Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Acute promyelocytic leukemia: where does it stem from?

Abstract

A fundamental issue in cancer biology is the identification of the target cell in which the causative molecular lesion arises. Acute myeloid leukemia (AML) is thought to reflect the transformation of a primitive stem cell compartment. The resultant ‘cancer stem cells’ comprise only a minor portion of the leukemic clone but give rise through differentiation to more committed progenitors as well as differentiated blasts that constitute the bulk of the tumor. The maintenance of the leukemic clone is dependent on the self-renewal capacity of the cancer stem cell compartment, which is revealed by its ability to re-initiate leukemia in a transplant setting. The cellular basis of acute promyelocytic leukemia (APL) is however less clear. APL has traditionally been considered to be the most differentiated form of AML and to arise from a committed myeloid progenitor. Here we review apparently conflicting evidence pertaining to the cellular origins of APL and propose that this leukemia may originate in more than one cellular compartment. This view could account for many apparent inconsistencies in the literature to date. An understanding of the nature of the target cell involved in transformation of APL has important implications for biological mechanism and for clinical treatment.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Mistry AR, Wessel Pedersen E, Solomon E, Grimwade D . The molecular pathogenesis of acute promyelocytic leukaemia: implications for the clinical management of the disease. Blood Rev 2003; 17: 71–97.

    Article  PubMed  Google Scholar 

  2. Ohno R, Asou N, Ohnishi K . Treatment of acute promyelocytic leukemia. Strategy toward further increase of cure rate. Leukemia 2003; 17: 1454–1463.

    Article  CAS  PubMed  Google Scholar 

  3. Bennett JM, Catovsky D, Daniel MT, Flandrin G, Galton DA, Gralnick HR et al. Proposals for the classification of acute leukaemias. French–American–British (FAB) co-operative group. Br J Haematol 1976; 33: 451–458.

    Article  CAS  PubMed  Google Scholar 

  4. Bennett JM, Catovsky D, Daniel MT, Flandrin G, Galton DA, Gralnick HR et al. Proposed revised criteria for the classification of acute myeloid leukaemia. A report of the French–American–British cooperative group. Ann Intern Med 1985; 103: 620–625.

    Article  CAS  PubMed  Google Scholar 

  5. Collins SJ . The role of retinoids and retinoic acid receptors in normal hematopoiesis. Leukemia 2002; 16: 1896–1905.

    Article  CAS  PubMed  Google Scholar 

  6. Redner RL . Variations on a theme: the alternate translocations in APL. Leukemia 2002; 16: 1927–1932.

    Article  CAS  PubMed  Google Scholar 

  7. Pitha-Rowe I, Petty WJ, Kitareewan S, Dmitrovsky E . Retinoid target genes in acute promyelocytic leukemia. Leukemia 2003; 17: 1723–1730.

    Article  CAS  PubMed  Google Scholar 

  8. Di Croce L, Raker VA, Corsaro M, Fazi F, Fanelli M, Faretta M et al. Methyltransferase recruitment and DNA hypermethylation of target promoters by an oncogenic transcription factor. Science 2002; 295: 1079–1082.

    Article  CAS  PubMed  Google Scholar 

  9. Altucci L, Rossin A, Raffelsberger W, Reitmair A, Chomienne C, Gronemeyer H . Retinoic acid-induced apoptosis in leukemia cells is mediated by paracrine action of tumor-selective death ligand TRAIL. Nat Med 2001; 7: 680–686.

    Article  CAS  PubMed  Google Scholar 

  10. Zhu J, Lallemand-Breitenbach V, de Thé H . Pathways of retinoic acid- or arsenic trioxide-induced PML/RARα catabolism, role of oncogene degradation in disease remission. Oncogene 2001; 20: 7257–7265.

    Article  CAS  PubMed  Google Scholar 

  11. Hong SH, David G, Wong CW, Dejean A, Privalsky ML . SMRT corepressor interacts with PLZF and with the PML-retinoic acid receptor α (RARα) and PLZF-RARα oncoproteins associated with acute promyelocytic leukemia. Proc Natl Acad Sci USA 1997; 94: 9028–9033.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Guidez F, Ivins S, Zhu J, Söderström M, Waxman S, Zelent A . Reduced retinoic acid sensitivities of nuclear receptor corepressor binding to PML- and RARA underlie molecular pathogenesis and treatment of acute promyelocytic leukemia. Blood 1998; 91: 2634–2642.

    CAS  PubMed  Google Scholar 

  13. He LZ, Guidez F, Tribioli C, Peruzzi D, Ruthardt M, Zelent A et al. Distinct interactions of PML-RARα and PLZF-RARα with co-repressors determine differential responses to RA in APL. Nat Genet 1998; 18: 126–134.

    Article  CAS  PubMed  Google Scholar 

  14. Grignani F, De Matteis S, Nervi C, Tomassoni L, Gelmetti V, Cioce M et al. Fusion proteins of the retinoic acid receptor-α recruit histone deacetylase in acute promyelocytic leukaemia. Nature 1998; 391: 815–818.

    Article  CAS  PubMed  Google Scholar 

  15. Lin RJ, Nagy L, Inoue S, Shao W, Miller WH, Evans RM . Role of the histone deacetylase complex in acute promyelocytic leukaemia. Nature 1998; 391: 811–814.

    Article  CAS  PubMed  Google Scholar 

  16. Yoshida H, Naoe T, Fukutani H, Kiyoi H, Kubo K, Ohno R . Analysis of the joining sequences of the t(15;17) translocation in acute promyelocytic leukemia: sequence non-specific recombination between the PML and RARA genes within identical short stretches. Genes Chromosomes Cancer 1995; 12: 37–44.

    Article  CAS  PubMed  Google Scholar 

  17. Reiter A, Sauβele S, Grimwade D, Wiemels JL, Segal MR, Lafage-Pochitaloff M et al. Genomic anatomy of the specific reciprocal translocation t(15;17) in acute promyelocytic leukemia. Genes Chromosomes Cancer 2003; 36: 175–188.

    Article  CAS  PubMed  Google Scholar 

  18. Shet AS, Jahagirdar BN, Verfaillie CM . Chronic myelogenous leukemia: mechanisms underlying disease progression. Leukemia 2002; 16: 1402–1411.

    Article  CAS  PubMed  Google Scholar 

  19. Kantarjian HM, Keating MJ, Talpaz M, Walters RS, Smith TL, Cork A et al. Chronic myelogenous leukemia in blast crisis. Analysis of 242 patients. Am J Med 1987; 83: 445–454.

    Article  CAS  PubMed  Google Scholar 

  20. Bonnet D, Dick JE . Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med 1997; 3: 730–737.

    Article  CAS  PubMed  Google Scholar 

  21. Ailles LE, Gerhard B, Kawagoe H, Hogge DE . Growth characteristics of acute myelogenous leukemia progenitors that initiate malignant hematopoiesis in nonobese diabetic/severe combined immunodeficient mice. Blood 1999; 94: 1761–1772.

    CAS  PubMed  Google Scholar 

  22. Guan Y, Gerhard B, Hogge DE . Detection, isolation, and stimulation of quiescent primitive leukemic progenitor cells from patients with acute myeloid leukemia (AML). Blood 2003; 101: 3142–3149.

    Article  CAS  PubMed  Google Scholar 

  23. Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF . Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci USA 2003; 100: 3983–3988.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Welm BE, Tepera SB, Venezia T, Graubert TA, Rosen JM, Goodell MA . Sca-1(pos) cells in the mouse mammary gland represent an enriched progenitor cell population. Dev Biol 2002; 245: 42–56.

    Article  CAS  PubMed  Google Scholar 

  25. Alvi AJ, Clayton H, Joshi C, Enver T, Ashworth A, Vivanco MM et al. Functional and molecular characterisation of mammary side population cells. Breast Cancer Res 2003; 5: R1–8.

    Article  PubMed  Google Scholar 

  26. Scharenberg CW, Harkey MA, Torok-Storb B . The ABCG2 transporter is an efficient Hoechst 33342 efflux pump and is preferentially expressed by immature human hematopoietic progenitors. Blood 2002; 99: 507–512.

    Article  CAS  PubMed  Google Scholar 

  27. Williams GT . Programmed cell death: apoptosis and oncogenesis. Cell 1991; 65: 1097–1098.

    Article  CAS  PubMed  Google Scholar 

  28. Graham SM, Jorgensen HG, Allan E, Pearson C, Alcorn MJ, Richmond L et al. Primitive, quiescent, Philadelphia-positive stem cells from patients with chronic myeloid leukemia are insensitive to STI571 in vitro. Blood 2002; 99: 319–325.

    Article  CAS  PubMed  Google Scholar 

  29. Hochhaus A . Minimal residual disease in chronic myeloid leukaemia patients. Best Pract Res Clin Haematol 2002; 15: 159–178.

    Article  CAS  PubMed  Google Scholar 

  30. Turhan AG, Lemoine FM, Debert C, Bonnet ML, Baillou C, Picard F et al. Highly purified primitive hematopoietic stem cells are PML-RARA negative and generate nonclonal progenitors in acute promyelocytic leukemia. Blood 1995; 85: 2154–2161.

    CAS  PubMed  Google Scholar 

  31. Brown D, Kogan S, Lagasse E, Weissman I, Alcalay M, Pelicci PG et al. A PML-RARα transgene initiates murine acute promyelocytic leukemia. Proc Natl Acad Sci USA 1997; 94: 2551–2556.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Grisolano JL, Wesselschmidt RL, Pelicci PG, Ley TJ . Altered myeloid development and acute leukemia in transgenic mice expressing PML-RARα under control of cathepsin G regulatory sequences. Blood 1997; 89: 376–387.

    CAS  PubMed  Google Scholar 

  33. He LZ, Tribioli C, Rivi R, Peruzzi D, Pelicci PG, Soares V et al. Acute-leukemia with promyelocytic features in PML/RARα transgenic mice. Proc Natl Acad Sci USA 1997; 94: 5302–5307.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Westervelt P, Lane AA, Pollock JL, Oldfather K, Holt MS, Zimonjic DB et al. A high penetrance mouse model of acute promyelocytic leukemia with very low levels of PML-RARα expression. Blood 2003; 102: 1857–1865.

    Article  CAS  PubMed  Google Scholar 

  35. Westervelt P, Ley TJ . Seed vs soil: The importance of the target cell for transgenic models of human leukemias. Blood 1999; 93: 2143–2148.

    CAS  PubMed  Google Scholar 

  36. Early E, Moore MA, Kakizuka A, Nason-Burchenal K, Martin P, Evans RM et al. Transgenic expression of PML/RARα impairs myelopoiesis. Proc Natl Acad Sci USA 1996; 93: 7900–7904.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Vickers M, Jackson G, Taylor P . The incidence of acute promyelocytic leukemia appears constant over most of a human lifespan, implying only one rate limiting mutation. Leukemia 2000; 14: 722–726.

    Article  CAS  PubMed  Google Scholar 

  38. Guglielmi C, Martelli MP, Diverio D, Fenu S, Vegna ML, Cantù-Rajnoldi A et al. Immunophenotype of adult and childhood acute promyelocytic leukaemia: correlation with morphology, type of PML gene breakpoint and clinical outcome. A cooperative Italian study on 196 cases. Br J Haematol 1998; 102: 1035–1041.

    Article  CAS  PubMed  Google Scholar 

  39. Murray CK, Estey E, Paietta E, Howard RS, Edenfield WJ, Pierce S et al. CD56 expression in acute promyelocytic leukemia: a possible indicator of poor treatment outcome? J Clin Oncol 1999; 17: 293–297.

    Article  CAS  PubMed  Google Scholar 

  40. Ferrara F, Morabito F, Martino B, Specchia G, Liso V, Nobile F et al. CD56 expression is an indicator of poor clinical outcome in patients with acute promyelocytic leukemia treated with simultaneous all-trans-retinoic acid and chemotherapy. J Clin Oncol 2000; 18: 1295–1300.

    Article  CAS  PubMed  Google Scholar 

  41. Biondi A, Luciano A, Bassan R, Mininni D, Specchia G, Lanzi E et al. CD2 expression in acute promyelocytic leukemia is associated with microgranular morphology (FAB M3v) but not with any PML gene breakpoint. Leukemia 1995; 9: 1461–1466.

    CAS  PubMed  Google Scholar 

  42. Grimwade D, Outram SV, Flora R, Ings S, Pizzey AR, Morilla R et al. The T-lineage-affiliated CD2 gene lies within an open chromatin environment in acute promyelocytic leukemia cells. Cancer Res 2002; 62: 4730–4735.

    CAS  PubMed  Google Scholar 

  43. Claxton DF, Reading CL, Nagarajan L, Tsujimoto Y, Andersson BS, Estey E et al. Correlation of CD2 expression with PML gene breakpoints in patients with acute promyelocytic leukemia. Blood 1992; 80: 582–586.

    CAS  PubMed  Google Scholar 

  44. Foley R, Soamboonsrup P, Carter RF, Benger A, Meyer R, Walker I et al. CD34-positive acute promyelocytic leukemia is associated with leukocytosis, microgranular/hypogranular morphology, expression of CD2 and bcr3 isoform. Am J Hematol 2001; 67: 34–41.

    Article  CAS  PubMed  Google Scholar 

  45. Smith LJ, Curtis JE, Messner HA, Senn JS, Furthmayr H, McCulloch EA . Lineage infidelity in acute leukemia. Blood 1983; 61: 1138–1145.

    CAS  PubMed  Google Scholar 

  46. Greaves MF, Chan LC, Furley AJW, Watt SM, Molgaard HV . Lineage promiscuity in hemopoietic differentiation and leukemia. Blood 1986; 67: 1–11.

    CAS  PubMed  Google Scholar 

  47. Hu M, Krause D, Greaves M, Sharkis S, Dexter M, Heyworth C et al. Multilineage gene expression precedes commitment in the hemopoietic system. Genes Dev 1997; 11: 774–785.

    Article  CAS  PubMed  Google Scholar 

  48. Miyamoto T, Iwasaki H, Reizis B, Ye M, Graf T, Weissman IL et al. Myeloid or lymphoid promiscuity as a critical step in hematopoietic lineage commitment. Dev Cell 2002; 3: 137–147.

    Article  CAS  PubMed  Google Scholar 

  49. Akashi K, He X, Chen J, Iwasaki H, Niu C, Steenhard B et al. Transcriptional accessibility for genes of multiple tissues and hematopoietic lineages is hierarchically controlled during early hematopoiesis. Blood 2003; 101: 383–389.

    Article  CAS  PubMed  Google Scholar 

  50. So CW, Karsunky H, Passegue E, Cozzio A, Weissman IL, Cleary ML . MLL-GAS7 transforms multipotent hematopoietic progenitors and induces mixed lineage leukemias in mice. Cancer Cell 2003; 3: 161–171.

    Article  CAS  PubMed  Google Scholar 

  51. Edwards RH, Wasik MA, Finan J, Rodriguez R, Moore J, Kamoun M et al. Evidence for early hematopoietic progenitor cell involvement in acute promyelocytic leukemia. Am J Clin Pathol 1999; 112: 819–827.

    Article  CAS  PubMed  Google Scholar 

  52. Cheng GX, Zhu XH, Men XQ, Wang L, Huang QH, Jin XL et al. Distinct leukemia phenotypes in transgenic mice and different corepressor interactions generated by promyelocytic leukemia variant fusion genes PLZF-RARα and NPM-RARα. Proc Natl Acad Sci USA 1999; 96: 6318–6323.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Le Beau MM, Davis EM, Patel B, Phan VT, Sohal J, Kogan SC . Recurring chromosomal abnormalities in leukemia in PML-RARA transgenic mice identify cooperating events and genetic pathways to acute promyelocytic leukemia. Blood 2003; 102: 1072–1074.

    Article  CAS  PubMed  Google Scholar 

  54. Zimonjic DB, Pollock JL, Westervelt P, Popescu NC, Ley TJ . Acquired, non-random chromosomal abnormalities associated with the development of acute promyelocytic leukemia in transgenic mice. Proc Natl Acad Sci USA 2000; 97: 13306–13311.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Pollock JL, Westervelt P, Kurichety AK, Pelicci PG, Grisolano JL, Ley TJ . A bcr-3 isoform of RARα-PML potentiates the development of PML-RARα-driven acute promyelocytic leukemia. Proc Natl Acad Sci USA 1999; 96: 15103–15108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Kelly LM, Kutok JL, Williams IR, Boulton CL, Amaral SM, Curley DP et al. PML/RARα and FLT-ITD induce an APL-like disease in a mouse model. Proc Natl Acad Sci USA 2002; 99: 8283–8288.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Sohal J, Phan VT, Chan PV, Davis EM, Patel B, Kelly LM et al. A model of APL with FLT3 mutation is responsive to retinoic acid and a receptor tyrosine kinase inhibitor, SU11657. Blood 2003; 101: 3188–3197.

    Article  CAS  PubMed  Google Scholar 

  58. Kogan SC, Brown DE, Schultz DB, Truong B-TH, Lallemand-Breitenbach V, Guillemin MC et al. BCL-2 cooperates with promyelocytic retinoic acid receptor α chimeric protein (PML-RARα) to block neutrophil differentiation and initiate leukemia. J Exp Med 2001; 193: 531–543.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. He LZ, Bhaumik M, Tribioli C, Rego EM, Ivins S, Zelent A et al. Two critical hits for promyelocytic leukemia. Mol Cell 2000; 6: 1131–1141.

    Article  CAS  PubMed  Google Scholar 

  60. Minucci S, Monestiroli S, Giavara S, Ronzoni S, Marchesi F, Insinga A et al. PML-RAR induces promyelocytic leukemias with high efficiency following retroviral gene transfer into purified murine hematopoietic progenitors. Blood 2002; 100: 2989–2995.

    Article  CAS  PubMed  Google Scholar 

  61. Grignani F, Valtieri M, Gabbianelli M, Gelmetti V, Botta R, Luchetti L et al. PML/RARα fusion protein expression in normal human hematopoietic progenitors dictates myeloid commitment and the promyelocytic phenotype. Blood 2000; 96: 1531–1537.

    CAS  PubMed  Google Scholar 

  62. Hao QL, Thiemann FT, Petersen D, Smogorzewska EM, Crooks GM . Extended long-term culture reveals a highly quiescent and primitive human hematopoietic progenitor population. Blood 1996; 88: 3306–3313.

    CAS  PubMed  Google Scholar 

  63. Lapidot T, Sirard C, Vormoor J, Murdoch B, Hoang T, Caceres-Cortes J et al. A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature 1994; 367: 645–648.

    Article  CAS  PubMed  Google Scholar 

  64. Blair A, Hogge DE, Ailles LE, Lansdorp PM, Sutherland HJ . Lack of expression of Thy-1 (CD90) on acute myeloid leukemia cells with long-term proliferative ability in vitro and in vivo. Blood 1997; 89: 3104–3112.

    CAS  PubMed  Google Scholar 

  65. Blair A, Hogge DE, Sutherland HJ . Most acute myeloid leukemia progenitor cells with long-term proliferative ability in vitro and in vivo have the phenotype CD34(+)/CD71(−)/HLA−DR−. Blood 1998; 92: 4325–4335.

    CAS  PubMed  Google Scholar 

  66. Haferlach T, Loffler H, Nickenig C, Ramm-Petersen L, Meeder M, Schoch R et al. Cell lineage specific involvement in acute promyelocytic leukaemia (APL) using a combination of May–Grunwald–Giemsa staining and fluorescence in situ hybridization techniques for the detection of the translocation t(15;17)(q22;q12). Br J Haematol 1998; 103: 93–99.

    Article  CAS  PubMed  Google Scholar 

  67. Knuutila S, Teerenhovi L, Larramendy ML, Elonen E, Franssila KO, Nylund SJ et al. Cell lineage involvement of recurrent chromosomal abnormalities in hematologic neoplasms. Genes Chromosomes Cancer 1994; 10: 95–102.

    Article  CAS  PubMed  Google Scholar 

  68. Takatsuki H, Sadamura S, Umemura T, Abe Y, Goto T, Yufu Y et al. PML/RARα fusion gene is expressed in both granuloid/macrophage and erythroid colonies in acute promyelocytic leukaemia. Br J Haematol 1993; 85: 477–482.

    Article  CAS  PubMed  Google Scholar 

  69. Kondo M, Scherer DC, Miyamoto T, King AG, Akashi K, Sugamura K et al. Cell-fate conversion of lymphoid-committed progenitors by instructive actions of cytokines. Nature 2000; 407: 383–386.

    Article  CAS  PubMed  Google Scholar 

  70. Heyworth C, Pearson S, May G, Enver T . Transcription factor-mediated lineage switching reveals plasticity in primary committed progenitor cells. EMBO J 2002; 21: 3770–3781.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Graf T . Differentiation plasticity of hematopoietic cells. Blood 2002; 99: 3089–3101.

    Article  CAS  PubMed  Google Scholar 

  72. Asnafi V, Radford-Weiss I, Dastugue N, Bayle C, Leboeuf D, Charrin C et al. CALM-AF10 is a common fusion transcript in T-ALL and is specific to the TCRγδ lineage. Blood 2003; 102: 1000–1006.

    Article  CAS  PubMed  Google Scholar 

  73. Ferrucci PF, Grignani F, Pearson M, Fagioli M, Nicoletti I, Pelicci PG . Cell death induction by the promyelocytic leukemia-specific PML/RARα fusion protein. Proc Natl Acad Sci USA 1997; 94: 10901–10906.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Lu M, Kawamoto H, Katsube Y, Ikawa T, Katsura Y . The common myelolymphoid progenitor: a key intermediate stage in hemopoiesis generating T and B cells. J Immunol 2002; 169: 3519–3525.

    Article  CAS  PubMed  Google Scholar 

  75. Katsura Y . Redefinition of lymphoid progenitors. Nat Rev Immunol 2002; 2: 127–132.

    Article  CAS  PubMed  Google Scholar 

  76. Kiyoi H, Naoe T, Yokota S, Nakao M, Minami S, Kuriyama K et al. Internal tandem duplication of FLT3 associated with leukocytosis in acute promyelocytic leukemia. Leukemia Study Group of the Ministry of Health and Welfare (Kohseisho). Leukemia 1997; 11: 1447–1452.

    Article  CAS  PubMed  Google Scholar 

  77. Noguera NI, Breccia M, Divona M, Diverio D, Costa V, De Santis S et al. Alterations of the FLT3 gene in acute promyelocytic leukemia: association with diagnostic characteristics and analysis of clinical outcome in patients treated with the Italian AIDA protocol. Leukemia 2002; 16: 2185–2189.

    Article  CAS  PubMed  Google Scholar 

  78. Shih LY, Kuo MC, Liang DC, Huang CF, Lin TL, Wu JH et al. Internal tandem duplication and Asp835 mutations of the FMS-like tyrosine kinase 3 (FLT3) gene in acute promyelocytic leukemia. Correlation with molecular subtypes of PML/RARα and clinical features. Cancer 2003; 98: 1206–1216.

    Article  CAS  PubMed  Google Scholar 

  79. Lane AA, Ley TJ . Neutrophil elastase cleaves PML-RARα and is important for the development of acute promyelocytic leukemia in mice. Cell 2003; 115: 305–318.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

DG is supported by the Leukaemia Research Fund of Great Britain. TE is supported by the MRC and a specialist programme from the Leukaemia Research Fund of Great Britain.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to D Grimwade or T Enver.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grimwade, D., Enver, T. Acute promyelocytic leukemia: where does it stem from?. Leukemia 18, 375–384 (2004). https://doi.org/10.1038/sj.leu.2403234

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2403234

Keywords

This article is cited by

Search

Quick links