Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Pneumococcal quorum sensing drives an asymmetric owner–intruder competitive strategy during carriage via the competence regulon

Abstract

Competition among microorganisms is a key determinant of successful host colonization and persistence. For Streptococcus pneumoniae, lower than predicted rates of co-colonizing strains suggest a competitive advantage for resident bacteria over newcomers. In light of evolutionary theory, we hypothesized that S. pneumoniae use owner–intruder asymmetries to settle contests, leading to the disproportionate success of the initial resident ‘owner’, regardless of the genetic identity of the ‘intruder’. We investigated the determinants of within-host competitive success utilizing S. pneumoniae colonization of the upper respiratory tract of infant mice. Within 6 h, colonization by the resident inhibited colonization by an isogenic challenger. The competitive advantage of the resident was dependent on quorum sensing via the competence (Com) regulon and downstream choline binding protein D (CbpD) and on the competence-induced bacteriocins A and B (CibAB) implicated in fratricide. CbpD and CibAB are highly conserved across pneumococcal lineages, indicating evolutionary advantages for asymmetric competitive strategies within the species. Mathematical modelling supported a significant role for quorum sensing via the Com regulon in competition, even for strains with different competitive advantages. Our study suggests that asymmetric owner–intruder competitive strategies do not require complex cognition and are used by a major human pathogen to determine ‘ownership’ of human hosts.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The resident prevails in asymmetric pneumococcal competition for colonization.
Fig. 2: Asymmetric competition is dependent on direct interactions between resident and challenger pneumococci.
Fig. 3: Prevention of challenger colonization is dependent on QS in the resident and competence-induced fratricide.
Fig. 4: Predictions of winners between resident and challenger from the mathematical model.

Similar content being viewed by others

Data availability

The in vivo measurements, formatted as used to fit the competition model, are available on figshare at https://doi.org/10.6084/m9.figshare.7166432. The code used to run and fit the population dynamics model, and draw the associated plots, is available at github: https://github.com/johnlees/competition_model (Apache 2.0 license). The code we used to calculate Tajima’s D is available at github: https://github.com/johnlees/tajima-D (GPL 2.0 license). The data that support the findings of this study are available from the corresponding author upon request.

References

  1. Foster, K. R. & Bell, T. Competition, not cooperation, dominates interactions among culturable microbial species. Curr. Biol. 22, 1845–1850 (2012).

    Article  CAS  PubMed  Google Scholar 

  2. Chassaing, B. & Cascales, E. Antibacterial weapons: targeted destruction in the microbiota. Trends Microbiol. 26, 329–338 (2018).

    Article  CAS  PubMed  Google Scholar 

  3. Davies, N. B., Krebs, J. R. & West, S. A. An Introduction to Behavioural Ecology 4th Edn (Wiley-Blackwell, Oxford, 2012).

  4. Clutton-Brock, T. H. & Albon, S. D. The roaring of red deer and the evolution of honest advertisement. Behaviour 69, 145–170 (1979).

    Article  Google Scholar 

  5. Smith, J. M. & Parker, G. A. The logic of asymmetric contests. Anim. Behav. 24, 159–175 (1976).

    Article  Google Scholar 

  6. Leimar, O. & Enquist, M. Effects of asymmetries in owner–intruder conflicts. J. Theor. Biol. 111, 475–491 (1984).

    Article  Google Scholar 

  7. Davies, N. B. Territorial defence in the speckled wood butterfly (Pararge aegeria): the resident always wins. Anim. Behav. 26, 138–147 (1978).

    Article  Google Scholar 

  8. Tobias, J. Asymmetric territorial contests in the European robin: the role of settlement costs. Anim. Behav. 54, 9–21 (1997).

    Article  CAS  PubMed  Google Scholar 

  9. Regev-Yochay, G. et al. Nasopharyngeal carriage of Streptococcus pneumoniae by adults and children in community and family settings. Clin. Infect. Dis. 38, 632–639 (2004).

    Article  PubMed  Google Scholar 

  10. Kamng’ona, A. W. et al. High multiple carriage and emergence of Streptococcus pneumoniae vaccine serotype variants in Malawian children. BMC Infect. Dis. 15, 234 (2015).

  11. Numminen, E., Cheng, L., Gyllenberg, M. & Corander, J. Estimating the transmission dynamics of streptococcus pneumoniae from strain prevalence data. Biometrics 69, 748–757 (2013).

    Article  PubMed  Google Scholar 

  12. Lees, J. A. et al. Genome-wide identification of lineage and locus specific variation associated with pneumococcal carriage duration. eLife 6, e26255 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Pessoa, D. et al. Comparative analysis of Streptococcus pneumoniae transmission in Portuguese and Finnish day-care centres. BMC Infect. Dis. 13, 180 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Rezaei Javan, R. et al. Genome sequencing reveals a large and diverse repertoire of antimicrobial peptides. Front. Microbiol. https://doi.org/10.3389/fmicb.2018.02012 (2018).

  15. Kono, M. et al. Single cell bottlenecks in the pathogenesis of streptococcus pneumoniae. PLoS Pathog. 12, e1005887 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Kausmally, L., Johnsborg, O., Lunde, M., Knutsen, E. & Håvarstein, L. S. Choline-binding protein D (CbpD) in Streptococcus pneumoniae is essential for competence-induced cell lysis. J. Bacteriol. 187, 4338–4345 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Guiral, S., Mitchell, T. J., Martin, B. & Claverys, J. P. Competence-programmed predation of noncompetent cells in the human pathogen Streptococcus pneumoniae: genetic requirements. Proc. Natl Acad. Sci. USA 102, 8710–8715 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Dorrington, M. G. et al. MARCO is required for TLR2- and Nod2-mediated responses to Streptococcus pneumoniae and clearance of pneumococcal colonization in the murine nasopharynx. J. Immunol. 190, 250–258 (2012).

    Article  PubMed  CAS  Google Scholar 

  19. Zafar, M. A., Wang, Y., Hamaguchi, S. & Weiser, J. N. Host-to-host transmission of Streptococcus pneumoniae is driven by its inflammatory toxin, pneumolysin. Cell Host Microbe 21, 73–83 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Whiteley, M., Diggle, S. P. & Greenberg, E. P. Progress in and promise of bacterial quorum sensing research. Nature 551, 313–320 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Shanker, E. & Federle, M. J. Quorum sensing regulation of competence and bacteriocins in Streptococcus pneumoniae and mutans. Genes 8, E15 (2017).

    Article  PubMed  CAS  Google Scholar 

  22. Wholey, W. Y., Kochan, T. J., Storck, D. N. & Dawid, S. Coordinated bacteriocin expression and competence in Streptococcus pneumoniae contributes to genetic adaptation through neighbor predation. PLoS Pathog. 12, e1005413 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Eldholm, V., Johnsborg, O., Haugen, K., Ohnstad, H. S. & Havastein, L. S. Fratricide in Streptococcus pneumoniae: contributions and role of the cell wall hydrolases CbpD, LytA and LytC. Microbiology 155, 2223–2234 (2009).

    Article  CAS  PubMed  Google Scholar 

  24. Håvarstein, L. S., Martin, B., Johnsborg, O., Granadel, C. & Claverys, J. P. New insights into the pneumococcal fratricide: relationship to clumping and identification of a novel immunity factor. Mol. Microbiol. 59, 1297–1307 (2006).

    Article  PubMed  CAS  Google Scholar 

  25. Croucher, N. J. et al. Diverse evolutionary patterns of pneumococcal antigens identified by pangenome-wide immunological screening. Proc. Natl Acad. Sci. USA 114, E357–E366 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Croucher, N. J. et al. Dominant role of nucleotide substitution in the diversification of serotype 3 pneumococci over decades and during a single infection. PLoS Genet. 9, e1003868 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Corander, J. et al. Frequency-dependent selection in vaccine-associated pneumococcal population dynamics. Nat. Ecol. Evol. 1, 1950–1960 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Azarian, T. et al. The impact of serotype-specific vaccination on phylodynamic parameters of Streptococcus pneumoniae and the pneumococcal pan-genome. PLoS Pathog. 14, e1006966 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Miller, E. L., Abrudan, M. I., Roberts, I. S. & Rozen, D. E. Diverse ecological strategies are encoded by Streptococcus pneumoniae bacteriocin-like peptides. Genome Biol. Evol. 8, 1072–1090 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kerr, B., Riley, M. A., Feldman, M. W. & Bohannan, B. J. M. Local dispersal promotes biodiversity in a real-life game of rock-paper-scissors. Nature 418, 171–174 (2002).

    Article  CAS  PubMed  Google Scholar 

  31. Eswarappa, S. M., Estrela, S. & Brown, S. P. Within-host dynamics of multi-species infections: facilitation, competition and virulence. PLoS ONE 7, e38730 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Krebs, J. R. Territory and breeding density in the great tit, Parus major L. Ecology 52, 2–22 (1971).

    Article  Google Scholar 

  33. Claverys, J. P., Martin, B. & Håvarstein, L. S. Competence-induced fratricide in streptococci. Mol. Microbiol. 64, 1423–1433 (2007).

    Article  CAS  PubMed  Google Scholar 

  34. Croucher, N. J. et al. Horizontal DNA transfer mechanisms of bacteria as weapons of intragenomic conflict. PLoS Biol. 14, e1002394 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Eldholm, V. et al. Pneumococcal CbpD is a murein hydrolase that requires a dual cell envelope binding specificity to kill target cells during fratricide. Mol. Microbiol. 76, 905–917 (2010).

    Article  CAS  PubMed  Google Scholar 

  36. Peterson, S. N. et al. Identification of competence pheromone responsive genes in Streptococcus pneumoniae by use of DNA microarrays. Mol. Microbiol. 51, 1051–1070 (2004).

    Article  CAS  PubMed  Google Scholar 

  37. Johnsborg, O., Eldholm, V., Bjørnstad, M. L. & Håvarstein, L. S. A predatory mechanism dramatically increases the efficiency of lateral gene transfer in Streptococcus pneumoniae and related commensal species. Mol. Microbiol. 69, 245–253 (2008).

    Article  CAS  PubMed  Google Scholar 

  38. Peterson, S., Cline, R. T., Tettelin, H., Sharov, V. & Morrison, D. A. Gene expression analysis of the Streptococcus pneumoniae competence regulons by use of DNA microarrays. J. Bacteriol. 182, 6192–6202 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Marks, L. R., Reddinger, R. M. & Anders, P. High levels of genetic recombination during nasopharyngeal carriage and biofilm formation in Streptococcus pneumoniae. mBio 3, e00200-12 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Moreno-Gámez, S. et al. Quorum sensing integrates environmental cues, cell density and cell history to control bacterial competence. Nat. Commun. 8, 854 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Cornforth, D. M. & Foster, K. R. Competition sensing: the social side of bacterial stress responses. Nat. Rev. Microbiol. 11, 285–293 (2013).

    Article  CAS  PubMed  Google Scholar 

  42. Trappetti, C., Potter, A. J., Paton, A. W., Oggioni, M. R. & Paton, J. C. LuxS mediates iron-dependent biofilm formation, competence, and fratricide in Streptococcus pneumoniae. Infect. Immun. 79, 4550–4558 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Hertzog, B. B. et al. A sub-population of group a streptococcus elicits a population-wide production of bacteriocins to establish dominance in the host. Cell Host Microbe 23, 312–323 (2018).

    Article  CAS  PubMed  Google Scholar 

  44. Zangari, T., Wang, Y. & Weiser, J. N. Streptococcus pneumoniae transmission is blocked by type-specific immunity in an infant mouse model. mBio 8, e00188-17 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Sung, C. K., Li, H., Claverys, J. P. & Morrison, D. A. An rpsL cassette, janus, for gene replacement through negative selection in streptococcus pneumoniae. Appl. Environ. Microbiol. 67, 5190–5196 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. DeBardeleben, H. K., Lysenko, E. S., Dalia, A. B. & Weiser, J. N. Tolerance of a phage element by Streptococcus pneumoniae leads to a fitness defect during colonization. J. Bacteriol. 196, 2670–2680 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Kowalko, J. E. & Sebert, M. E. The Streptococcus pneumoniae competence regulatory system influences respiratory tract colonization. Infect. Immun. 76, 3131–3140 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Hergott, C. B. et al. Bacterial exploitation of phosphorylcholine mimicry suppresses inflammation to promote airway infection. J. Clin. Invest. 125, 3878–3890 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Zhang, Z., Clarke, T. B. & Weiser, J. N. Cellular effectors mediating Th17-dependent clearance of pneumococcal colonization in mice. J. Clin. Invest. 119, 1899–1909 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Lemon, J. K., Miller, M. R. & Weiser, J. N. Sensing of IL-1 cytokines during Streptococcus pneumoniae colonization contributes to macrophage recruitment and bacterial clearance. Infect. Immun. 83, 3204–3212 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Roche, A. M., Richard, A. L., Rahkola, J. T., Janoff, E. N. & Weiser, J. N. Antibody blocks acquisition of bacterial colonization through agglutination. Mucosal Immunol. 8, 176–185 (2015).

    Article  CAS  PubMed  Google Scholar 

  52. Siegel, S. J., Tamashiro, E. & Weiser, J. N. Clearance of pneumococcal colonization in infants is delayed through altered macrophage trafficking. PLoS Pathog. 11, e1005004 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Blat, J. & Brown, K. J. Bifurcation of steady-state solutions in predator-grey and competition systems. Proc. R. Soc. Edinburgh Sect. A Math. 97, 21–34 (1984).

    Article  Google Scholar 

  54. Allen, L. J. S. A primer on stochastic epidemic models: formulation, numerical simulation, and analysis. Infect. Dis. Model. 2, 128–142 (2017).

    PubMed  PubMed Central  Google Scholar 

  55. Gillespie, D. T. Exact stochastic simulation of coupled chemical reactions. J. Phys. Chem. 81, 2340–2361 (1977).

    Article  CAS  Google Scholar 

  56. Allen, E. J., Allen, L. J. S., Arciniega, A. & Greenwood, P. E. Construction of equivalent stochastic differential equation models. Stoch. Anal. Appl. 26, 274–297 (2008).

    Article  Google Scholar 

  57. Maruyama, G. Continuous Markov processes and stochastic equations. Rend. Circ. Mat. Palermo 4, 48 (1955).

    Article  Google Scholar 

  58. Lintusaari, J., Gutmann, M. U., Dutta, R., Kaski, S. & Corander, J. Fundamentals and recent developments in approximate bayesian computation. Syst. Biol. 66, e66–e82 (2017).

    PubMed  Google Scholar 

  59. Lintusaari, J. et al. ELFI: Engine for Likelihood-Free Inference. J. Mach. Learn. Res. 19, 1–7 (2018).

    Google Scholar 

  60. Gutmann, M. U. & Corander, J. Bayesian optimization for likelihood-free inference of simulator-based statistical models. J. Mach. Learn. Res. 17, 4256–4302 (2016).

    Google Scholar 

  61. Homan, M. D. & Gelman, A. The No-U-turn sampler: adaptively setting path lengths in hamiltonian monte carlo. J. Mach. Learn. Res. 15, 1593–1623 (2014).

    Google Scholar 

  62. Croucher, N. J. et al. Population genomics of post-vaccine changes in pneumococcal epidemiology. Nat. Genet. 45, 656–663 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Croucher, N. J. et al. Population genomic datasets describing the post-vaccine evolutionary epidemiology of Streptococcus pneumoniae. Sci. Data 2, 150058 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Tettelin, H. et al. Complete genome sequence of a virulent isolate of Streptococcus pneumoniae. Science 293, 498–506 (2001).

    Article  CAS  PubMed  Google Scholar 

  65. Wernersson, R. & Pedersen, A. G. RevTrans: multiple alignment of coding DNA from aligned amino acid sequences. Nucleic Acids Res. 31, 3537–3539 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Edgar, R. C. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32, 1792–1797 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Nguyen, L.-T., Schmidt, H. A., von Haeseler, A. & Minh, B. Q. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 32, 268–274 (2015).

    Article  CAS  PubMed  Google Scholar 

  68. Kosakovsky Pond, S. L. & Frost, S. D. W. Not so different after all: a comparison of methods for detecting amino acid sites under selection. Mol. Biol. Evol. 22, 1208–1222 (2005).

    Article  PubMed  CAS  Google Scholar 

  69. Fu, L., Niu, B., Zhu, Z., Wu, S. & Li, W. CD-HIT: accelerated for clustering the next-generation sequencing data. Bioinformatics 28, 3150–3152 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank S. Frost and J. Corander for their advice on the formulation of the stochastic model and likelihood-free model fitting, respectively.

Author information

Authors and Affiliations

Authors

Contributions

P.S. contributed to project design, experimental work, data analyses and interpretation, and drafting of the manuscript. J.A.L. designed mathematical modelling, carried out all simulations and population genomics, interpreted data, and prepared the modelling section of the manuscript. G.C.W.B. assisted with experimental work. S.P.B. provided assistance on mathematical modelling and drafting of the manuscript. J.N.W. is the corresponding author and oversaw the project conception and design, data interpretation, and manuscript preparation.

Corresponding author

Correspondence to Jeffrey N. Weiser.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Methods, Supplementary Figures 1–13, Supplementary Tables 1–3, 5 and 6, and Supplementary References.

Reporting Summary

Supplementary Table 4

Conservation of bacteriocins in the pneumococcal population.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, P., Lees, J.A., Bee, G.C.W. et al. Pneumococcal quorum sensing drives an asymmetric owner–intruder competitive strategy during carriage via the competence regulon. Nat Microbiol 4, 198–208 (2019). https://doi.org/10.1038/s41564-018-0314-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41564-018-0314-4

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing