Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Regulation of long non-coding RNAs and genome dynamics by the RNA surveillance machinery

Abstract

Much of the mammalian genome is transcribed, generating long non-coding RNAs (lncRNAs) that can undergo post-transcriptional surveillance whereby only a subset of the non-coding transcripts is allowed to attain sufficient stability to persist in the cellular milieu and control various cellular functions. Paralleling protein turnover by the proteasome complex, lncRNAs are also likely to exist in a dynamic equilibrium that is maintained through constant monitoring by the RNA surveillance machinery. In this Review, we describe the RNA surveillance factors and discuss the vital role of lncRNA surveillance in orchestrating various biological processes, including the protection of genome integrity, maintenance of pluripotency of embryonic stem cells, antibody–gene diversification, coordination of immune cell activation and regulation of heterochromatin formation. We also discuss examples of human diseases and developmental defects associated with the failure of RNA surveillance mechanisms, further highlighting the importance of lncRNA surveillance in maintaining cell and organism functions and health.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Transcription-associated RNA surveillance.
Fig. 2: RNA surveillance between deleterious and programmed DNA mutagenesis.
Fig. 3: Functions of RNA surveillance in DNA damage repair and chromatin biology.
Fig. 4: The biological relevance of RNA surveillance.

Similar content being viewed by others

References

  1. Kim, V. N., Han, J. & Siomi, M. C. Biogenesis of small RNAs in animals. Nat. Rev. Mol. Cell Biol. 10, 126–139 (2009).

    Article  CAS  PubMed  Google Scholar 

  2. Ghildiyal, M. & Zamore, P. D. Small silencing RNAs: an expanding universe. Nat. Rev. Genet. 10, 94–108 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Matera, A. G., Terns, R. M. & Terns, M. P. Non-coding RNAs: lessons from the small nuclear and small nucleolar RNAs. Nat. Rev. Mol. Cell Biol. 8, 209–220 (2007).

    Article  CAS  PubMed  Google Scholar 

  4. Holoch, D. & Moazed, D. RNA-mediated epigenetic regulation of gene expression. Nat. Rev. Genet. 16, 71–84 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Wang, K. C. & Chang, H. Y. Molecular mechanisms of long noncoding RNAs. Mol. Cell 43, 904–914 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Fatica, A. & Bozzoni, I. Long non-coding RNAs: new players in cell differentiation and development. Nat. Rev. Genet. 15, 7–21 (2014).

    Article  CAS  PubMed  Google Scholar 

  7. Batista, P. J. & Chang, H. Y. Long noncoding RNAs: cellular address codes in development and disease. Cell 152, 1298–1307 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Laffleur, B. & Basu, U. Biology of RNA surveillance in development and disease. Trends Cell Biol. 29, 428–445 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Wolin, S. L., Sim, S. & Chen, X. Nuclear noncoding RNA surveillance: is the end in sight? Trends Genet. 28, 306–313 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Belair, C., Sim, S. & Wolin, S. L. Noncoding RNA surveillance: the ends justify the means. Chem. Rev. 118, 4422–4447 (2018).

    Article  CAS  PubMed  Google Scholar 

  11. Schoenberg, D. R. & Maquat, L. E. Regulation of cytoplasmic mRNA decay. Nat. Rev. Genet. 13, 246–259 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Singh, P., Saha, U., Paira, S. & Das, B. Nuclear mRNA surveillance mechanisms: function and links to human disease. J. Mol. Biol. 430, 1993–2013 (2018).

    Article  CAS  PubMed  Google Scholar 

  13. Lim, J. et al. Nuclear proximity of Mtr4 to RNA exosome restricts DNA mutational asymmetry. Cell 169, 523–537.e15 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Lubas, M. et al. Interaction profiling identifies the human nuclear exosome targeting complex. Mol. Cell 43, 624–637 (2011).

    Article  CAS  PubMed  Google Scholar 

  15. Weick, E.-M. et al. Helicase-dependent RNA decay illuminated by a cryo-EM structure of a human nuclear RNA exosome-MTR4 complex. Cell 173, 1663–1677.e21 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Amon, J. D. & Koshland, D. RNase H enables efficient repair of R-loop induced DNA damage. eLife 5, 115 (2016).

    Article  Google Scholar 

  17. Maul, R. W. et al. R-Loop depletion by over-expressed RNase H1 in mouse B cells increases activation-induced deaminase access to the transcribed strand without altering frequency of isotype switching. J. Mol. Biol. 429, 3255–3263 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Reijns, M. A. M. et al. Enzymatic removal of ribonucleotides from DNA is essential for mammalian genome integrity and development. Cell 149, 1008–1022 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Wahba, L., Amon, J. D., Koshland, D. & Vuica-Ross, M. RNase H and multiple RNA biogenesis factors cooperate to prevent RNA:DNA hybrids from generating genome instability. Mol. Cell 44, 978–988 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Huertas, P. & Aguilera, A. Cotranscriptionally formed DNA:RNA hybrids mediate transcription elongation impairment and transcription-associated recombination. Mol. Cell 12, 711–721 (2003).

    Article  CAS  PubMed  Google Scholar 

  21. Aguilera, A. & Gómez-González, B. DNA-RNA hybrids: the risks of DNA breakage during transcription. Nat. Struct. Mol. Biol. 24, 439–443 (2017).

    Article  CAS  PubMed  Google Scholar 

  22. Chen, L. et al. R-ChIP using inactive RNase H reveals dynamic coupling of R-loops with transcriptional pausing at gene promoters. Mol. Cell 68, 745–757.e5 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Mitchell, P., Petfalski, E. & Tollervey, D. The 3′ end of yeast 5.8S rRNA is generated by an exonuclease processing mechanism. Genes Dev. 10, 502–513 (1996).

    Article  CAS  PubMed  Google Scholar 

  24. Allmang, C. et al. Functions of the exosome in rRNA, snoRNA and snRNA synthesis. EMBO J. 18, 5399–5410 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Mitchell, P., Petfalski, E., Shevchenko, A., Mann, M. & Tollervey, D. The exosome: a conserved eukaryotic RNA processing complex containing multiple 3′→5′ exoribonucleases. Cell 91, 457–466 (1997).

    Article  CAS  PubMed  Google Scholar 

  26. van Hoof, A. & Parker, R. The exosome: a proteasome for RNA? Cell 99, 347–350 (1999).

    Article  PubMed  Google Scholar 

  27. Kilchert, C., Wittmann, S. & Vasiljeva, L. The regulation and functions of the nuclear RNA exosome complex. Nat. Rev. Mol. Cell Biol. 17, 227–239 (2016).

    Article  CAS  PubMed  Google Scholar 

  28. Zinder, J. C. & Lima, C. D. Targeting RNA for processing or destruction by the eukaryotic RNA exosome and its cofactors. Genes Dev. 31, 88–100 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Lubas, M. et al. The human nuclear exosome targeting complex is loaded onto newly synthesized RNA to direct early ribonucleolysis. Cell Rep. 10, 178–192 (2015).

    Article  CAS  PubMed  Google Scholar 

  30. Meola, N. et al. Identification of a nuclear exosome decay pathway for processed transcripts. Mol. Cell 64, 520–533 (2016).

    Article  CAS  PubMed  Google Scholar 

  31. Andersson, R. et al. An atlas of active enhancers across human cell types and tissues. Nature 507, 455–461 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Pefanis, E. et al. Noncoding RNA transcription targets AID to divergently transcribed loci in B cells. Nature 514, 389–393 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Pefanis, E. et al. RNA exosome-regulated long non-coding RNA transcription controls super-enhancer activity. Cell 161, 774–789 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Tuck, A. C. & Tollervey, D. A transcriptome-wide atlas of RNP composition reveals diverse classes of mRNAs and lncRNAs. Cell 154, 996–1009 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Johnson, A. W. Rat1p and Xrn1p are functionally interchangeable exoribonucleases that are restricted to and required in the nucleus and cytoplasm, respectively. Mol. Cell. Biol. 17, 6122–6130 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Larimer, F. W., Hsu, C. L., Maupin, M. K. & Stevens, A. Characterization of the XRN1 gene encoding a 5′→3′ exoribonuclease: sequence data and analysis of disparate protein and mRNA levels of gene-disrupted yeast cells. Gene 120, 51–57 (1992).

    Article  CAS  PubMed  Google Scholar 

  37. Amberg, D. C., Goldstein, A. L. & Cole, C. N. Isolation and characterization of RAT1: an essential gene of Saccharomyces cerevisiae required for the efficient nucleocytoplasmic trafficking of mRNA. Genes Dev. 6, 1173–1189 (1992).

    Article  CAS  PubMed  Google Scholar 

  38. Petfalski, E., Dandekar, T., Henry, Y. & Tollervey, D. Processing of the precursors to small nucleolar RNAs and rRNAs requires common components. Mol. Cell. Biol. 18, 1181–1189 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Chernyakov, I., Whipple, J. M., Kotelawala, L., Grayhack, E. J. & Phizicky, E. M. Degradation of several hypomodified mature tRNA species in Saccharomyces cerevisiae is mediated by Met22 and the 5′-3′ exonucleases Rat1 and Xrn1. Genes Dev. 22, 1369–1380 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Muhlrad, D., Decker, C. J. & Parker, R. Deadenylation of the unstable mRNA encoded by the yeast MFA2 gene leads to decapping followed by 5′–>3′ digestion of the transcript. Genes Dev. 8, 855–866 (1994).

    Article  CAS  PubMed  Google Scholar 

  41. Parker, R. & Song, H. The enzymes and control of eukaryotic mRNA turnover. Nat. Struct. Mol. Biol. 11, 121–127 (2004).

    Article  CAS  PubMed  Google Scholar 

  42. Davidson, L., Kerr, A. & West, S. Co-transcriptional degradation of aberrant pre-mRNA by Xrn2. EMBO J. 31, 2566–2578 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. West, S., Gromak, N. & Proudfoot, N. J. Human 5′→3′ exonuclease Xrn2 promotes transcription termination at co-transcriptional cleavage sites. Nature 432, 522–525 (2004).

    Article  CAS  PubMed  Google Scholar 

  44. Proudfoot, N. J. Transcriptional termination in mammals: Stopping the RNA polymerase II juggernaut. Science 352, aad9926 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Fong, N. et al. Effects of transcription elongation rate and Xrn2 exonuclease activity on RNA polymerase II termination suggest widespread kinetic competition. Mol. Cell 60, 256–267 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Gromak, N., West, S. & Proudfoot, N. J. Pause sites promote transcriptional termination of mammalian RNA polymerase II. Mol. Cell. Biol. 26, 3986–3996 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Skourti-Stathaki, K., Proudfoot, N. J. & Gromak, N. Human senataxin resolves RNA/DNA hybrids formed at transcriptional pause sites to promote Xrn2-dependent termination. Mol. Cell 42, 794–805 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Wagschal, A. et al. Microprocessor, Setx, Xrn2, and Rrp6 co-operate to induce premature termination of transcription by RNAPII. Cell 150, 1147–1157 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Morales, J. C. et al. XRN2 links transcription termination to DNA damage and replication stress. PLoS Genet. 12, e1006107–e1006122 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Hamperl, S. & Cimprich, K. A. The contribution of co-transcriptional RNA:DNA hybrid structures to DNA damage and genome instability. DNA Repair 19, 84–94 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Alzu, A. et al. Senataxin associates with replication forks to protect fork integrity across RNA-polymerase-II-transcribed genes. Cell 151, 835–846 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Becherel, O. J. et al. Senataxin plays an essential role with DNA damage response proteins in meiotic recombination and gene silencing. PLoS Genet. 9, e1003435 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Cohen, S. et al. Senataxin resolves RNA:DNA hybrids forming at DNA double-strand breaks to prevent translocations. Nat. Commun. 9, 533 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Sollier, J. et al. Transcription-coupled nucleotide excision repair factors promote R-loop-induced genome instability. Mol. Cell 56, 777–785 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Puno, M. R. & Lima, C. D. Structural basis for MTR4-ZCCHC8 interactions that stimulate the MTR4 helicase in the nuclear exosome-targeting complex. Proc. Natl Acad. Sci. USA 115, E5506–E5515 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Jankowsky, E. RNA helicases at work: binding and rearranging. Trends Biochem. Sci. 36, 19–29 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Cristini, A., Groh, M., Kristiansen, M. S. & Gromak, N. RNA/DNA hybrid interactome identifies DXH9 as a molecular player in transcriptional termination and R-loop-associated DNA damage. Cell Rep. 23, 1891–1905 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Chakraborty, P. & Grosse, F. Human DHX9 helicase preferentially unwinds RNA-containing displacement loops (R-loops) and G-quadruplexes. DNA Repair 10, 654–665 (2011).

    Article  CAS  PubMed  Google Scholar 

  59. Ribeiro de Almeida, C. et al. RNA helicase DDX1 converts RNA G-quadruplex structures into R-loops to promote IgH class switch recombination. Mol. Cell 70, 650–662.e8 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Modarresi, F. et al. Inhibition of natural antisense transcripts in vivo results in gene-specific transcriptional upregulation. Nat. Biotechnol. 30, 453–459 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Tufarelli, C. et al. Transcription of antisense RNA leading to gene silencing and methylation as a novel cause of human genetic disease. Nat. Genet. 34, 157–165 (2003).

    Article  CAS  PubMed  Google Scholar 

  62. Hobson, D. J., Wei, W., Steinmetz, L. M. & Svejstrup, J. Q. RNA polymerase II collision interrupts convergent transcription. Mol. Cell 48, 365–374 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Seila, A. C., Core, L. J., Lis, J. T. & Sharp, P. A. Divergent transcription: a new feature of active promoters. Cell Cycle 8, 2557–2564 (2009).

    Article  CAS  PubMed  Google Scholar 

  64. Latos, P. A. et al. Airn transcriptional overlap, but not its lncRNA products, induces imprinted Igf2r silencing. Science 338, 1469–1472 (2012).

    Article  CAS  PubMed  Google Scholar 

  65. Tan-Wong, S. M., Dhir, S. & Proudfoot, N. J. R-loops promote antisense transcription across the mammalian genome. Mol. Cell 76, 600–616.e6 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Nojima, T. et al. Deregulated expression of mammalian lncRNA through loss of SPT6 induces R-loop formation, replication stress, and cellular senescence. Mol. Cell 72, 970–984.e7 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Tatomer, D. C. et al. The integrator complex cleaves nascent mRNAs to attenuate transcription. Genes Dev. 33, 1525–1538 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Lai, F., Gardini, A., Zhang, A. & Shiekhattar, R. Integrator mediates the biogenesis of enhancer RNAs. Nature 525, 399–403 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Aguilera, A. & Gómez-González, B. Genome instability: a mechanistic view of its causes and consequences. Nat. Rev. Genet. 9, 204–217 (2008).

    Article  CAS  PubMed  Google Scholar 

  70. Mills, K. D., Ferguson, D. O. & Alt, F. W. The role of DNA breaks in genomic instability and tumorigenesis. Immunol. Rev. 194, 77–95 (2003).

    Article  CAS  PubMed  Google Scholar 

  71. Jeggo, P. A., Pearl, L. H. & Carr, A. M. DNA repair, genome stability and cancer: a historical perspective. Nat. Rev. Cancer 16, 35–42 (2016).

    Article  CAS  PubMed  Google Scholar 

  72. Lee, J.-K., Choi, Y.-L., Kwon, M. & Park, P. J. Mechanisms and consequences of cancer genome instability: lessons from genome sequencing studies. Annu. Rev. Pathol. 11, 283–312 (2016).

    Article  CAS  PubMed  Google Scholar 

  73. Heller, R. C. & Marians, K. J. Replisome assembly and the direct restart of stalled replication forks. Nat. Rev. Mol. Cell Biol. 7, 932–943 (2006).

    Article  CAS  PubMed  Google Scholar 

  74. Cobb, J. A. et al. Replisome instability, fork collapse, and gross chromosomal rearrangements arise synergistically from Mec1 kinase and RecQ helicase mutations. Genes Dev. 19, 3055–3069 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Sogo, J. M., Lopes, M. & Foiani, M. Fork reversal and ssDNA accumulation at stalled replication forks owing to checkpoint defects. Science 297, 599–602 (2002).

    Article  CAS  PubMed  Google Scholar 

  76. Blumenfeld, B., Ben-Zimra, M. & Simon, I. Perturbations in the replication program contribute to genomic instability in cancer. Int. J. Mol. Sci. 18, 1138 (2017).

    Article  PubMed Central  CAS  Google Scholar 

  77. Gaillard, H., García-Muse, T. & Aguilera, A. Replication stress and cancer. Nat. Rev. Cancer 15, 276–289 (2015).

    Article  CAS  PubMed  Google Scholar 

  78. Ganai, R. A. & Johansson, E. DNA replication-a matter of fidelity. Mol. Cell 62, 745–755 (2016).

    Article  CAS  PubMed  Google Scholar 

  79. Zhu, W., in Genome Instability in Cancer Development (ed. Niggs, E. A.) 249–279 (Springer, 2005).

  80. Aguilera, A. & García-Muse, T. R loops: from transcription byproducts to threats to genome stability. Mol. Cell 46, 115–124 (2012).

    Article  CAS  PubMed  Google Scholar 

  81. Roy, D., Yu, K. & Lieber, M. R. Mechanism of R-loop formation at immunoglobulin class switch sequences. Mol. Cell. Biol. 28, 50–60 (2008).

    Article  CAS  PubMed  Google Scholar 

  82. Roy, D. & Lieber, M. R. G clustering is important for the initiation of transcription-induced R-loops in vitro, whereas high G density without clustering is sufficient thereafter. Mol. Cell. Biol. 29, 3124–3133 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Roy, D., Zhang, Z., Lu, Z., Hsieh, C.-L. & Lieber, M. R. Competition between the RNA transcript and the nontemplate DNA strand during R-loop formation in vitro: a nick can serve as a strong R-loop initiation site. Mol. Cell. Biol. 30, 146–159 (2010).

    Article  CAS  PubMed  Google Scholar 

  84. Lipps, H. J. & Rhodes, D. G-quadruplex structures: in vivo evidence and function. Trends Cell Biol. 19, 414–422 (2009).

    Article  CAS  PubMed  Google Scholar 

  85. Millevoi, S., Moine, H. & Vagner, S. G-quadruplexes in RNA biology. Wiley Interdiscip. Rev. RNA 3, 495–507 (2012).

    Article  CAS  PubMed  Google Scholar 

  86. Aguilera, A. & Gaillard, H. Transcription and recombination: when RNA meets DNA. Cold Spring Harb. Perspect. Biol. 6, a016543 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Kim, N. & Jinks-Robertson, S. Transcription as a source of genome instability. Nat. Rev. Genet. 13, 204–214 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Sridhara, S. C. et al. Transcription dynamics prevent RNA-mediated genomic instability through SRPK2-dependent DDX23 phosphorylation. Cell Rep. 18, 334–343 (2017).

    Article  CAS  PubMed  Google Scholar 

  89. Yüce, O. & West, S. C. Senataxin, defective in the neurodegenerative disorder ataxia with oculomotor apraxia 2, lies at the interface of transcription and the DNA damage response. Mol. Cell. Biol. 33, 406–417 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. Richard, P., Feng, S. & Manley, J. L. A SUMO-dependent interaction between senataxin and the exosome, disrupted in the neurodegenerative disease AOA2, targets the exosome to sites of transcription-induced DNA damage. Genes Dev. 27, 2227–2232 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Basu, U. et al. The RNA exosome targets the AID cytidine deaminase to both strands of transcribed duplex DNA substrates. Cell 144, 353–363 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Xu, Z., Zan, H., Pone, E. J., Mai, T. & Casali, P. Immunoglobulin class-switch DNA recombination: induction, targeting and beyond. Nat. Rev. Immunol. 12, 517–531 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Zheng, S. et al. Non-coding RNA generated following lariat debranching mediates targeting of AID to DNA. Cell 161, 762–773 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Chen, J. et al. The RNA-binding protein ROD1/PTBP3 cotranscriptionally defines AID-loading sites to mediate antibody class switch in mammalian genomes. Cell Res. 28, 981–995 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Rada, C., Di Noia, J. M. & Neuberger, M. S. Mismatch recognition and uracil excision provide complementary paths to both Ig switching and the A/T-focused phase of somatic mutation. Mol. Cell 16, 163–171 (2004).

    Article  CAS  PubMed  Google Scholar 

  96. Sun, J. et al. E3-ubiquitin ligase Nedd4 determines the fate of AID-associated RNA polymerase II in B cells. Genes Dev. 27, 1821–1833 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Domingo-Prim, J. et al. EXOSC10 is required for RPA assembly and controlled DNA end resection at DNA double-strand breaks. Nat. Commun. 10, 2135 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  98. Chalamcharla, V. R., Folco, H. D., Dhakshnamoorthy, J. & Grewal, S. I. S. Conserved factor Dhp1/Rat1/Xrn2 triggers premature transcription termination and nucleates heterochromatin to promote gene silencing. Proc. Natl Acad. Sci. USA 112, 15548–15555 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Reyes-Turcu, F. E., Zhang, K., Zofall, M., Chen, E. & Grewal, S. I. S. Defects in RNA quality control factors reveal RNAi-independent nucleation of heterochromatin. Nat. Struct. Mol. Biol. 18, 1132–1138 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Yamanaka, S. et al. RNAi triggered by specialized machinery silences developmental genes and retrotransposons. Nature 493, 557–560 (2013).

    Article  CAS  PubMed  Google Scholar 

  101. Zhang, K. et al. Clr4/Suv39 and RNA quality control factors cooperate to trigger RNAi and suppress antisense RNA. Science 331, 1624–1627 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Bühler, M. & Moazed, D. Transcription and RNAi in heterochromatic gene silencing. Nat. Struct. Mol. Biol. 14, 1041–1048 (2007).

    Article  PubMed  CAS  Google Scholar 

  103. Singh, I. et al. MiCEE is a ncRNA-protein complex that mediates epigenetic silencing and nucleolar organization. Nat. Genet. 50, 990–1001 (2018).

    Article  CAS  PubMed  Google Scholar 

  104. Garland, W. et al. A functional link between nuclear RNA Decay and transcriptional control mediated by the polycomb repressive complex 2. Cell Rep. 29, 1800–1811.e6 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Dixon, J. R. et al. Topological domains in mammalian genomes identified by analysis of chromatin interactions. Nature 485, 376–380 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Nora, E. P. et al. Spatial partitioning of the regulatory landscape of the X-inactivation centre. Nature 485, 381–385 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Handoko, L. et al. CTCF-mediated functional chromatin interactome in pluripotent cells. Nat. Genet. 43, 630–638 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Kagey, M. H. et al. Mediator and cohesin connect gene expression and chromatin architecture. Nature 467, 430–435 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Ørom, U. A. & Shiekhattar, R. Long noncoding RNAs usher in a new era in the biology of enhancers. Cell 154, 1190–1193 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  110. Lai, F. et al. Activating RNAs associate with mediator to enhance chromatin architecture and transcription. Nature 494, 497–501 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Shin, Y. & Brangwynne, C. P. Liquid phase condensation in cell physiology and disease. Science 357, eaaf4382 (2017).

    Article  PubMed  CAS  Google Scholar 

  112. Silla, T., Karadoulama, E., Mąkosa, D., Lubas, M. & Jensen, T. H. The RNA exosome adaptor ZFC3H1 functionally competes with nuclear export activity to retain target transcripts. Cell Rep. 23, 2199–2210 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Chen, Y. G., Satpathy, A. T. & Chang, H. Y. Gene regulation in the immune system by long noncoding RNAs. Nat. Immunol. 18, 962–972 (2017).

    Article  CAS  PubMed  Google Scholar 

  114. Zhang, Y. & Cao, X. Long noncoding RNAs in innate immunity. Cell. Mol. Immunol. 13, 138–147 (2016).

    Article  PubMed  CAS  Google Scholar 

  115. Spurlock, C. F. 3rd, Crooke, P. S. 3rd & Aune, T. M. Biogenesis and transcriptional regulation of long noncoding RNAs in the human immune system. J. Immunol. 197, 4509–4517 (2016).

    Article  CAS  PubMed  Google Scholar 

  116. Lee, E.-J. & Groisman, E. A. An antisense RNA that governs the expression kinetics of a multifunctional virulence gene. Mol. Microbiol. 76, 1020–1033 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Li, W. et al. Oncogenic KSHV-encoded interferon regulatory factor upregulates HMGB2 and CMPK1 expression to promote cell invasion by disrupting a complex lncRNA-OIP5-AS1/miR-218-5p network. PLoS Pathog. 15, e1007578 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  118. Chandriani, S., Xu, Y. & Ganem, D. The lytic transcriptome of Kaposi’s sarcoma-associated herpesvirus reveals extensive transcription of noncoding regions, including regions antisense to important genes. J. Virol. 84, 7934–7942 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Campbell, M. et al. A lytic viral long noncoding RNA modulates the function of a latent protein. J. Virol. 88, 1843–1848 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  120. Clark, M. B. et al. Genome-wide analysis of long noncoding RNA stability. Genome Res. 22, 885–898 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Tani, H. et al. Genome-wide determination of RNA stability reveals hundreds of short-lived noncoding transcripts in mammals. Genome Res. 22, 947–956 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Imamura, K. et al. Diminished nuclear RNA decay upon Salmonella infection upregulates antibacterial noncoding RNAs. EMBO J. 37, e97723 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  123. Munschauer, M. & Vogel, J. Nuclear lncRNA stabilization in the host response to bacterial infection. EMBO J. 37, e99875 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  124. Sahin, B. B., Patel, D. & Conrad, N. K. Kaposi’s sarcoma-associated herpesvirus ORF57 protein binds and protects a nuclear noncoding RNA from cellular RNA decay pathways. PLoS Pathog. 6, e1000799 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  125. Ruiz, J. C., Hunter, O. V. & Conrad, N. K. Kaposi’s sarcoma-associated herpesvirus ORF57 protein protects viral transcripts from specific nuclear RNA decay pathways by preventing hMTR4 recruitment. PLoS Pathog. 15, e1007596 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Molleston, J. M. et al. A conserved virus-induced cytoplasmic TRAMP-like complex recruits the exosome to target viral RNA for degradation. Genes Dev. 30, 1658–1670 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Contreras, X. et al. Nuclear RNA surveillance complexes silence HIV-1 transcription. PLoS Pathog. 14, e1006950 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  128. Molleston, J. & Cherry, S. Attacked from all sides: RNA decay in antiviral defense. Viruses 9, 2–15 (2017).

    Article  PubMed Central  CAS  Google Scholar 

  129. Efroni, S. et al. Global transcription in pluripotent embryonic stem cells. Cell Stem Cell 2, 437–447 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Sheik Mohamed, J., Gaughwin, P. M., Lim, B., Robson, P. & Lipovich, L. Conserved long noncoding RNAs transcriptionally regulated by Oct4 and Nanog modulate pluripotency in mouse embryonic stem cells. RNA 16, 324–337 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  131. Fort, A. et al. Deep transcriptome profiling of mammalian stem cells supports a regulatory role for retrotransposons in pluripotency maintenance. Nat. Genet. 46, 558–566 (2014).

    Article  CAS  PubMed  Google Scholar 

  132. Garcia-Perez, J. L. et al. LINE-1 retrotransposition in human embryonic stem cells. Hum. Mol. Genet. 16, 1569–1577 (2007).

    Article  CAS  PubMed  Google Scholar 

  133. Sigova, A. A. et al. Divergent transcription of long noncoding RNA/mRNA gene pairs in embryonic stem cells. Proc. Natl Acad. Sci. USA 110, 2876–2881 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Luo, S. et al. Divergent lncRNAs regulate gene expression and lineage differentiation in pluripotent cells. Cell Stem Cell 18, 637–652 (2016).

    Article  CAS  PubMed  Google Scholar 

  135. Dinger, M. E. et al. Long noncoding RNAs in mouse embryonic stem cell pluripotency and differentiation. Genome Res. 18, 1433–1445 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Lloret-Llinares, M. et al. The RNA exosome contributes to gene expression regulation during stem cell differentiation. Nucleic Acids Res. 46, 11502–11513 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Belair, C. et al. The RNA exosome nuclease complex regulates human embryonic stem cell differentiation. J. Cell Biol. 218, 2564–2582 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Morton, D. J. et al. The RNA exosome and RNA exosome-linked disease. RNA 24, 127–142 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Boczonadi, V. et al. EXOSC8 mutations alter mRNA metabolism and cause hypomyelination with spinal muscular atrophy and cerebellar hypoplasia. Nat. Commun. 5, 4287 (2014).

    Article  CAS  PubMed  Google Scholar 

  140. Di Donato, N. et al. Mutations in EXOSC2 are associated with a novel syndrome characterised by retinitis pigmentosa, progressive hearing loss, premature ageing, short stature, mild intellectual disability and distinctive gestalt. J. Med. Genet. 53, 419–425 (2016).

    Article  PubMed  CAS  Google Scholar 

  141. Wan, J. et al. Mutations in the RNA exosome component gene EXOSC3 cause pontocerebellar hypoplasia and spinal motor neuron degeneration. Nat. Genet. 44, 704–708 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Rudnik-Schöneborn, S. et al. Pontocerebellar hypoplasia type 1: clinical spectrum and relevance of EXOSC3 mutations. Neurology 80, 438–446 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  143. Eggens, V. R. et al. EXOSC3 mutations in pontocerebellar hypoplasia type 1: novel mutations and genotype-phenotype correlations. Orphanet J. Rare Dis. 9, 23 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  144. Biancheri, R. et al. EXOSC3 mutations in isolated cerebellar hypoplasia and spinal anterior horn involvement. J. Neurol. 260, 1866–1870 (2013).

    Article  CAS  PubMed  Google Scholar 

  145. Giunta, M. et al. Altered RNA metabolism due to a homozygous RBM7 mutation in a patient with spinal motor neuropathy. Hum. Mol. Genet. 25, 2985–2996 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Moreira, M.-C. et al. Senataxin, the ortholog of a yeast RNA helicase, is mutant in ataxia-ocular apraxia 2. Nat. Genet. 36, 225–227 (2004).

    Article  CAS  PubMed  Google Scholar 

  147. Chen, Y.-Z. et al. DNA/RNA helicase gene mutations in a form of juvenile amyotrophic lateral sclerosis (ALS4). Am. J. Hum. Genet. 74, 1128–1135 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Suraweera, A. et al. Functional role for senataxin, defective in ataxia oculomotor apraxia type 2, in transcriptional regulation. Hum. Mol. Genet. 18, 3384–3396 (2009).

    Article  CAS  PubMed  Google Scholar 

  149. Lee-Kirsch, M. A., Wolf, C. & Günther, C. Aicardi-Goutières syndrome: a model disease for systemic autoimmunity. Clin. Exp. Immunol. 175, 17–24 (2014).

    Article  CAS  PubMed  Google Scholar 

  150. Rabe, B. Aicardi-Goutières syndrome: clues from the RNase H2 knock-out mouse. J. Mol. Med. 91, 1235–1240 (2013).

    Article  CAS  PubMed  Google Scholar 

  151. Günther, C. et al. Defective removal of ribonucleotides from DNA promotes systemic autoimmunity. J. Clin. Invest. 125, 413–424 (2015).

    Article  PubMed  Google Scholar 

  152. Bartsch, K. et al. RNase H2 loss in murine astrocytes results in cellular defects reminiscent of nucleic acid-mediated autoinflammation. Front. Immunol. 9, 587 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  153. Bartsch, K. et al. Absence of RNase H2 triggers generation of immunogenic micronuclei removed by autophagy. Hum. Mol. Genet. 26, 3960–3972 (2017).

    Article  CAS  PubMed  Google Scholar 

  154. Mackenzie, K. J. et al. Ribonuclease H2 mutations induce a cGAS/STING-dependent innate immune response. EMBO J. 35, 831–844 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Eckard, S. C. et al. The SKIV2L RNA exosome limits activation of the RIG-I-like receptors. Nat. Immunol. 15, 839–845 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Chapman, M. A. et al. Initial genome sequencing and analysis of multiple myeloma. Nature 471, 467–472 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Lionetti, M. et al. A compendium of DIS3 mutations and associated transcriptional signatures in plasma cell dyscrasias. Oncotarget 6, 26129–26141 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  158. Groh, M. & Gromak, N. Out of balance: R-loops in human disease. PLoS Genet. 10, e1004630 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  159. Manis, J. P., Tian, M. & Alt, F. W. Mechanism and control of class-switch recombination. Trends Immunol. 23, 31–39 (2002).

    Article  CAS  PubMed  Google Scholar 

  160. Küppers, R. Mechanisms of B-cell lymphoma pathogenesis. Nat. Rev. Cancer 5, 251–262 (2005).

    Article  PubMed  CAS  Google Scholar 

  161. Frye, M., Harada, B. T., Behm, M. & He, C. RNA modifications modulate gene expression during development. Science 361, 1346–1349 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Tan, M. H. et al. Dynamic landscape and regulation of RNA editing in mammals. Nature 550, 249–254 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  163. Liddicoat, B. J. et al. RNA editing by ADAR1 prevents MDA5 sensing of endogenous dsRNA as nonself. Science 349, 1115–1120 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Rice, G. I. et al. Mutations in ADAR1 cause Aicardi-Goutières syndrome associated with a type I interferon signature. Nat. Genet. 44, 1243–1248 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Chung, H. et al. Human ADAR1 prevents endogenous RNA from triggering translational shutdown. Cell 172, 811–824.e14 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Furlong, E. E. M. & Levine, M. Developmental enhancers and chromosome topology. Science 361, 1341–1345 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Löwer, R., Löwer, J. & Kurth, R. The viruses in all of us: characteristics and biological significance of human endogenous retrovirus sequences. Proc. Natl Acad. Sci. USA 93, 5177–5184 (1996).

    Article  PubMed  PubMed Central  Google Scholar 

  168. Chuong, E. B., Rumi, M. A. K., Soares, M. J. & Baker, J. C. Endogenous retroviruses function as species-specific enhancer elements in the placenta. Nat. Genet. 45, 325–329 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Sundaram, V. et al. Widespread contribution of transposable elements to the innovation of gene regulatory networks. Genome Res. 24, 1963–1976 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Banani, S. F., Lee, H. O., Hyman, A. A. & Rosen, M. K. Biomolecular condensates: organizers of cellular biochemistry. Nat. Rev. Mol. Cell Biol. 18, 285–298 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Yamazaki, T. et al. Functional domains of NEAT1 architectural lncRNA Induce paraspeckle assembly through phase separation. Mol. Cell 70, 1038–1053.e7 (2018).

    Article  CAS  PubMed  Google Scholar 

  172. Clemson, C. M. et al. An architectural role for a nuclear noncoding RNA: NEAT1 RNA is essential for the structure of paraspeckles. Mol. Cell 33, 717–726 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Penny, G. D., Kay, G. F., Sheardown, S. A., Rastan, S. & Brockdorff, N. Requirement for Xist in X chromosome inactivation. Nature 379, 131–137 (1996).

    Article  CAS  PubMed  Google Scholar 

  174. Guenther, M. G., Levine, S. S., Boyer, L. A., Jaenisch, R. & Young, R. A. A chromatin landmark and transcription initiation at most promoters in human cells. Cell 130, 77–88 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Nagano, T. et al. The air noncoding RNA epigenetically silences transcription by targeting G9a to chromatin. Science 322, 1717–1720 (2008).

    Article  CAS  PubMed  Google Scholar 

  176. Michelini, F. et al. Damage-induced lncRNAs control the DNA damage response through interaction with DDRNAs at individual double-strand breaks. Nat. Cell Biol. 19, 1400–1411 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Tummala, H. et al. Poly(A)-specific ribonuclease deficiency impacts telomere biology and causes dyskeratosis congenita. J. Clin. Invest. 125, 2151–2160 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  178. Moon, D. H. et al. Mutations in the poly(A)-specific ribonuclease (PARN) impair telomerase RNA 3’ end maturation in dyskeratosis congenita patients. Blood 126, 669–669 (2015).

    Article  Google Scholar 

  179. Stuart, B. D. et al. Exome sequencing links mutations in PARN and RTEL1 with familial pulmonary fibrosis and telomere shortening. Nat. Genet. 47, 512–517 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Gable, D. L. et al. ZCCHC8, the nuclear exosome targeting component, is mutated in familial pulmonary fibrosis and is required for telomerase RNA maturation. Genes Dev. 33, 1381–1396 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank many colleagues in the field of RNA biology for exciting discussions that contributed to some of the ideas expressed in this article, and G. Rothschild for proofreading the manuscript. The authors apologize to the many colleagues whose work they were not able to cover in this article owing to limitations of space and scope. This work was supported by grants to U.B. (NIAID 1R01AI099195 and R01AI134988), Leukemia & Lymphoma Society, and the Pershing Square Sohn Cancer Research Alliance. L.N. is supported by an NIH grant (T32 AI106711).

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Uttiya Basu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nair, L., Chung, H. & Basu, U. Regulation of long non-coding RNAs and genome dynamics by the RNA surveillance machinery. Nat Rev Mol Cell Biol 21, 123–136 (2020). https://doi.org/10.1038/s41580-019-0209-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41580-019-0209-0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing