Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Functionally distinct subgroups of oligodendrocyte precursor cells integrate neural activity and execute myelin formation

Abstract

Recent reports have revealed that oligodendrocyte precursor cells (OPCs) are heterogeneous. It remains unclear whether such heterogeneity reflects different subtypes of cells with distinct functions or instead reflects transiently acquired states of cells with the same function. By integrating lineage formation of individual OPC clones, single-cell transcriptomics, calcium imaging and neural activity manipulation, we show that OPCs in the zebrafish spinal cord can be divided into two functionally distinct groups. One subgroup forms elaborate networks of processes and exhibits a high degree of calcium signaling, but infrequently differentiates despite contact with permissive axons. Instead, these OPCs divide in an activity- and calcium-dependent manner to produce another subgroup, with higher process motility and less calcium signaling and that readily differentiates. Our data show that OPC subgroups are functionally diverse in their response to neurons and that activity regulates the proliferation of a subset of OPCs that is distinct from the cells that generate differentiated oligodendrocytes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Characteristics of OPCs in zebrafish.
Fig. 2: Single-cell RNA sequencing of zebrafish OPCs.
Fig. 3: Differentiation properties of individual OPCs.
Fig. 4: Interrelationships between OPC populations.
Fig. 5: Long-term contribution to myelinating oligodendrocytes through proliferation-mediated generation of new OPCs.
Fig. 6: In vivo calcium imaging of individual OPCs.
Fig. 7: Manipulation of neural activity and OPC calcium signaling changes the proliferation of OPCs in neuron-rich areas.

Similar content being viewed by others

Data availability

Raw sequence data, gene expression data and cell type annotation tables have been deposited in the Gene Expression Omnibus under accession number GSE132166. A web resource is available at https://ki.se/en/mbb/oligointernode. The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Bergles, D. E. & Richardson, W. D. Oligodendrocyte development and plasticity. Cold Spring Harb. Perspect. Biol. 8, a020453 (2015).

    Article  PubMed  CAS  Google Scholar 

  2. Hughes, E. G., Orthmann-Murphy, J. L., Langseth, A. J. & Bergles, D. E. Myelin remodeling through experience-dependent oligodendrogenesis in the adult somatosensory cortex. Nat. Neurosci. 21, 696–706 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Gibson, E. M. et al. Neuronal activity promotes oligodendrogenesis and adaptive myelination in the mammalian brain. Science 344, 1252304 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. McKenzie, I. A. et al. Motor skill learning requires active central myelination. Science 346, 318–322 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Zawadzka, M. et al. CNS-resident glial progenitor/stem cells produce Schwann cells as well as oligodendrocytes during repair of CNS demyelination. Cell Stem Cell 6, 578–590 (2010).

    Article  CAS  PubMed  Google Scholar 

  6. Emery, B. & Lu, Q. R. Transcriptional and epigenetic regulation of oligodendrocyte development and myelination in the central nervous system. Cold Spring Harb. Perspect. Biol. 7, a020461 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Liu, J., Moyon, S., Hernandez, M. & Casaccia, P. Epigenetic control of oligodendrocyte development: adding new players to old keepers. Curr. Opin. Neurobiol. 39, 133–138 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Foerster, S., Hill, M. F. E. & Franklin, R. J. M. Diversity in the oligodendrocyte lineage: plasticity or heterogeneity? Glia 67, 1797–1805 (2019).

    PubMed  Google Scholar 

  9. Viganò, F. & Dimou, L. The heterogenic nature of NG2-glia. Brain Res. 1638, 129–137 (2016).

  10. Marques, S. et al. Oligodendrocyte heterogeneity in the mouse juvenile and adult central nervous system. Science 352, 1326–1329 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Emery, B. & Barres, B. A. Unlocking CNS cell type heterogeneity. Cell 135, 596–598 (2008).

    Article  CAS  PubMed  Google Scholar 

  12. Marques, S. et al. Transcriptional convergence of oligodendrocyte lineage progenitors during development. Dev. Cell 46, 504–517 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Richardson, W. D., Young, K. M., Tripathi, R. B. & McKenzie, I. NG2-glia as multipotent neural stem cells: fact or fantasy? Neuron 70, 661–673 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Hill, R. A., Patel, K. D., Medved, J., Reiss, A. M. & Nishiyama, A. NG2 cells in white matter but not gray matter proliferate in response to PDGF. J. Neurosci. 33, 14558–14566 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Viganò, F., Möbius, W., Götz, M. & Dimou, L. Transplantation reveals regional differences in oligodendrocyte differentiation in the adult brain. Nat. Neurosci. 16, 1370–1372 (2013).

    Article  PubMed  CAS  Google Scholar 

  16. Falcão, A. M. et al. Disease-specific oligodendrocyte lineage cells arise in multiple sclerosis. Nat. Med. 24, 1837–1844 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Jäkel, S. et al. Altered human oligodendrocyte heterogeneity in multiple sclerosis. Nature 566, 543–547 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Spitzer, S. O. et al. Oligodendrocyte progenitor cells become regionally diverse and heterogeneous with age. Neuron 101, 459–471 (2019).

  19. Sakry, D. et al. Oligodendrocyte precursor cells modulate the neuronal network by activity-dependent ectodomain cleavage of glial NG2. PLoS Biol. 12, e1001993 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Bergles, D. E., Roberts, J. D., Somogyi, P. & Jahr, C. E. Glutamatergic synapses on oligodendrocyte precursor cells in the hippocampus. Nature 405, 187–191 (2000).

    Article  CAS  PubMed  Google Scholar 

  21. De Biase, L. M., Nishiyama, A. & Bergles, D. E. Excitability and synaptic communication within the oligodendrocyte lineage. J. Neurosci. 30, 3600–3611 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Kukley, M., Capetillo-Zarate, E. & Dietrich, D. Vesicular glutamate release from axons in white matter. Nat. Neurosci. 10, 311–320 (2007).

    Article  CAS  PubMed  Google Scholar 

  23. Orduz, D. et al. Interneurons and oligodendrocyte progenitors form a structured synaptic network in the developing neocortex. eLife 4, e06953 (2015).

    Article  PubMed Central  CAS  Google Scholar 

  24. Káradóttir, R., Cavelier, P., Bergersen, L. H. & Attwell, D. NMDA receptors are expressed in oligodendrocytes and activated in ischaemia. Nature 438, 1162–1166 (2005).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Chittajallu, R., Aguirre, A. & Gallo, V. NG2-positive cells in the mouse white and grey matter display distinct physiological properties. J. Physiol. 561, 109–122 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Barres, B. A. & Raff, M. C. Proliferation of oligodendrocyte precursor cells depends on electrical activity in axons. Nature 361, 258–260 (1993).

    Article  CAS  PubMed  Google Scholar 

  27. Makinodan, M., Rosen, K. M., Ito, S. & Corfas, G. A critical period for social experience-dependent oligodendrocyte maturation and myelination. Science 337, 1357–1360 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Xiao, L. et al. Rapid production of new oligodendrocytes is required in the earliest stages of motor-skill learning. Nat. Neurosci. 19, 1210–1217 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Schebesta, M. & Serluca, F. C. olig1 expression identifies developing oligodendrocytes in zebrafish and requires hedgehog and notch signaling. Dev. Dyn. 238, 887–898 (2009).

    Article  CAS  PubMed  Google Scholar 

  30. Auer, F., Vagionitis, S. & Czopka, T. Evidence for myelin sheath remodeling in the CNS revealed by in vivo imaging. Curr. Biol. 28, 549–559 (2018).

    Article  CAS  PubMed  Google Scholar 

  31. Picelli, S. et al. Smart-seq2 for sensitive full-length transcriptome profiling in single cells. Nat. Methods 10, 1096–1098 (2013).

    Article  CAS  PubMed  Google Scholar 

  32. Chen, Y. et al. The oligodendrocyte-specific G protein-coupled receptor GPR17 is a cell-intrinsic timer of myelination. Nat. Neurosci. 12, 1398–1406 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Viganò, F. et al. GPR17 expressing NG2-glia: oligodendrocyte progenitors serving as a reserve pool after injury. Glia 64, 287–299 (2015).

  34. Emery, B. et al. Myelin gene regulatory factor is a critical transcriptional regulator required for CNS myelination. Cell 138, 172–185 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Early, J. J. et al. An automated high-resolution in vivo screen in zebrafish to identify chemical regulators of myelination. eLife 7, e35136 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Kirischuk, S., Scherer, J., Möller, T., Verkhratsky, A. & Kettenmann, H. Subcellular heterogeneity of voltage-gated Ca2+ channels in cells of the oligodendrocyte lineage. Glia 13, 1–12 (1995).

    Article  CAS  PubMed  Google Scholar 

  37. Pende, M., Holtzclaw, L. A., Curtis, J. L., Russell, J. T. & Gallo, V. Glutamate regulates intracellular calcium and gene expression in oligodendrocyte progenitors through the activation of DL-alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors. Proc. Natl Acad. Sci. USA 91, 3215–3219 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Krasnow, A. M., Ford, M. C., Valdivia, L. E., Wilson, S. W. & Attwell, D. Regulation of developing myelin sheath elongation by oligodendrocyte calcium transients in vivo. Nat. Neurosci. 93, 1–28 (2017).

    Google Scholar 

  39. Yu, X. et al. Reducing astrocyte calcium signaling in vivo alters striatal microcircuits and causes repetitive behavior. Neuron 99, 1170–1187 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Dimou, L. & Simons, M. Diversity of oligodendrocytes and their progenitors. Curr. Opin. Neurobiol. 47, 73–79 (2017).

    Article  CAS  PubMed  Google Scholar 

  41. Simons, M. & Lyons, D. A. Axonal selection and myelin sheath generation in the central nervous system. Curr. Opin. Cell Biol. 25, 512–519 (2013).

  42. Tsai, E. & Casaccia, P. Mechano-modulation of nuclear events regulating oligodendrocyte progenitor gene expression. Glia 67, 1229–1239 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Zhu, X. et al. Age-dependent fate and lineage restriction of single NG2 cells. Development 138, 745–753 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Hill, R. A., Patel, K. D., Goncalves, C. M., Grutzendler, J. & Nishiyama, A. Modulation of oligodendrocyte generation during a critical temporal window after NG2 cell division. Nat. Neurosci. 17, 1518–1527 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Bergles, D. E., Jabs, R. & Steinhäuser, C. Neuron-glia synapses in the brain. Brain Res. Rev. 63, 130–137 (2010).

    Article  CAS  PubMed  Google Scholar 

  46. Kukley, M., Nishiyama, A. & Dietrich, D. The fate of synaptic input to NG2 glial cells: neurons specifically downregulate transmitter release onto differentiating oligodendroglial cells. J. Neurosci. 30, 8320–8331 (2010).

  47. Wake, H. et al. Nonsynaptic junctions on myelinating glia promote preferential myelination of electrically active axons. Nat. Commun. 6, 7844 (2015).

    Article  CAS  PubMed  Google Scholar 

  48. Karttunen, M. J., Czopka, T., Goedhart, M., Early, J. J. & Lyons, D. A. Regeneration of myelin sheaths of normal length and thickness in the zebrafish CNS correlates with growth of axons in caliber. PLoS ONE 12, e0178058 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Almeida, R. G., Czopka, T., ffrench-Constant, C. & Lyons, D. A. Individual axons regulate the myelinating potential of single oligodendrocytes in vivo. Development 138, 4443–4450 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Freeman, J. et al. Mapping brain activity at scale with cluster computing. Nat. Methods 11, 941–950 (2014).

    Article  CAS  PubMed  Google Scholar 

  51. Chen, T.-W. et al. Ultrasensitive fluorescent proteins for imaging neuronal activity. Nature 499, 295–300 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Meyer, M. P. & Smith, S. J. Evidence from in vivo imaging that synaptogenesis guides the growth and branching of axonal arbors by two distinct mechanisms. J. Neurosci. 26, 3604–3614 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Bindels, D. S. et al. mScarlet: a bright monomeric red fluorescent protein for cellular imaging. Nat. Methods 14, 53–56 (2017).

    Article  CAS  PubMed  Google Scholar 

  54. Almeida, R. G. & Lyons, D. A. Intersectional gene expression in zebrafish using the split KalTA4 system. Zebrafish 12, 377–386 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Kwan, K. M. et al. The Tol2kit: a multisite gateway-based construction kit for Tol2 transposon transgenesis constructs. Dev. Dyn. 236, 3088–3099 (2007).

    Article  CAS  PubMed  Google Scholar 

  56. Walton, E. M., Cronan, M. R., Beerman, R. W. & Tobin, D. M. The macrophage-specific promoter mfap4 allows live, long-term analysis of macrophage behavior during mycobacterial infection in zebrafish. PLoS ONE 10, e0138949 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Mensch, S. et al. Synaptic vesicle release regulates myelin sheath number of individual oligodendrocytes in vivo. Nat. Neurosci. 18, 628–630 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Czopka, T., ffrench-Constant, C. & Lyons, D. A. Individual oligodendrocytes have only a few hours in which to generate new myelin sheaths in vivo. Dev. Cell 25, 599–609 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 17, 10–12 (2011).

    Article  Google Scholar 

  60. Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013).

    CAS  PubMed  Google Scholar 

  61. Patro, R., Duggal, G., Love, M. I., Irizarry, R. A. & Kingsford, C. Salmon provides fast and bias-aware quantification of transcript expression. Nat. Methods 14, 417–419 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Butler, A., Hoffman, P., Smibert, P., Papalexi, E. & Satija, R. Integrating single-cell transcriptomic data across different conditions, technologies, and species. Nat. Biotechnol. 36, 411–420 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Bindea, G. et al. ClueGO: a Cytoscape plug-in to decipher functionally grouped gene ontology and pathway annotation networks. Bioinformatics 25, 1091–1093 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods 9, 676–682 (2012).

    Article  CAS  PubMed  Google Scholar 

  65. Meijering, E. et al. Design and validation of a tool for neurite tracing and analysis in fluorescence microscopy images. Cytometry A 58, 167–176 (2004).

    Article  CAS  PubMed  Google Scholar 

  66. Hines, J. H., Ravanelli, A. M., Schwindt, R., Scott, E. K. & Appel, B. Neuronal activity biases axon selection for myelination in vivo. Nat. Neurosci. 18, 683–689 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Kirby, B. B. et al. In vivo time-lapse imaging shows dynamic oligodendrocyte progenitor behavior during zebrafish development. Nat. Neurosci. 9, 1506–1511 (2006).

    Article  CAS  PubMed  Google Scholar 

  68. Baraban, M., Koudelka, S. & Lyons, D. A. Ca2+ activity signatures of myelin sheath formation and growth in vivo. Nat. Neurosci. 19, 1–23 (2017).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to R. Almeida, D. Lyons, T. Misgeld, M. Simons and all members of the Czopka laboratory for their comments and suggestions during the assembly of the data and their presentation in this manuscript. We thank B. Khakh (Department of Physiology, University of California, Los Angeles) for providing the CalEx plasmid before publication, K. Kwan (Department of Human Genetics, University of Utah) for providing the pME_nls-Cerulean and pME_nls-mApple plasmids, and D. Kim (Howard Hughes Medical Institute, Janelia Research Campus) for providing the GCaMP6m plasmid. We thank the Single Cell Genomics Facility, the Science for Life Laboratory, the National Genomics Infrastructure and UPPMAX for providing assistance with massive parallel sequencing and computational infrastructure. The bioinformatics computations were performed on resources provided by the Swedish National Infrastructure for Computing at UPPMAX, Uppsala University. E.A. is funded by the European Union (Horizon 2020 Research and Innovation Programme, Marie Skłodowska-Curie actions, grant SOLO, number 794689). Work in G.C.-B.’s research group was supported by the Swedish Research Council (grant 2015-03558), the European Union (Horizon 2020 Research and Innovation Programme, European Research Council Consolidator Grant EPIScOPE, grant 681893), the Swedish Brain Foundation (FO2017-0075), the Ming Wai Lau Centre for Reparative Medicine and the Karolinska Institutet. Work in T.C.’s research group was funded by a Starting Grant from the European Research Council (ERC StG MecMy, grant 714440), the Deutsche Forschungsgemeinschaft through its Emmy Noether Programme for young investigators (ENP CZ226/1-1) and the Deutsche Forschungsgemeinschaft Excellence Strategy within the framework of the Munich Cluster for Systems Neurology (EXC 2145 SyNergy–D 390857198).

Author information

Authors and Affiliations

Authors

Contributions

T.H., R.M., L.J.H., W.B., G.C.-B. and T.C. designed the experiments. T.H., R.M., L.J.H., W.B. and F.A. conducted the experiments. T.H., R.M., L.J.H. and T.C. analyzed the imaging data. E.A. and G.C.-B. performed the bioinformatic analysis of RNA sequencing data. T.C. conceived the project and wrote the manuscript with input from all authors.

Corresponding author

Correspondence to Tim Czopka.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Characterization of OPCs in the zebrafish spinal cord.

a, Confocal image of a Tg(olig1:memEYFP),Tg(olig1:nls-mApple) zebrafish at the level of the spinal cord at 21 d.p.f. (example of three animals from one experiment). Scale bar, 50 µm. b, Cross-sectional view of the spinal cord showing the distribution of myelin in Tg(mbp:EGFP-CAAX) at 7 d.p.f. (example of 12 animals from four experiments). Scale bar, 10 µm. c, Cross-sectional view of the spinal cord showing the distribution of pre- and postsynapses (Tg(elavl3:synaptophysin-RFP), anti-mCherry, anti-gephyrin) at 7 d.p.f. (example of 12 animals from four experiments). Scale bar, 10 µm. d, Confocal images of Tg(mbp:nls-EGFP),Tg(olig1:nls-mApple) transgenic animals between 4 and 28 d.p.f. (n values as in e). Scale bar, 20 µm. e, Cell numbers of OPCs (olig1: nls-mApple-positive, mbp:nls-EGFP-negative) and myelinating oligodendrocytes (mbp:nls-EGFP-positive) in the spinal cord. Data are expressed as mean cells per field ± s.d. at 3 (n = 17 animals in two experiments), 5 (n = 15 animals in three experiments), 7 (n = 15 in three experiments), 10 (n = 16 in three experiments), 13 (n = 17 in two experiments), 16 (n = 17 in two experiments), 20 (n = 20 in three experiments), 24 (n = 12 in three experiments) and 28 (n = 13 in three experiments) d.p.f. f, Example images of individual OPCs showing a range of morphologies. The soma can be localized within axo-dendritic (top) or neuron-rich areas (middle, bottom). The process network of an individual cell can be restricted to one side of the spinal cord (top and middle cells), but it can also reach to both sides of the spinal cord (bottom cell) (n values as in g). Scale bar, 10 µm. g, OPC morphometry using three-dimensional process tracing and creation of a volume hull around the reconstructed filaments (n = 228 cells from 56 animals between 3 and 16 d.p.f. in 24 experiments). Scale bar, 10 µm.

Extended Data Fig. 2 Analysis of single-cell RNA sequencing clusters.

a, Schematic overview of cell isolation, sorting and sequencing. b, Flow cytometry plots of olig1:memEYFP-sorted cells and wild-type control cells. Dotted lines indicate the gating used (example from two independent experiments). c, t-SNE plot showing expression of sox10 (total sample size n = 310 cells). Immunohistochemistry for sox10 on transverse spinal cord sections of 7 d.p.f. Tg(olig1:nls-mApple),Tg(mbp:nls-EGFP) animals and quantification of sox10-expressing OPCs (olig1:nls-mApple-positive, mbp:nls-EGFP-negative) in neuron-rich and axo-dendritic areas (100% (68/68) versus 100% (49/49) positive cells, n = 16 animals in four experiments). Dotted lines indicate the outlines of the spinal cord. Scale bar,10 µm. d, t-SNE plot showing expression of olig2 and nkx2.2a (sample size as in c). e, t-SNE plot showing expression of ppp1r14bb, mbpa and plp1a (sample size as in c). f, Confocal images with in situ hybridizations for cspg4, gpr17, myrf, and labeling of EDU incorporated cells on transverse spinal cord sections of 7 d.p.f. Tg(olig1:nls-mApple),Tg(mbp:nls-EGFP) animals (see Fig. 2e,i,k,l for respective n values). Scale bar, 10 µm.

Extended Data Fig. 3 Quantification of OPC morphology and position before differentiation.

Quantification of OPC complexity and soma position from imaging timelines between 3 and 15 d.p.f. Measured is the last timepoint as OPC before differentiation, as assessed by myelin sheath formation (imaging intervals of 1 d between 3 and 7 d.p.f., and 2 d between 7 and 15 d.p.f.). n = 10, n = 6, n = 3, n = 3, n = 3, n = 2, n = 1, n = 2, n = 2, n = 2, n = 1, n = 5 and n = 1 cells at 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 and 15 d.p.f. Data from 23 animals in six experiments.

Extended Data Fig. 4 Time-lapse imaging of OPC population dynamics.

a, Overview images of transgenic zebrafish labeling nuclei of OPCs (olig1:nls-mApple) and myelinating oligodendrocytes (mbp:nls-EGFP) at the beginning and end of a timelapse between 3 and 5 d.p.f. Dashed boxes indicate the areas shown in panel c (n = 3 animals in two experiments). Scale bar, 10 µm. b, Quantification of the fates of OPCs found in neuron-rich areas. A detailed breakdown of the data shown in Fig. 4e. c, Zoom-ins and false coloring of the time-lapse in a, showing potential behaviors of OPCs in neuron-rich areas: remaining quiescent (red cell), generating new OPCs in neuron-rich areas (magenta cells) or generating new OPCs in axo-dendritic areas (green cells). The insets at the first and last timepoints show the absence of myelin markers (mbp:nls-EGFP) in the cells studied (n = 3 animals in two experiments). Scale bar, 10 µm.

Extended Data Fig. 5 Cell fate analysis of OPCs with their soma in neuron-rich areas.

a, Time series of an individual OPC with its soma in neuron-rich areas that gives rise to myelinating oligodendrocytes by proliferation-mediated generation of daughter OPCs in axo-dendritic areas. Left panel, confocal images. Middle panel, reconstructions of the starting cell and the individual daughter cells. Cells that will differentiate are shown in blue. Right panels, y-axis rotations showing olig1:nls-mApple cell body positions within the hemi-spinal cord. Dashed lines depict the outline of the spinal cord. One of eight examples from seven animals in six experiments. Scale bar, 10 µm. b, Graphical summary of cell fates from the data analyzed in Fig. 5a–d. See also Supplementary Fig. 2.

Extended Data Fig. 6 Characterization of OPC GCaMP reporter lines.

a, Example images of individual olig1:GCaMP-CAAX-labeled OPCs in axo-dendritic areas of the zebrafish spinal cord at 4 d.p.f. The absence of nascent ensheathments indicates that these cells are not early differentiating oligodendrocytes (n = 9 independent experiments). Scale bar, 10 µm. b, Dorsal views of Tg(olig1:GCaMP6m),Tg(mbp:KillerRed) transgenic zebrafish at 4 d.p.f. to label OPCs and differentiated oligodendrocytes. Dotted box indicates position of zoom-ins in bottom row (n = 3 animals in one experiment). Scale bars, 50 µm (top) and 20 µm (bottom). c, Quantification of single- and double-positive cells from images as shown in b. d, ∆F/F0 GCaMP transients of individual cells in two Tg(olig1:GCaMP6m) zebrafish. Green traces depict cells in axo-dendritic areas, and gray traces depict cells in neuron-rich areas (total of eight animals in eight experiments).

Extended Data Fig. 7 Effects of chronic 4-AP incubation on zebrafish.

a, Minimum intensity projections of a 2 min time-lapse of fish freely swimming in a 3 cm petri dish in different treatment conditions (n = 6, n = 7, n = 3 and n = 3 animals in control, 4-AP, TTX and 4-AP+TTX conditions, three independent experiments). b, Traces of GCaMP transients from Tg(elavl3:h2b-GCaMP6s) zebrafish at 4 d.p.f. and after overnight incubation in 0.1 mM 4-AP and before and after 10 µM TTX (seven animals per condition in two experiments). c, Confocal images of Tg(mfap4:memCerulean),Tg(olig1:nls-mApple) zebrafish at 4 d.p.f. after treatment with 0.1 mM 4-AP, 0.5 mM 4-AP, or Danieau’s solution as a control. Transmitted light images show spinal cord morphology and tissue integrity after drug treatment. Scale bars, 100 µm. The graph shows the number of macrophages that accumulate in a 400 µM length of spinal cord of Tg(mfap4:memCerulean) zebrafish after 1 d of control (2 ± 0.25/2 cells), 0.1 mM (2 ± 1/2 cells) and 0.5 mM (3 ± 0.25/2 cells) 4-AP treatment (median ± 25%/75% percentiles). P = 0.43 (control versus 0.1 mM 4-AP), P = 0.03 (control versus 0.5 mM 4-AP), Kruskal–Wallis test, test statistic=3.003, n = 16, n = 19 and n = 8 animals in three experiments. d, Representative images of Tg(mbp:nls-EGFP),Tg(olig1:nls-mApple) zebrafish in control treatment and after 2 d of 0.1 mM 4-AP treatment (see Fig. 7e for n values). Scale bar, 20 µm.

Supplementary information

Supplementary Information

Supplementary Figures 1 and 2, Supplementary Tables 1–3.

Reporting Summary

Supplementary Video 1

Pan and zoom of OPC reporter lines. Transgenic olig1:memEYFP, olig1:nls-Cerulean zebrafish at 5 d.p.f. showing the distribution of OPCs and their process network within the CNS. Representative images from four animals in two independent experiments.

Supplementary Video 2

Segmentation of individual OPCs. Animation of process tracing and hull construction to reconstruct single OPCs at 4 d.p.f. in the spinal cord (example of n = 76 cells from 23 animals in 11 experiments).

Supplementary Video 3

Time-lapse of process remodeling of an OPC within axo-dendritic areas. 60 min time-lapse of individual OPC within axo-dendritic areas of the spinal cord recorded at 5 min intervals (n = 4 cells from four animals in four experiments). See also Supplementary Video 4.

Supplementary Video 4

Time-projection of process remodeling of an OPC within axo-dendritic areas. Projection of a 60 min time-lapse of an individual OPC within axo-dendritic areas of the spinal cord. Stable processes are green, and remodeled processes appear in magenta (n = 4 cells from four animals in four experiments).

Supplementary Video 5

Time-lapse of process remodeling of an OPC with its soma in neuron-rich areas. 60 min time-lapse of an individual OPC with its soma in neuron-rich areas of the spinal cord recorded at 5 min intervals (n = 4 cells from four animals in four experiments). See also Supplementary Video 6.

Supplementary Video 6

Time-projection of process remodeling of an OPC with its soma in neuron-rich areas. Projection of a 60 min time-lapse of an individual OPC with its soma in neuron-rich areas of the spinal cord. Stable processes are green, and remodeled processes appear in magenta (n = 4 cells from four animals in four experiments).

Supplementary Video 7

Behavior and fate of individual OPC with its soma in neuron-rich areas. 24 h time-lapse showing a cell division of an individual OPC with high process complexity typically found when the OPC soma resides in neuron-rich areas (n = 13 cells from four animals in three experiments).

Supplementary Video 8

Behavior and fate of an individual OPC within axo-dendritic areas. 13 h time-lapse showing differentiation of an individual OPC with low process complexity typically found residing in axo-dendritic areas (n = 21 cells from nine animals in seven experiments).

Supplementary Video 9

Transition of OPC soma between neuron-rich and axo-dendritic areas is linked to cell divisions. 42 h timelapse of olig1:nls-mApple-labeled OPCs. The rounded nucleus shaded in green represents an OPC residing in neuron-rich areas. It divides to give rise to a daughter cell in axo-dendritic areas (elliptic nucleus), and the daughter cell continues to divide. Representative results from three animals in two independent experiments.

Supplementary Video 10

OPC calcium transients can be restricted to process subdomains. Time-lapse of two olig1-GCaMP6m-CAAX-labeled OPCs showing transients in process subdomains. Example of 27 animals in 23 independent experiments.

Supplementary Video 11

OPC calcium transients can spread throughout the cell. Time-lapse of two olig1-GCaMP6m-CAAX-labeled OPCs where one cell shows transients throughout the cell. Example of 27 animals in 23 independent experiments.

Supplementary Video 12

Population analysis of OPC calcium transients. Time-lapse of a Tg(olig1:GCaMP6m) at the level of the spinal cord (dorsal view) showing a GCaMP transient in the soma of a single OPC within the population. Example of eight animals in eight independent experiments.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marisca, R., Hoche, T., Agirre, E. et al. Functionally distinct subgroups of oligodendrocyte precursor cells integrate neural activity and execute myelin formation. Nat Neurosci 23, 363–374 (2020). https://doi.org/10.1038/s41593-019-0581-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41593-019-0581-2

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing