Skip to main content
Log in

DAMPs and PDT-mediated photo-oxidative stress: exploring the unknown

  • Perspective
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Damage-associated molecular patterns (DAMPs) or cell death associated molecular patterns (CDAMPs) are a subset of endogenous intracellular molecules that are normally hidden within living cells but become either passively released by primary and secondary necrotic cells or actively exposed and secreted by the dying cells. Once released, DAMPs are sensed by the innate immune system and act as activators of antigen-presenting cells (APCs) to stimulate innate and adaptive immunity. Cancer cells dying in response to a subset of conventional anticancer modalities exhibit a particular composition of DAMPs at their cell surface, which has been recently shown to be vital for the stimulation of the host immune system and the control of residual disease. Photodynamic therapy (PDT) for cancer has long been shown to be capable of killing malignant cells and concomitantly stimulate the host immune system, properties that are likely linked to its ability of inducing exposure/release of certain DAMPs. PDT, by evoking oxidative stress at specific subcellular sites through the light activation of organelle-associated photosensitizers, may be unique in incorporating tumour cells destruction and antitumor immune response in one therapeutic paradigm. Here we review the current knowledge about mechanisms and signalling cascades leading to the exposure of DAMPs at the cell surface or promoting their release, the cell death mechanism associated to these processes and its immunological consequences.We also discuss how certain PDT paradigms may yield therapies that optimally stimulate the immune system and lead to the discovery of new DAMPs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. M. E. Bianchi, DAMPs, PAMPs and alarmins: all we need to know about danger, J. Leukocyte Biol., 2006, 81, 1–5.

    Article  PubMed  CAS  Google Scholar 

  2. A. D. Garg, D. Nowis, J. Golab, P. Vandenabeele, D. V. Krysko and P. Agostinis, Immunogenic cell death, DAMPs and anticancer therapeutics: an emerging amalgamation, Biochim. Biophys.Acta, 2010, 1805, 53–71.

    CAS  PubMed  Google Scholar 

  3. S. Y. Seong and P. Matzinger, Hydrophobicity: an ancient damageassociated molecular pattern that initiates innate immune responses, Nat. Rev. Immunol., 2004, 4, 469–478.

    Article  CAS  PubMed  Google Scholar 

  4. P. Matzinger, Tolerance, danger, and the extended family, Annu. Rev. Immunol., 1994, 12, 991–1045.

    Article  CAS  PubMed  Google Scholar 

  5. J. J. Maher, DAMPs ramp up drug toxicity, J. Clin. Invest., 2009, 119, 246–249.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. C. S. Calfee and M. A. Matthay, Clinical immunology: Culprits with evolutionary ties, Nature, 2010, 464, 41–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. S. S. Iyer, W. P. Pulskens, J. J. Sadler, L. M. Butter, G. J. Teske, T. K. Ulland, S. C. Eisenbarth, S. Florquin, R. A. Flavell, J. C. Leemans and F. S. Sutterwala, Necrotic cells trigger a sterile inflammatory response through the Nlrp3 inflammasome, Proc. Natl. Acad. Sci. U. S. A., 2009, 106, 20388–20393.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. A. D. Garg, D. Nowis, J. Golab and P. Agostinis, Photodynamic therapy: illuminating the road from cell death towards anti-tumour immunity, Apoptosis, 2010, 15, 1050–1071.

    Article  CAS  PubMed  Google Scholar 

  9. D. V. Krysko and P. Vandenabeele, Clearance of dead cells: mechanisms, immune responses and implication in the development of diseases, Apoptosis, 2010, DOI: 10.1007/s10495-10010-10524-10496.

    Google Scholar 

  10. M. Korbelik, PDT-associated host response and its role in the therapy outcome, Lasers Surg. Med., 2006, 38, 500–508.

    Article  PubMed  Google Scholar 

  11. M. Korbelik and J. Sun, Photodynamic therapy-generated vaccine for cancer therapy, Cancer Immunol. Immunother., 2005, 55, 900–909.

    Article  PubMed  CAS  Google Scholar 

  12. D. R. Green, T. Ferguson, L. Zitvogel and G. Kroemer, Immunogenic and tolerogenic cell death, Nat. Rev. Immunol., 2009, 9, 353–363.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. L. Zitvogel, O. Kepp and G. Kroemer, Decoding cell death signals in inflammation and immunity, Cell, 2010, 140, 798–804.

    Article  CAS  PubMed  Google Scholar 

  14. L. Zitvogel, O. Kepp, L. Senovilla, L. Menger, N. Chaput and G. Kroemer, Immunogenic tumor cell death for optimal anticancer therapy: the calreticulin exposure pathway, Clin. Cancer Res., 2010, 16, 3100–3104.

    Article  CAS  PubMed  Google Scholar 

  15. S. Demaria, E. Pikarsky, M. Karin, L. M. Coussens, Y. C. Chen, E. M. El-Omar, G. Trinchieri, S. M. Dubinett, J. T. Mao, E. Szabo, A. Krieg, G. J. Weiner, B. A. Fox, G. Coukos, E. Wang, R. T. Abraham, M. Carbone and M. T. Lotze, Cancer and inflammation: promise for biologic therapy, J. Immunother., 2010, 33, 335–351.

    Article  PubMed  PubMed Central  Google Scholar 

  16. T. Panaretakis, O. Kepp, U. Brockmeier, A. Tesniere, A. C. Bjorklund, D. C. Chapman, M. Durchschlag, N. Joza, G. Pierron, P. van Endert, J. Yuan, L. Zitvogel, F. Madeo, D. B. Williams and G. Kroemer, Mechanisms of pre-apoptotic calreticulin exposure in immunogenic cell death, EMBO J., 2009, 28, 578–590.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. T. Verfaillie, A. D. Garg and P. Agostinis, Targeting ER stress induced apoptosis and inflammation in cancer, Cancer Lett., 2010, DOI: 10.1016/j.canlet.2010.07.016.

    Google Scholar 

  18. S. Hummasti and G. S. Hotamisligil, Endoplasmic reticulumstress and inflammation in obesity and diabetes, Circ. Res., 2010, 107, 579–591.

    Article  CAS  PubMed  Google Scholar 

  19. G. S. Hotamisligil, Endoplasmic reticulum stress and the inflammatory basis of metabolic disease, Cell, 2010, 140, 900–917.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. A. Kaser and R. S. Blumberg, Endoplasmic reticulum stress and intestinal inflammation, Mucosal Immunol., 2009, 3, 11–16.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. M. Obeid, A. Tesniere, F. Ghiringhelli, G. M. Fimia, L. Apetoh, J. L. Perfettini, M. Castedo, G. Mignot, T. Panaretakis, N. Casares, D. Metivier, N. Larochette, P. van Endert, F. Ciccosanti, M. Piacentini, L. Zitvogel and G. Kroemer, Calreticulin exposure dictates the immunogenicity of cancer cell death, Nat. Med., 2006, 13, 54–61.

    Article  PubMed  CAS  Google Scholar 

  22. R. Q. Peng, Y. B. Chen, Y. Ding, R. Zhang, X. Zhang, X. J. Yu, Z. W. Zhou, Y. X. Zeng and X. S. Zhang, Expression of calreticulin is associated with infiltration of T-cells in stage IIIB colon cancer, World J. Gastroenterol., 2010, 16, 2428–2434.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. D. Jocham, A. Richter, L. Hoffmann, K. Iwig, D. Fahlenkamp, G. Zakrzewski, E. Schmitt, T. Dannenberg, W. Lehmacher, J. von Wietersheim and C. Doehn, Adjuvant autologous renal tumour cell vaccine and risk of tumour progression in patients with renal-cell carcinoma after radical nephrectomy: phase III, randomised controlled trial, Lancet, 2004, 363, 594–599.

    Article  CAS  PubMed  Google Scholar 

  24. M. May, S. Brookman-May, B. Hoschke, C. Gilfrich, F. Kendel, S. Baxmann, S. Wittke, S. T. Kiessig, K. Miller and M. Johannsen, Ten-year survival analysis for renal carcinoma patients treated with an autologous tumour lysate vaccine in an adjuvant setting, Cancer Immunol. Immunother., 2009, 59, 687–695.

    Article  PubMed  Google Scholar 

  25. E. A. Hirschowitz, T. Foody, R. Kryscio, L. Dickson, J. Sturgill and J. Yannelli, Autologous dendritic cell vaccines for non-small-cell lung cancer, J. Clin. Oncol., 2004, 22, 2808–2815.

    Article  PubMed  Google Scholar 

  26. L. M. Liau, R. M. Prins, S. M. Kiertscher, S. K. Odesa, T. J. Kremen, A. J. Giovannone, J.W. Lin, D. J. Chute, P. S. Mischel, T. F. Cloughesy and M. D. Roth, Dendritic cell vaccination in glioblastoma patients induces systemic and intracranial T-cell responses modulated by the local central nervous system tumor microenvironment, Clin. Cancer Res., 2005, 11, 5515–5525.

    Article  CAS  PubMed  Google Scholar 

  27. K. Palucka, H. Ueno, G. Zurawski, J. Fay and J. Banchereau, Building on dendritic cell subsets to improve cancer vaccines, Curr. Opin. Immunol., 2010, 22, 258–263.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. C. L. Chiang, F. Benencia and G. Coukos, Whole tumor antigen vaccines, Semin. Immunol., 2010, 22, 132–143.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. S. O. Gollnick and C. M. Brackett, Enhancement of anti-tumor immunity by photodynamic therapy, Immunol. Res., 2009, 46, 216–226.

    Article  CAS  Google Scholar 

  30. A. P. Castano, P. Mroz and M. R. Hamblin, Photodynamic therapy and anti-tumour immunity, Nat. Rev. Cancer, 2006, 6, 535–545.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. E. Buytaert, M. Dewaele and P. Agostinis, Molecular effectors of multiple cell death pathways initiated by photodynamic therapy, Biochim. Biophys. Acta, 2007, 1776, 86–107.

    CAS  PubMed  Google Scholar 

  32. G. Brouckaert, M. Kalai, D. V. Krysko, X. Saelens, D. Vercammen, M. Ndlovu, G. Haegeman, K. D’Herde and P. Vandenabeele, Phagocytosis of necrotic cells by macrophages is phosphatidylserine dependent and does not induce inflammatory cytokine production, Mol. Biol. Cell, 2003, 15, 1089–1100.

    Article  PubMed  Google Scholar 

  33. M. F. Tsan and B. Gao, Heat shock proteins and immune system, J. Leukocyte Biol., 2009, 85, 905–910.

    Article  CAS  PubMed  Google Scholar 

  34. A. G. Pockley, Heat shock proteins as regulators of the immune response, Lancet, 2003, 362, 469–476.

    Article  CAS  PubMed  Google Scholar 

  35. M. Korbelik, J. Sun and I. Cecic, Photodynamic therapy-induced cell surface expression and release of heat shock proteins: relevance for tumor response, Cancer Res., 2005, 65, 1018–1026.

    CAS  PubMed  Google Scholar 

  36. F. Zhou, D. Xing and W. R. Chen, Dynamics andmechanism of HSP70 translocation induced by photodynamic therapy treatment, Cancer Lett., 2008, 264, 135–144.

    Article  CAS  PubMed  Google Scholar 

  37. S. Carta, P. Castellani, L. Delfino, S. Tassi, R. Vene and A. Rubartelli, DAMPs and inflammatory processes: the role of redox in the different outcomes, J. Leukocyte Biol., 2009, 86, 549–555.

    Article  CAS  PubMed  Google Scholar 

  38. G. Minotti, P. Menna, E. Salvatorelli, G. Cairo and L. Gianni, Anthracyclines: molecular advances and pharmacologic developments in antitumor activity and cardiotoxicity, Pharmacol. Rev., 2004, 56, 185–229.

    Article  CAS  PubMed  Google Scholar 

  39. Y. J. Hsieh, C. C. Wu, C. J. Chang and J. S. Yu, Subcellular localization of Photofrin determines the death phenotype of human epidermoid carcinoma A431 cells triggered by photodynamic therapy:when plasma membranes are the main targets, J. Cell. Physiol., 2003, 194, 363–375.

    Article  CAS  PubMed  Google Scholar 

  40. A. Szokalska, M. Makowski, D. Nowis, G. M. Wilczynski, M. Kujawa, C. Wojcik, I. Mlynarczuk-Bialy, P. Salwa, J. Bil, S. Janowska, P. Agostinis, T. Verfaillie, M. Bugajski, J. Gietka, T. Issat, E. Glodkowska, P. Mrowka, T. Stoklosa, M. R. Hamblin, P. Mroz, M. Jakobisiak and J. Golab, Proteasome inhibition potentiates antitumor effects of photodynamic therapy in mice through induction of endoplasmic reticulum stress and unfolded protein response, Cancer Res., 2009, 69, 4235–4243.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. A. D. Garg, T. Verfaillie, N. Rubio, G. B. Ferreira, C. Mathieu and P. Agostinis, Hypericin-PDT treatment of cancer cells leads to surface exposure/extracellular release of DAMPs and activates human immature dendritic cells (abstract), Belg. J.Med. Oncol., 2010, 4, 93–94.

    Google Scholar 

  42. A. Rubartelli and M. T. Lotze, Inside, outside, upside down: damageassociated molecular-pattern molecules (DAMPs) and redox, Trends Immunol., 2007, 28, 429–436.

    Article  CAS  PubMed  Google Scholar 

  43. C. A. Harrison, M. J. Raftery, J. Walsh, P. Alewood, S. E. Iismaa, S. Thliveris and C. L. Geczy, Oxidation regulates the inflammatory properties of the murine S100 protein S100A8, J. Biol. Chem., 1999, 274, 8561–8569.

    Article  CAS  PubMed  Google Scholar 

  44. H. Kazama, J. E. Ricci, J. M. Herndon, G. Hoppe, D. R. Green and T. A. Ferguson, Induction of immunological tolerance by apoptotic cells requires caspase-dependent oxidation of high-mobility group box-1 protein, Immunity, 2008, 29, 21–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. M. K. Chang, C. J. Binder, M. Torzewski and J. L. Witztum, C-reactive protein binds to both oxidized LDL and apoptotic cells through recognition of a common ligand: Phosphorylcholine of oxidized phospholipids, Proc. Natl. Acad. Sci. U. S. A., 2002, 99, 13043–13048.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. E. A. Podrez, E. Poliakov, Z. Shen, R. Zhang, Y. Deng, M. Sun, P. J. Finton, L. Shan, B. Gugiu, P. L. Fox, H. F. Hoff, R. G. Salomon and S. L. Hazen, Identification of a novel family of oxidized phospholipids that serve as ligands for the macrophage scavenger receptor CD36, J. Biol. Chem., 2002, 277, 38503–38516.

    Article  CAS  PubMed  Google Scholar 

  47. S. Bluml, S. Kirchberger, V. N. Bochkov, G. Kronke, K. Stuhlmeier, O. Majdic, G. J. Zlabinger, W. Knapp, B. R. Binder, J. Stockl and N. Leitinger, Oxidized phospholipids negatively regulate dendritic cell maturation induced by TLRs and CD40, J. Immunol., 2005, 175, 501–508.

    Article  PubMed  Google Scholar 

  48. A. Furnkranz and N. Leitinger, Regulation of inflammatory responses by oxidized phospholipids: structure-function relationships, Curr. Pharm. Des., 2004, 10, 915–921.

    Article  CAS  PubMed  Google Scholar 

  49. S. L. Hazen, Oxidized phospholipids as endogenous pattern recognition ligands in innate immunity, J. Biol. Chem., 2008, 283, 15527–15531.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. M. E. Greenberg, M. Sun, R. Zhang, M. Febbraio, R. Silverstein and S. L. Hazen, Oxidized phosphatidylserine-CD36 interactions play an essential role inmacrophage-dependent phagocytosis of apoptotic cells, J. Exp. Med., 2006, 203, 2613–2625.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. D. Nowis, M. Makowski, T. Stoklosa, M. Legat, T. Issat and J. Golab, Direct tumor damage mechanisms of photodynamic therapy, Acta Biochim. Pol., 2005, 52, 339–352.

    Article  CAS  PubMed  Google Scholar 

  52. D. V. Sakharov, E. D. Elstak, B. Chernyak and K. W. Wirtz, Prolonged lipid oxidation after photodynamic treatment. Study with oxidationsensitive probe C11-BODIPY581/591, FEBS Lett., 2005, 579, 1255–1260.

    Article  CAS  PubMed  Google Scholar 

  53. J. Thorburn, H. Horita, J. Redzic, K. Hansen, A. E. Frankel and A. Thorburn, Autophagy regulates selective HMGB1 release in tumor cells that are destined to die, Cell Death Differ., 2008, 16, 175–183.

    Article  PubMed  Google Scholar 

  54. L. Baricault, J. A. Fransen, M. Garcia, C. Sapin, P. Codogno, L. A. Ginsel and G. Trugnan, Rapid sequestration of DPP IV/CD26 and other cell surface proteins in an autophagic-like compartment in Caco-2 cells treated with forskolin, J. Cell. Sci., 1995, 108(Pt 5), 2109–2121.

    CAS  PubMed  Google Scholar 

  55. D. Tang, R. Kang, K. M. Livesey, C. W. Cheh, A. Farkas, P. Loughran, G. Hoppe, M. E. Bianchi, K. J. Tracey, H. J. Zeh, 3rd and M. T. Lotze, Endogenous HMGB1 regulates autophagy, J. Cell Biol., 2010, 190, 881–892.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. M. Dewaele, W. Martinet, N. Rubio, T. Verfaillie, P. A. de Witte, J. Piette and P. Agostinis, Autophagy pathways activated in response to PDT contribute to cell resistance against ROS damage, J. Cell Mol. Med., 2010, DOI: 10.1111/j.1582-4934.2010.01118.x.

    Google Scholar 

  57. M. Dewaele, H. Maes and P. Agostinis, ROS-mediated mechanisms of autophagy stimulation and their relevance in cancer therapy, Autophagy, 2010, 6, DOI: 10.4161/auto.6.7.12113.

  58. J. J. Reiners, Jr., P. Agostinis, K. Berg, N. L. Oleinick and D. Kessel, Assessing autophagy in the context of photodynamic therapy, Autophagy, 2010, 6, 7–18.

    Article  CAS  PubMed  Google Scholar 

  59. G. P. Sims, D. C. Rowe, S. T. Rietdijk, R. Herbst and A. J. Coyle, HMGB1andRAGEin inflammation and cancer, Annu.Rev. Immunol., 2010, 28, 367–388.

    Article  CAS  PubMed  Google Scholar 

  60. H. J. Anders and D. O. Schlondorff, Innate immune receptors and autophagy: implications for autoimmune kidney injury, Kidney Int., 2010, 78, 29–37.

    Article  CAS  PubMed  Google Scholar 

  61. T. Smits, M. M. Kleinpenning, P. E. van Erp, P. C. van de Kerkhof and M. J. Gerritsen, A placebo-controlled randomized study on the clinical effectiveness, immunohistochemical changes and protoporphyrin IX accumulation in fractionated 5-aminolaevulinic acid-photodynamic therapy in patients with psoriasis, Br. J. Dermatol., 2006, 155, 429–436.

    Article  CAS  PubMed  Google Scholar 

  62. L. G. Ratkay, J. D. Waterfield and D. W. Hunt, Photodynamic therapy in immune (non-oncological) disorders: focus on benzoporphyrin derivatives, BioDrugs, 2000, 14, 127–135.

    Article  CAS  PubMed  Google Scholar 

  63. E. Torikai, Y. Kageyama, E. Kohno, T. Hirano, Y. Koide, S. Terakawa and A. Nagano, Photodynamic therapy using talaporfin sodium for synovial membrane from rheumatoid arthritis patients and collageninduced arthritis rats, Clin. Rheumatol., 2007, 27, 751–761.

    Article  PubMed  Google Scholar 

  64. A. Hansch, O. Frey, M. Gajda, G. Susanna, J. Boettcher, R. Brauer and W. A. Kaiser, Photodynamic treatment as a novel approach in the therapy of arthritic joints, Lasers Surg. Med., 2008, 40, 265–272.

    Article  PubMed  Google Scholar 

  65. H. Takahashi, S. Komatsu, M. Ibe, A. Ishida-Yamamoto, S. Nakajima, I. Sakata and H. Iizuka, ATX-S10(Na)-PDT shows more potent effect on collagen metabolism of human normal and scleroderma dermal fibroblasts than ALA-PDT, Arch. Dermatol. Res., 2006, 298, 257–263.

    Article  CAS  PubMed  Google Scholar 

  66. A. Olejek, K. Steplewska, A. Gabriel, I. Kozak-Darmas, A. Jarek, S. Kellas-Sleczka, F. Bydlinski, K. Sieron-Stoltny, S. Horak, A. Chelmicki and A. Sieron, Efficacy of Photodynamic Therapy in Vulvar Lichen Sclerosus Treatment Based on Immunohistochemical Analysis of CD34, CD44, Myelin Basic Protein, and Ki67 Antibodies, Int. J. Gynecol. Cancer, 2010, 20, 879–887.

    Article  PubMed  Google Scholar 

  67. S. Motta and M. Monti, Photodynamic therapy-a promising treatment option for autoimmune skin ulcers: a case report, Photochem. Photobiol. Sci., 2007, 6, 1150–1151.

    Article  CAS  PubMed  Google Scholar 

  68. M. Subbarayan, U. O. Hafeli, D. K. Feyes, J. Unnithan, S. N. Emancipator and H. Mukhtar, A simplified method for preparation of 99mTc-annexin V and its biologic evaluation for in vivo imaging of apoptosis after photodynamic therapy, J. Nucl. Med., 2003, 44, 650–656.

    CAS  PubMed  Google Scholar 

  69. S. Suzuki and A. B. Kulkarni, Extracellular heat shock protein HSP90beta secreted by MG63 osteosarcoma cells inhibits activation of latent TGF-beta1, Biochem. Biophys. Res. Commun., 2010, 398, 525–531.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. J. R. Riddell, X. Y. Wang, H. Minderman and S. O. Gollnick, Peroxiredoxin 1 stimulates secretion of proinflammatory cytokines by binding to TLR4, J. Immunol., 2009, 184, 1022–1030.

    Article  PubMed  CAS  Google Scholar 

  71. A. Iwata, V. Morgan-Stevenson, B. Schwartz, L. Liu, J. Tupper, X. Zhu, J. Harlan and R. Winn, Extracellular BCL2 proteins are dangerassociated molecular patterns that reduce tissue damage in murine models of ischemia-reperfusion injury, PLoS One, 2010, 5, e9103.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. K. E. Blume, S. Soeroes, M. Waibel, H. Keppeler, S. Wesselborg, M. Herrmann, K. Schulze-Osthoff and K. Lauber, Cell surface externalization of annexin A1 as a failsafe mechanism preventing inflammatory responses during secondary necrosis, J. Immunol., 2009, 183, 8138–8147.

    Article  CAS  PubMed  Google Scholar 

  73. A. A. Manfredi and P. Rovere-Querini, The mitochondrion–a Trojan horse that kicks off inflammation?, N. Engl. J. Med., 2010, 362, 2132–2134.

    Article  CAS  PubMed  Google Scholar 

  74. Q. Zhang, M. Raoof, Y. Chen, Y. Sumi, T. Sursal, W. Junger, K. Brohi, K. Itagaki and C. J. Hauser, Circulating mitochondrial DAMPs cause inflammatory responses to injury, Nature, 2010, 464, 104–107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. A. Babelova, K. Moreth, W. Tsalastra-Greul, J. Zeng-Brouwers, O. Eickelberg, M. F. Young, P. Bruckner, J. Pfeilschifter, R. M. Schaefer, H. J. Grone and L. Schaefer, Biglycan, a danger signal that activates the NLRP3 inflammasome via toll-like and P2X receptors, J. Biol. Chem., 2009, 284, 24035–24048.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. L. Schaefer, Extracellularmatrix molecules: endogenous danger signals as new drug targets in kidney diseases, Curr. Opin. Pharmacol., 2010, 10, 185–190.

    Article  CAS  PubMed  Google Scholar 

  77. F. G. Goh, A. M. Piccinini, T. Krausgruber, I. A. Udalova and K. S. Midwood, Transcriptional regulation of the endogenous danger signal tenascin-C: a novel autocrine loop in inflammation, J. Immunol., 2010, 184, 2655–2662.

    Article  CAS  PubMed  Google Scholar 

  78. T. E. Ichim, Z. Zhong, S. Kaushal, X. Zheng, X. Ren, X. Hao, J. A. Joyce, H. H. Hanley, N. H. Riordan, J. Koropatnick, V. Bogin, B. R. Minev, W. P. Min and R. H. Tullis, Exosomes as a tumor immune escape mechanism: possible therapeutic implications, J. Transl. Med., 2008, 6, 37.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. L. Zitvogel, A. Tesniere and G. Kroemer, Cancer despite immunosurveillance: immunoselection and immunosubversion, Nat. Rev. Immunol., 2006, 6, 715–727.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrizia Agostinis.

Additional information

This article is published as part of a themed issue on immunological aspects and drug delivery technologies in PDT.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Garg, A.D., Krysko, D.V., Vandenabeele, P. et al. DAMPs and PDT-mediated photo-oxidative stress: exploring the unknown. Photochem Photobiol Sci 10, 670–680 (2011). https://doi.org/10.1039/c0pp00294a

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c0pp00294a

Navigation