Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

A novel nuclear complex of DRR1, F-actin and COMMD1 involved in NF-κB degradation and cell growth suppression in neuroblastoma

Abstract

Downregulated in renal cell carcinoma 1 (DRR1) has important roles in tumor cell growth, neuron survival and spine formation, and was recently shown to bind actin. However, the roles of nuclear DRR1 remain largely unexplored. Here, we identified an interaction between filamentous actin (F-actin) and DRR1 in the nucleus, and demonstrated that copper metabolism MURR1 domain-containing 1 (COMMD1) is another binding partner of DRR1. Accordingly, DRR1, F-actin and COMMD1 were shown to form a complex in the nucleus, and the stability of COMMD1 was enhanced in this complex. Increased nuclear COMMD1 in turn promoted the degradation of NF-κB. In addition, DRR1 and COMMD1 suppressed the cyclin D1 expression, G1/S transition and cell proliferation of neuroblastoma cells. The binding between DRR1 and F-actin in the nucleus was required for these events. Consistent with these facts, low expressions of DRR1 were associated with tumorigenesis of human neuroblastoma and its mouse model. This study has thus revealed a novel nuclear complex of F-actin, DRR1 and COMMD1 that is involved in NF-κB degradation and cell cycle suppression in neuroblastoma cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Zhao XY, Liang SF, Yao SH, Ma FX, Hu ZG, Yan F et al. Identification and preliminary function study of Xenopus laevis DRR1 gene. Biochem Biophys Res Commun 2007; 361: 74–78.

    Article  CAS  Google Scholar 

  2. Asano Y, Kishida S, Mu P, Sakamoto K, Murohara T, Kadomatsu K . DRR1 is expressed in the developing nervous system and downregulated during neuroblastoma carcinogenesis. Biochem Biophys Res Commun 2010; 394: 829–835.

    Article  CAS  Google Scholar 

  3. Schmidt MV, Schulke JP, Liebl C, Stiess M, Avrabos C, Bock J et al. Tumor suppressor down-regulated in renal cell carcinoma 1 (DRR1) is a stress-induced actin bundling factor that modulates synaptic efficacy and cognition. Proc Natl Acad Sci USA 2011; 108: 17213–17218.

    Article  CAS  Google Scholar 

  4. Masana M, Su YA, Liebl C, Wang XD, Jansen L, Westerholz S et al. The stress-inducible actin-interacting protein DRR1 shapes social behavior. Psychoneuroendocrinology 2014; 48: 98–110.

    Article  CAS  Google Scholar 

  5. Pollen AA, Nowakowski TJ, Chen J, Retallack H, Sandoval-Espinosa C, Nicholas CR et al. Molecular identity of human outer radial glia during cortical development. Cell 2015; 163: 55–67.

    Article  CAS  Google Scholar 

  6. Wang L, Darling J, Zhang JS, Liu WG, Qian JQ, Bostwick D et al. Loss of expression of the DRR I gene at chromosomal segment 3p21.1 in renal cell carcinoma. Genes Chromosomes Cancer 2000; 27: 1–10.

    Article  CAS  Google Scholar 

  7. Liu Q, Zhao XY, Bai RZ, Liang SF, Nie CL, Yuan Z et al. Induction of tumor inhibition and apoptosis by a candidate tumor suppressor gene DRR1 on 3p2l.1. Oncol Rep 2009; 22: 1069–1075.

    CAS  PubMed  Google Scholar 

  8. Pastuszak-Lewandoska D, Czarnecka KH, Migdalska-Sek M, Nawrot E, Domanska D, Kiszalkiewicz J et al. Decreased FAM107A expression in patients with non-small cell lung cancer. Adv Exp Med Biol 2015; 852: 39–48.

    Article  CAS  Google Scholar 

  9. Udali S, Guarini P, Ruzzenente A, Ferrarini A, Guglielmi A, Lotto V et al. DNA methylation and gene expression profiles show novel regulatory pathways in hepatocellular carcinoma. Clin Epigenetics 2015; 7: 43.

    Article  Google Scholar 

  10. van den Boom J, Wolter M, Blaschke B, Knobbe CB, Reifenberger G . Identification of novel genes associated with astrocytoma progression using suppression subtractive hybridization and real-time reverse transcription-polymerase chain reaction. Int J Cancer. 2006; 119: 2330–2338.

    Article  CAS  Google Scholar 

  11. Takahashi Y, Sipp D, Enomoto H . Tissue interactions in neural crest cell development and disease. Science 2013; 341: 860–863.

    Article  CAS  Google Scholar 

  12. Le PU, Angers-Loustau A, de Oliveira RM, Ajlan A, Brassard CL, Dudley A et al. DRR drives brain cancer invasion by regulating cytoskeletal-focal adhesion dynamics. Oncogene 2010; 29: 4636–4647.

    Article  CAS  Google Scholar 

  13. Dudley A, Sater M, Le PU, Trinh G, Sadr MS, Bergeron J et al. DRR regulates AKT activation to drive brain cancer invasion. Oncogene 2014; 33: 4952–4960.

    Article  CAS  Google Scholar 

  14. Clark TG, Merriam RW . Diffusible and bound actin in nuclei of Xenopus laevis oocytes. Cell 1977; 12: 883–891.

    Article  CAS  Google Scholar 

  15. Clark TG, Rosenbaum JL . An actin filament matrix in hand-isolated nuclei of X. lavis oocytes. Cell 1979; 18: 1101–1108.

    Article  CAS  Google Scholar 

  16. Obrdlik A, Percipalle P . The F-actin severing protein cofilin-1 is required for RNA polymerase II transcription elongation. Nucleus 2011; 2: 72–79.

    Article  Google Scholar 

  17. Miyamoto K, Pasque V, Jullien J, Gurdon JB . Nuclear actin polymerization is required for transcriptional reprogramming of Oct4 by oocytes. Genes Dev 2011; 25: 946–958.

    Article  CAS  Google Scholar 

  18. Belin BJ, Lee T, Mullins RD . DNA damage induces nuclear actin filament assembly by Formin -2 and Spire-(1/2) that promotes efficient DNA repair. Elife 2015; 4: e07735.

    Article  Google Scholar 

  19. Yoo Y, Wu X, Guan JL . A novel role of the actin-nucleating Arp2/3 complex in the regulation of RNA polymerase II-dependent transcription. J Biol Chem 2007; 282: 7616–7623.

    Article  CAS  Google Scholar 

  20. Miyamoto K, Teperek M, Yusa K, Allen GE, Bradshaw CR, Gurdon JB . Nuclear wave1 is required for reprogramming transcription in oocytes and for normal development. Science 2013; 341: 1002–1005.

    Article  CAS  Google Scholar 

  21. Wu X, Yoo Y, Okuhama NN, Tucker PW, Liu G, Guan JL . Regulation of RNA-polymerase-II-dependent transcription by N-WASP and its nuclear-binding partners. Nat Cell Biol 2006; 8: 756–763.

    Article  Google Scholar 

  22. Almuzzaini B, Sarshad AA, Farrants AK, Percipalle P . Nuclear myosin 1 contributes to a chromatin landscape compatible with RNA polymerase II transcription activation. BMC Biol 2015; 13: 35.

    Article  Google Scholar 

  23. Belin BJ, Cimini BA, Blackburn EH, Mullins RD . Visualization of actin filaments and monomers in somatic cell nuclei. Mol Biol Cell 2013; 24: 982–994.

    Article  CAS  Google Scholar 

  24. Geng H, Wittwer T, Dittrich-Breiholz O, Kracht M, Schmitz ML . Phosphorylation of NF-kappaB p65 at Ser468 controls its COMMD1-dependent ubiquitination and target gene-specific proteasomal elimination. EMBO Rep 2009; 10: 381–386.

    Article  CAS  Google Scholar 

  25. Maine GN, Mao XC, Komarck CM, Burstein E . COMMD1 promotes the ubiquitination of NF-kappa B subunits through a cullin-containing ubiquitin ligase. EMBO J 2007; 26: 436–447.

    Article  CAS  Google Scholar 

  26. Guttridge DC, Albanese C, Reuther JY, Pestell RG, Baldwin AS . NF-kappa B controls cell growth and differentiation through transcriptional regulation of cyclin D1. Mol Cell Biol 1999; 19: 5785–5799.

    Article  CAS  Google Scholar 

  27. Huang P, Kishida S, Cao D, Murakami-Tonami Y, Mu P, Nakaguro M et al. The neuronal differentiation factor NeuroD1 downregulates the neuronal repellent factor Slit2 expression and promotes cell motility and tumor formation of neuroblastoma. Cancer Res 2011; 71: 2938–2948.

    Article  CAS  Google Scholar 

  28. Kishida S, Mu P, Miyakawa S, Fujiwara M, Abe T, Sakamoto K et al. Midkine promotes neuroblastoma through Notch2 signaling. Cancer Res 2013; 73: 1318–1327.

    Article  CAS  Google Scholar 

  29. Hansford LM, Thomas WD, Keating JM, Burkhart CA, Peaston AE, Norris MD et al. Mechanisms of embryonal tumor initiation: distinct roles for MycN expression and MYCN amplification. Proc Natl Acad Sci USA 2004; 101: 12664–12669.

    Article  CAS  Google Scholar 

  30. Lu F, Kishida S, Mu P, Huang P, Cao D, Tsubota S et al. NeuroD1 promotes neuroblastoma cell growth by inducing the expression of ALK. Cancer Sci 2015; 106: 390–396.

    Article  CAS  Google Scholar 

  31. Yamazaki S, Yamamoto K, de Lanerolle P, Harata M . Nuclear F-actin enhances the transcriptional activity of beta-catenin by increasing its nuclear localization and binding to chromatin. Histochem Cell Biol 2016; 145: 389–399.

    Article  CAS  Google Scholar 

  32. Plessner M, Melak M, Chinchilla P, Baarlink C, Grosse R . Nuclear F-actin formation and reorganization upon cell spreading. J Biol Chem 2015; 290: 11209–11216.

    Article  CAS  Google Scholar 

  33. Baarlink C, Wang H, Grosse R . Nuclear actin network assembly by formins regulates the SRF coactivator MAL. Science 2013; 340: 864–867.

    Article  CAS  Google Scholar 

  34. van de Sluis B, Rothuizen J, Pearson PL, van Oost BA, Wijmenga C . Identification of a new copper metabolism gene by positional cloning in a purebred dog population. Hum Mol Genet 2002; 11: 165–173.

    Article  CAS  Google Scholar 

  35. Vonk WIM, Bartuzi P, de Bie P, Kloosterhuis N, Wichers CGK, Berger R et al. Liver-specific Commd1 knockout mice are susceptible to hepatic copper accumulation. Plos One 2011; 6: e29183.

    Article  CAS  Google Scholar 

  36. Phillips-Krawczak CA, Singla A, Starokadomskyy P, Deng Z, Osborne DG, Li H et al. COMMD1 is linked to the WASH complex and regulates endosomal trafficking of the copper transporter ATP7A. Mol Biol Cell 2015; 26: 91–103.

    Article  Google Scholar 

  37. Yeh DW, Chen YS, Lai CY, Liu YL, Lu CH, Lo JF et al. Downregulation of COMMD1 by miR-205 promotes a positive feedback loop for amplifying inflammatory- and stemness-associated properties of cancer cells. Cell Death Differ 2016; 23: 841–852.

    Article  CAS  Google Scholar 

  38. Li H, Chan L, Bartuzi P, Melton SD, Weber A, Ben-Shlomo S et al. Copper metabolism domain-containing 1 represses genes that promote inflammation and protects mice from colitis and colitis-associated cancer. Gastroenterology 2014; 147: 184–195.e3.

    Article  CAS  Google Scholar 

  39. van de Sluis B, Mao X, Zhai Y, Groot AJ, Vermeulen JF, van der Wall E et al. COMMD1 disrupts HIF-1alpha/beta dimerization and inhibits human tumor cell invasion. J Clin Invest 2010; 120: 2119–2130.

    Article  CAS  Google Scholar 

  40. Fedoseienko A, Wieringa HW, Wisman GBA, Duiker E, Reyners AKL, Hofker MH et al. Nuclear COMMD1 is associated with cisplatin sensitivity in ovarian cancer. PLoS One 2016; 11: e0165385.

    Article  Google Scholar 

  41. van deSluis B, Muller P, Duran K, Chen A, Groot AJ, Klomp LW et al. Increased activity of hypoxia-inducible factor 1 is associated with early embryonic lethality in Commd1 null mice. Mol Cell Biol 2007; 27: 4142–4156.

    Article  CAS  Google Scholar 

  42. Muller PA, van de Sluis B, Groot AJ, Verbeek D, Vonk WI, Maine GN et al. Nuclear-cytosolic transport of COMMD1 regulates NF-kappaB and HIF-1 activity. Traffic 2009; 10: 514–527.

    Article  CAS  Google Scholar 

  43. Huang Y, Wu M, Li HY . Tumor suppressor ARF promotes non-classic proteasome-independent polyubiquitination of COMMD1. J Biol Chem 2008; 283: 11453–11460.

    Article  CAS  Google Scholar 

  44. O'Hara A, Simpson J, Morin P, Loveridge CJ, Williams AC, Novo SM et al. p300-mediated acetylation of COMMD1 regulates its stability, and the ubiquitylation and nucleolar translocation of the RelA NF-kappaB subunit. J Cell Sci 2014; 127: 3659–3665.

    Article  CAS  Google Scholar 

  45. Rual JF, Venkatesan K, Hao T, Hirozane-Kishikawa T, Dricot A, Li N et al. Towards a proteome-scale map of the human protein-protein interaction network. Nature 2005; 437: 1173–1178.

    Article  CAS  Google Scholar 

  46. Huang J, Zhang L, Liu W, Liao Q, Shi T, Xiao L et al. CCDC134 interacts with hADA2a and functions as a regulator of hADA2a in acetyltransferase activity, DNA damage-induced apoptosis and cell cycle arrest. Histochem Cell Biol 2012; 138: 41–55.

    Article  CAS  Google Scholar 

  47. Galarneau L, Nourani A, Boudreault AA, Zhang Y, Heliot L, Allard S et al. Multiple links between the NuA4 histone acetyltransferase complex and epigenetic control of transcription. Mol Cell 2000; 5: 927–937.

    Article  CAS  Google Scholar 

  48. Molenaar JJ, Koster J, Zwijnenburg DA, van Sluis P, Valentijn LJ, van der Ploeg I et al. Sequencing of neuroblastoma identifies chromothripsis and defects in neuritogenesis genes. Nature 2012; 483: 589–593.

    Article  CAS  Google Scholar 

  49. Sato M, Nakanishi K, Haga S, Fujiyoshi M, Baba M, Mino K et al. Anoikis induction and inhibition of peritoneal metastasis of pancreatic cancer cells by a nuclear factor-kappa B inhibitor, (-)-DHMEQ. Oncol Res 2013; 21: 333–343.

    Article  Google Scholar 

  50. Gomez TS, Billadeau DD . A FAM21-containing WASH complex regulates retromer-dependent sorting. Dev Cell 2009; 17: 699–711.

    Article  CAS  Google Scholar 

  51. Harbour ME, Breusegem SY, Seaman MNJ . Recruitment of the endosomal WASH complex is mediated by the extended 'tail' of Fam21 binding to the retromer protein Vps35. Biochem J 2012; 442: 209–220.

    Article  CAS  Google Scholar 

  52. Xia PY, Wang S, Huang GL, Zhu PP, Li M, Ye BQ et al. WASH is required for the differentiation commitment of hematopoietic stem cells in a c-Myc-dependent manner. J Exp Med 2014; 211: 2119–2134.

    Article  CAS  Google Scholar 

  53. Deng ZH, Gomez TS, Osborne DG, Phillips-Krawczak CA, Zhang JS, Billadeau DD . Nuclear FAM21 participates in NF-kappa B-dependent gene regulation in pancreatic cancer cells. J Cell Sci 2015; 128: 373–384.

    Article  CAS  Google Scholar 

  54. Kokai E, Beck H, Weissbach J, Arnold F, Sinske D, Sebert U et al. Analysis of nuclear actin by overexpression of wild-type and actin mutant proteins. Histochem Cell Biol 2014; 141: 123–135.

    Article  CAS  Google Scholar 

  55. Lim KL, Chew KCM, Tan JMM, Wang C, Chung KKK, Zhang Y et al. Parkin mediates nonclassical, proteasomal-independent ubiquitination of synphilin-1: implications for Lewy body formation. J Neurosci 2005; 25: 2002–2009.

    Article  CAS  Google Scholar 

  56. Lu F, Zheng Y, Donkor PO, Zou P, Mu P . Downregulation of CREB promotes cell proliferation by mediating G1/S phase transition in Hodgkin Lymphoma. Oncol Res 2016; 24: 171–179.

    Article  Google Scholar 

  57. Mu P, Nagahara S, Makita N, Tarumi Y, Kadomatsu K, Takei Y . Systemic delivery of siRNA specific to tumor mediated by atelocollagen: combined therapy using siRNA targeting Bcl-xL and cisplatin against prostate cancer. Int J Cancer 2009; 125: 2978–2990.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr Bernd Knoll for the Flag-NLS-WT-actin, Flag-NLS-S14C-actin and Flag-NLS-R62D-actin constructs. This work was supported in part by a Grants-in-Aid (16010731701) from Japan Science and Technology Agency, Core Research for Evolutionary Science and Technology (JST CREST) to K. Kadomatsu, a Grants-in-Aid (16ck0106011h0503) from Japan Agency for Medical Research and Development (AMED) (Tailor-made Medical Treatment Program) to K. Kadomatsu, and a Grant-in-Aid (22890080) from Ministry of Education, Culture, Sports, Science and Technology (MEXT) to P. Mu.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K Kadomatsu.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mu, P., Akashi, T., Lu, F. et al. A novel nuclear complex of DRR1, F-actin and COMMD1 involved in NF-κB degradation and cell growth suppression in neuroblastoma. Oncogene 36, 5745–5756 (2017). https://doi.org/10.1038/onc.2017.181

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2017.181

This article is cited by

Search

Quick links