg R, Peters PE. Basal ganglion calcification in hyperphenylalaninemia due to deficiency of dihydropteridine reductase. Pediatr Radiol 1988; 19 (01) 54-56
  • 10 Gudinchet F, Maeder P, Meuli RA, Deonna T, Mathieu JM. Cranial CT and MRI in malignant phenylketonuria. Pediatr Radiol 1992; 22 (03) 223-224
  • 11 Ramaekers VT, Blau N. Cerebral folate deficiency. Dev Med Child Neurol 2004; 46 (12) 843-851
  • 12 Beckman DR, Hoganson G, Berlow S, Gilbert EF. Pathological findings in 5,10-methylene tetrahydrofolate reductase deficiency. Birth Defects Orig Artic Ser 1987; 23 (01) 47-64
  • 13 Ramaekers V, Sequeira JM, Quadros EV. Clinical recognition and aspects of the cerebral folate deficiency syndromes. Clin Chem Lab Med 2013; 51 (03) 497-511
  • 14 Hyland K, Shoffner J, Heales SJ. Cerebral folate deficiency. J Inherit Metab Dis 2010; 33 (05) 563-570
  • 15 Pérez-Dueñas B, Ormazábal A, Toma C. , et al. Cerebral folate deficiency syndromes in childhood: clinical, analytical, and etiologic aspects. Arch Neurol 2011; 68 (05) 615-621
  • 16 Hansen FJ, Blau N. Cerebral folate deficiency: life-changing supplementation with folinic acid. Mol Genet Metab 2005; 84 (04) 371-373
  • 17 Frye RE, Sequeira JM, Quadros EV, James SJ, Rossignol DA. Cerebral folate receptor autoantibodies in autism spectrum disorder. Mol Psychiatry 2013; 18 (03) 369-381
  • 18 Grapp M, Just IA, Linnankivi T. , et al. Molecular characterization of folate receptor 1 mutations delineates cerebral folate transport deficiency. Brain 2012; 135 (Pt 7): 2022-2031
  • 19 Kobayashi Y, Tohyama J, Akiyama T. , et al. Severe leukoencephalopathy with cortical involvement and peripheral neuropathy due to FOLR1 deficiency. Brain Dev 2017; 39 (03) 266-270
  • 20 Nicolai J, van Kempen MJA, Postma AA. Teaching neuroimages: white matter hypomyelination and progressive calcifications in cerebral folate deficiency. Neurology 2016; 87 (01) e4-e5
  • 21 van Karnebeek CDM, Tiebout SA, Niermeijer J. , et al. Pyridoxine-dependent epilepsy: an expanding clinical spectrum. Pediatr Neurol 2016; 59: 6-12
  • 22 Mills PB, Struys E, Jakobs C. , et al. Mutations in antiquitin in individuals with pyridoxine-dependent seizures. Nat Med 2006; 12 (03) 307-309
  • 23 van Karnebeek CDM, Jaggumantri S. Current treatment and management of pyridoxine-dependent epilepsy. Curr Treat Options Neurol 2015; 17 (02) 335
  • 24 Stockler S, Plecko B, Gospe Jr SM. , et al. Pyridoxine dependent epilepsy and antiquitin deficiency: clinical and molecular characteristics and recommendations for diagnosis, treatment and follow-up. Mol Genet Metab 2011; 104 (1-2): 48-60
  • 25 Gospe Jr SM, Hecht ST. Longitudinal MRI findings in pyridoxine-dependent seizures. Neurology 1998; 51 (01) 74-78
  • 26 Tanaka R, Okumura M, Arima J, Yamakura S, Momoi T. Pyridoxine-dependent seizures: report of a case with atypical clinical features and abnormal MRI scans. J Child Neurol 1992; 7 (01) 24-28
  • 27 Ulvi H, Müngen B, Yakinci C, Yoldaş T. Pyridoxine-dependent seizures: long-term follow-up of two cases with clinical and MRI findings, and pyridoxine treatment. J Trop Pediatr 2002; 48 (05) 303-306
  • 28 Jain-Ghai S, Mishra N, Hahn C, Blaser S, Mercimek-Mahmutoglu S. Fetal onset ventriculomegaly and subependymal cysts in a pyridoxine dependent epilepsy patient. Pediatrics 2014; 133 (04) e1092-e1096
  • 29 Baxter P, Griffiths P, Kelly T, Gardner-Medwin D. Pyridoxine-dependent seizures: demographic, clinical, MRI and psychometric features, and effect of dose on intelligence quotient. Dev Med Child Neurol 1996; 38 (11) 998-1006
  • 30 Marguet F, Barakizou H, Tebani A. , et al. Pyridoxine-dependent epilepsy: report on three families with neuropathology. Metab Brain Dis 2016; 31 (06) 1435-1443
  • 31 Mills PB, Footitt EJ, Mills KA. , et al. Genotypic and phenotypic spectrum of pyridoxine-dependent epilepsy (ALDH7A1 deficiency). Brain 2010; 133 (Pt 7): 2148-2159
  • 32 Pérez B, Gutiérrez-Solana LG, Verdú A. , et al. Clinical, biochemical, and molecular studies in pyridoxine-dependent epilepsy. Antisense therapy as possible new therapeutic option. Epilepsia 2013; 54 (02) 239-248
  • 33 Friedman SD, Ishak GE, Poliachik SL. , et al. Callosal alterations in pyridoxine-dependent epilepsy. Dev Med Child Neurol 2014; 56 (11) 1106-1110
  • 34 Jansen LA, Hevner RF, Roden WH, Hahn SH, Jung S, Gospe Jr SM. Glial localization of antiquitin: implications for pyridoxine-dependent epilepsy. Ann Neurol 2014; 75 (01) 22-32
  • 35 Kriegstein A, Alvarez-Buylla A. The glial nature of embryonic and adult neural stem cells. Annu Rev Neurosci 2009; 32: 149-184
  • 36 Lado FA, Laureta EC, Moshé SL. Seizure-induced hippocampal damage in the mature and immature brain. Epileptic Disord 2002; 4 (02) 83-97
  • 37 Darin N, Reid E, Prunetti L. , et al. Mutations in PROSC disrupt cellular pyridoxal phosphate homeostasis and cause vitamin-B6-dependent epilepsy. Am J Hum Genet 2016; 99 (06) 1325-1337
  • 38 Plecko B, Zweier M, Begemann A. , et al. Confirmation of mutations in PROSC as a novel cause of vitamin B 6 -dependent epilepsy. J Med Genet 2017; 54 (12) 809-814
  • 39 Johnstone DL, Al-Shekaili HH, Tarailo-Graovac M. , et al; Care4Rare Canada Consortium. PLPHP deficiency: clinical, genetic, biochemical, and mechanistic insights. Brain 2019; 142 (03) 542-559
  • 40 Kanno K, Suzuki Y, Yamada A, Aoki Y, Kure S, Matsubara Y. Association between nonsyndromic cleft lip with or without cleft palate and the glutamic acid decarboxylase 67 gene in the Japanese population. Am J Med Genet A 2004; 127A (01) 11-16
  • 41 Parviz M, Vogel K, Gibson KM, Pearl PL. Disorders of GABA metabolism: SSADH and GABA-transaminase deficiencies. J Pediatr Epilepsy 2014; 3 (04) 217-227
  • 42 Pearl PL, Parviz M, Vogel K, Schreiber J, Theodore WH, Gibson KM. Inherited disorders of gamma-aminobutyric acid metabolism and advances in ALDH5A1 mutation identification. Dev Med Child Neurol 2015; 57 (07) 611-617
  • 43 Jung R, Rauch A, Salomons GS. , et al. Clinical, cytogenetic and molecular characterization of a patient with combined succinic semialdehyde dehydrogenase deficiency and incomplete WAGR syndrome with obesity. Mol Genet Metab 2006; 88 (03) 256-260
  • 44 Pearl PL, Gibson KM, Acosta MT. , et al. Clinical spectrum of succinic semialdehyde dehydrogenase deficiency. Neurology 2003; 60 (09) 1413-1417
  • 45 Jaeken J, Casaer P, de Cock P. , et al. Gamma-aminobutyric acid-transaminase deficiency: a newly recognized inborn error of neurotransmitter metabolism. Neuropediatrics 1984; 15 (03) 165-169
  • 46 Tsuji M, Aida N, Obata T. , et al. A new case of GABA transaminase deficiency facilitated by proton MR spectroscopy. J Inherit Metab Dis 2010; 33 (01) 85-90
  • 47 Besse A, Wu P, Bruni F. , et al. The GABA transaminase, ABAT, is essential for mitochondrial nucleoside metabolism. Cell Metab 2015; 21 (03) 417-427
  • 48 Louro P, Ramos L, Robalo C. , et al. Phenotyping GABA transaminase deficiency: a case description and literature review. J Inherit Metab Dis 2016; 39 (05) 743-747
  • 49 Moura AP, Parmeggiani B, Gasparotto J. , et al. Glycine administration alters MAPK signaling pathways and causes neuronal damage in rat brain: putative mechanisms involved in the neurological dysfunction in nonketotic hyperglycinemia. Mol Neurobiol 2018; 55 (01) 741-750
  • 50 Belcastro V, Barbarini M, Barca S, Mauro I. A novel AMT gene mutation in a newborn with nonketotic hyperglycinemia and early myoclonic encephalopathy. Eur J Paediatr Neurol 2016; 20 (01) 192-195
  • 51 Korman SH, Gutman A. Pitfalls in the diagnosis of glycine encephalopathy (non-ketotic hyperglycinemia). Dev Med Child Neurol 2002; 44 (10) 712-720
  • 52 Ichinohe A, Kure S, Mikawa S. , et al. Glycine cleavage system in neurogenic regions. Eur J Neurosci 2004; 19 (09) 2365-2370
  • 53 Van Hove J, Coughlin C, Scharer G. Glycine encephalopathy. In: Adam MP, Ardinger HH, Pagon RA. , et al., eds. GeneReviews®. Seattle, WA: University of Washington; 1993
  • 54 Dinopoulos A, Matsubara Y, Kure S. Atypical variants of nonketotic hyperglycinemia. Mol Genet Metab 2005; 86 (1-2): 61-69
  • 55 Hennermann JB, Berger J-M, Grieben U, Scharer G, Van Hove JLK. Prediction of long-term outcome in glycine encephalopathy: a clinical survey. J Inherit Metab Dis 2012; 35 (02) 253-261
  • 56 Iqbal M, Prasad M, Mordekar SR. Nonketotic hyperglycinemia case series. J Pediatr Neurosci 2015; 10 (04) 355-358
  • 57 Aliefendioğlu D, Tana Aslan Ay, Coşkun T, Dursun A, Cakmak FN, Kesimer M. Transient nonketotic hyperglycinemia: two case reports and literature review. Pediatr Neurol 2003; 28 (02) 151-155
  • 58 Zammarchi E, Donati MA, Ciani F. Transient neonatal nonketotic hyperglycinemia: a 13-year follow-up. Neuropediatrics 1995; 26 (06) 328-330
  • 59 Mourmans J, Majoie CBLM, Barth PG, Duran M, Akkerman EM, Poll-The BT. Sequential MR imaging changes in nonketotic hyperglycinemia. AJNR Am J Neuroradiol 2006; 27 (01) 208-211
  • 60 Raghavendra S, Ashalatha R, Thomas SV, Kesavadas C. Focal neuronal loss, reversible subcortical focal T2 hypointensity in seizures with a nonketotic hyperglycemic hyperosmolar state. Neuroradiology 2007; 49 (04) 299-305
  • 61 Langan TJ, Pueschel SM. Nonketotic hyperglycinemia: clinical, biochemical, and therapeutic considerations. Curr Probl Pediatr 1983; 13 (03) 1-30
  • 62 Paupe A, Bidat L, Sonigo P, Lenclen R, Molho M, Ville Y. Prenatal diagnosis of hypoplasia of the corpus callosum in association with non-ketotic hyperglycinemia. Ultrasound Obstet Gynecol 2002; 20 (06) 616-619
  • 63 Mohammad SA, Abdelkhalek HS. Nonketotic hyperglycinemia: spectrum of imaging findings with emphasis on diffusion-weighted imaging. Neuroradiology 2017; 59 (11) 1155-1163
  • 64 Dobyns WB. Agenesis of the corpus callosum and gyral malformations are frequent manifestations of nonketotic hyperglycinemia. Neurology 1989; 39 (06) 817-820
  • 65 Bekiesiñiska-Figatowska M, Rokicki D, Walecki J. MRI in nonketotic hyperglycinaemia: case report. Neuroradiology 2001; 43 (09) 792-793
  • 66 Manel L, Houneida ZBA, Habib A, Dejla B, Chekib K. A rare inborn error of metabolism associated with a Dandy-Walker malformation. Acta Neurol Belg 2012; 112 (04) 425-426
  • 67 Van Hove JL, Kishnani PS, Demaerel P. , et al. Acute hydrocephalus in nonketotic hyperglycinemia. Neurology 2000; 54 (03) 754-756
  • 68 Khong P-L, Lam BCC, Chung BHY, Wong K-Y, Ooi G-C. Diffusion-weighted MR imaging in neonatal nonketotic hyperglycinemia. AJNR Am J Neuroradiol 2003; 24 (06) 1181-1183
  • 69 Kanekar S, Byler D. Characteristic MRI findings in neonatal nonketotic hyperglycinemia due to sequence changes in GLDC gene encoding the enzyme glycine decarboxylase. Metab Brain Dis 2013; 28 (04) 717-720
  • 70 Nicolasjilwan M, Ozer H, Wintermark M, Matsumoto J. Neonatal non-ketotic hyperglycinemia. J Neuroradiol 2011; 38 (04) 246-250
  • 71 Sener RN. Nonketotic hyperglycinemia: diffusion magnetic resonance imaging findings. J Comput Assist Tomogr 2003; 27 (04) 538-540
  • 72 Huisman TAGM, Thiel T, Steinmann B, Zeilinger G, Martin E. Proton magnetic resonance spectroscopy of the brain of a neonate with nonketotic hyperglycinemia: in vivo-in vitro (ex vivo) correlation. Eur Radiol 2002; 12 (04) 858-861
  • 73 Fons C, Campistol J. Creatine defects and central nervous system. Semin Pediatr Neurol 2016; 23 (04) 285-289
  • 74 Pasquali M, Schwarz E, Jensen M. , et al. Feasibility of newborn screening for guanidinoacetate methyltransferase (GAMT) deficiency. J Inherit Metab Dis 2014; 37 (02) 231-236
  • 75 Clark JF, Cecil KM. Diagnostic methods and recommendations for the cerebral creatine deficiency syndromes. Pediatr Res 2015; 77 (03) 398-405
  • 76 Stockler-Ipsiroglu S, van Karnebeek C, Longo N. , et al. Guanidinoacetate methyltransferase (GAMT) deficiency: outcomes in 48 individuals and recommendations for diagnosis, treatment and monitoring. Mol Genet Metab 2014; 111 (01) 16-25
  • 77 Póo-Argüelles P, Arias A, Vilaseca MA. , et al. X-Linked creatine transporter deficiency in two patients with severe mental retardation and autism. J Inherit Metab Dis 2006; 29 (01) 220-223
  • 78 Mancini GMS, Catsman-Berrevoets CE, de Coo IFM. , et al. Two novel mutations in SLC6A8 cause creatine transporter defect and distinctive X-linked mental retardation in two unrelated Dutch families. Am J Med Genet A 2005; 132A (03) 288-295
  • 79 Poretti A, Blaser SI, Lequin MH. , et al. Neonatal neuroimaging findings in inborn errors of metabolism. J Magn Reson Imaging 2013; 37 (02) 294-312
  • 80 Manning MA, Cunniff CM, Colby CE, El-Sayed YY, Hoyme HE. Neu-Laxova syndrome: detailed prenatal diagnostic and post-mortem findings and literature review. Am J Med Genet A 2004; 125A (03) 240-249
  • 81 Badakali M, Badakali A, Dombale V. Rare manifestations of Neu-Laxova syndrome. Fetal Pediatr Pathol 2012; 31 (01) 1-5
  • 82 El-Hattab AW. Serine biosynthesis and transport defects. Mol Genet Metab 2016; 118 (03) 153-159
  • 83 Damseh N, Simonin A, Jalas C. , et al. Mutations in SLC1A4, encoding the brain serine transporter, are associated with developmental delay, microcephaly and hypomyelination. J Med Genet 2015; 52 (08) 541-547