Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

Evolution of facilitation requires diverse communities

Abstract

Diverse experimental plant communities are more productive than monocultures. The increase of this biodiversity effect over time has been attributed to evolutionary selection for complementarity in mixtures. Here we show that evolutionary selection for enhanced net facilitative plant interactions occurred only in mixtures, while evolutionary selection for reduced net competition occurred in mixtures with mixture coexistence history and monocultures with monoculture coexistence history. Widespread declines in natural and agricultural biodiversity could therefore compromise potential evolution of facilitative interactions, that is, cornerstone processes in nature conservation and the development of sustainable agriculture.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Experimental design.
Fig. 2: Less intense competition in monocultures and mixtures of respective coexistence histories, and more intense facilitation in communities with mixture history.

Similar content being viewed by others

References

  1. Tilman, D. et al. Science 294, 843–845 (2001).

    Article  CAS  Google Scholar 

  2. Loreau, M. & Hector, A. Nature 412, 72–76 (2001).

    Article  CAS  Google Scholar 

  3. van Ruijven, J. & Berendse, F. Proc. Natl Acad. Sci. USA 102, 695–700 (2005).

    Article  Google Scholar 

  4. Cardinale, B. J. et al. Proc. Natl Acad. Sci. USA 104, 18123–18128 (2007).

    Article  CAS  Google Scholar 

  5. Reich, P. B. et al. Science 336, 589–592 (2012).

    Article  CAS  Google Scholar 

  6. Zuppinger-Dingley, D. et al. Nature 515, 108–111 (2014).

    Article  CAS  Google Scholar 

  7. van Moorsel, S. J. et al. Ecol. Lett. 21, 128–137 (2017).

    Article  Google Scholar 

  8. Brooker, R. W., Karley, A. J., Newton, A. C., Pakeman, R. J. & Schöb, C. Funct. Ecol. 30, 98–107 (2016).

    Article  Google Scholar 

  9. Li, L., Tilman, D., Lambers, H. & Zhang, F.-S. New Phytol. 203, 63–69 (2014).

    Article  Google Scholar 

  10. Isbell, F. et al. J. Ecol. 105, 871–879 (2017).

    Article  Google Scholar 

  11. Loreau, M. Phil. Trans. R. Soc. B 365, 49–60 (2010).

    Article  Google Scholar 

  12. Luescher, A. & Jacquard, P. Trends Ecol. Evol. 6, 355–358 (1991).

    Article  CAS  Google Scholar 

  13. Turkington, R. Euphytica 92, 105–119 (1996).

    Article  Google Scholar 

  14. Evans, D. R., Hill, J., Williams, T. A. & Rhodes, I. Oecologia 66, 536–539 (1985).

    Article  CAS  Google Scholar 

  15. Chesson, P. Annu. Rev. Ecol. Syst. 31, 343–366 (2000).

    Article  Google Scholar 

  16. Aarssen, L. W. Am. Nat. 122, 707–731 (1983).

    Article  Google Scholar 

  17. Bronstein, J. L. J. Ecol. 97, 1160–1170 (2009).

    Article  Google Scholar 

  18. Lawrence, D. et al. PLoS Biol. 10, e1001330 (2012).

    Article  CAS  Google Scholar 

  19. Díaz-Sierra, R., Verwijmeren, M., Rietkerk, M., de Dios, V. R. & Baudena, M. Methods Ecol. Evol. 8, 580–591 (2017).

    Article  Google Scholar 

  20. Wright, A. J., Wardle, D. A., Callaway, R. & Gaxiola, A. Trends Ecol. Evol. 32, 383–390 (2017).

    Article  Google Scholar 

  21. Kleynhans, E. J., Otto, S. P., Reich, P. B. & Vellend, M. Nat. Commun. 7, 12358 (2016).

    Article  CAS  Google Scholar 

  22. Thorpe, A. S., Aschehoug, E. T., Atwater, D. Z. & Callaway, R. M. J. Ecol. 99, 729–740 (2011).

    Article  Google Scholar 

  23. Fiegna, F., Moreno-Letelier, A., Bell, T. & Barraclough, T. G. ISME J. 9, 1235–1245 (2015).

    Article  Google Scholar 

  24. van Moorsel, S. J. et al. Preprint at https://www.biorxiv.org/content/early/2018/02/08/262303 (2018).

  25. Pereira, H. M. et al. Science 330, 1496–1501 (2010).

    Article  CAS  Google Scholar 

  26. Colin, K. et al. Proc. Natl Acad. Sci. USA 111, 4001–4006 (2014).

    Article  Google Scholar 

  27. Esquinas-Alcázar, J. Nat. Rev. Genet. 6, 946–953 (2005).

    Article  Google Scholar 

  28. Verdú, M. & Valiente-Banuet, A. Am. Nat. 172, 751–760 (2008).

    Article  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the Swiss National Science Foundation (PP00P3_170645 to C.S. and 130720 to B. Schmid) and the University of Zurich’s University Research Priority Programme on Global Change and Biodiversity. R.W.B. was supported by the Rural and Environment Science and Analytical Services Division of the Scottish government through the Strategic Research Programme, 2016–2021. Thanks to D. Trujillo Villegas, L. Oesch, T. Zwimpfer, M. Furler, R. Husi, the gardeners of the Jena Experiment and student helpers for technical assistance.

Author information

Authors and Affiliations

Authors

Contributions

C.S. initiated the idea and conducted data analyses. D.Z.-D. designed and carried out the experiment and collected the data. C.S. prepared the manuscript with input from the other authors. All authors discussed the idea and the results before the preparation of the manuscript and conducted the revisions.

Corresponding author

Correspondence to Christian Schöb.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Tables 1–4, Supplementary Figures 1–2

Reporting Summary

Supplementary Data

Complete database

Supplementary Code

Complete R-code to run all the calculations, statistical analyses and draw the figures

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schöb, C., Brooker, R.W. & Zuppinger-Dingley, D. Evolution of facilitation requires diverse communities. Nat Ecol Evol 2, 1381–1385 (2018). https://doi.org/10.1038/s41559-018-0623-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41559-018-0623-2

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing