Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Caspases in apoptosis and beyond

Abstract

The demonstration of protein sequence and functional homology of the Caenorhabditis elegans programmed cell death gene product, CED-3, with human caspase-1 in 1993 triggered an explosion of research activities toward the understanding of molecular mechanisms of apoptosis. During the past 15 years, a plethora of knowledge has been obtained on the mammalian caspases, the homologs of CED-3, with regard to their distinct physiological functions, their substrates, different activation mechanisms, the signal transduction pathways that lead to their activation as well as their involvement in the pathogenesis of diseases. Such knowledge is beginning to be translated into new therapies for the treatment of human diseases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  • Acehan D, Jiang X, Morgan DG, Heuser JE, Wang X, Akey CW . (2002). Three-dimensional structure of the apoptosome: implications for assembly, procaspase-9 binding, and activation. Mol Cell 9: 423–432.

    CAS  PubMed  Google Scholar 

  • Allan LA, Clarke PR . (2007). Phosphorylation of caspase-9 by CDK1/cyclin B1 protects mitotic cells against apoptosis. Mol Cell 26: 301–310.

    CAS  PubMed  Google Scholar 

  • Allan LA, Morrice N, Brady S, Magee G, Pathak S, Clarke PR . (2003). Inhibition of caspase-9 through phosphorylation at Thr 125 by ERK MAPK. Nat Cell Biol 5: 647–654.

    CAS  PubMed  Google Scholar 

  • Beisner DR, Ch'en IL, Kolla RV, Hoffmann A, Hedrick SM . (2005). Cutting edge: innate immunity conferred by B cells is regulated by caspase-8. J Immunol 175: 3469–3473.

    CAS  PubMed  Google Scholar 

  • Bergeron L, Perez GI, Macdonald G, Shi L, Sun Y, Jurisicova A et al. (1998). Defects in regulation of apoptosis in caspase-2-deficient mice. Genes Dev 12: 1304–1314.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Berube C, Boucher LM, Ma W, Wakeham A, Salmena L, Hakem R et al. (2005). Apoptosis caused by p53-induced protein with death domain (PIDD) depends on the death adapter protein RAIDD. Proc Natl Acad Sci USA 102: 14314–14320.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Boatright KM, Renatus M, Scott FL, Sperandio S, Shin H, Pedersen IM et al. (2003). A unified model for apical caspase activation. Mol Cell 11: 529–541.

    CAS  PubMed  Google Scholar 

  • Brady SC, Allan LA, Clarke PR . (2005). Regulation of caspase 9 through phosphorylation by protein kinase C zeta in response to hyperosmotic stress. Mol Cell Biol 25: 10543–10555.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cardone MH, Roy N, Stennicke HR, Salvesen GS, Franke TF, Stanbridge E et al. (1998). Regulation of cell death protease caspase-9 by phosphorylation. Science 282: 1318–1321.

    CAS  PubMed  Google Scholar 

  • Cerretti DP, Kozlosky CJ, Mosley B, Nelson N, Van Ness K, Greenstreet TA et al. (1992). Molecular cloning of the interleukin-1 beta converting enzyme. Science 256: 97–100.

    CAS  PubMed  Google Scholar 

  • Chai J, Wu Q, Shiozaki E, Srinivasula SM, Alnemri ES, Shi Y . (2001). Crystal structure of a procaspase-7 zymogen: mechanisms of activation and substrate binding. Cell 107: 399–407.

    CAS  PubMed  Google Scholar 

  • Chipuk JE, Green DR . (2008). How do BCL-2 proteins induce mitochondrial outer membrane permeabilization? Trends Cell Biol 18: 157–164.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chun HJ, Zheng L, Ahmad M, Wang J, Speirs CK, Siegel RM et al. (2002). Pleiotropic defects in lymphocyte activation caused by caspase-8 mutations lead to human immunodeficiency. Nature 419: 395–399.

    CAS  PubMed  Google Scholar 

  • Cuenin S, Tinel A, Janssens S, Tschopp J . (2008). p53-induced protein with a death domain (PIDD) isoforms differentially activate nuclear factor-kappaB and caspase-2 in response to genotoxic stress. Oncogene 27: 387–396.

    CAS  PubMed  Google Scholar 

  • Dahm R . (1999). Lens fibre cell differentiation—a link with apoptosis? Ophthalmic Res 31: 163–183.

    CAS  PubMed  Google Scholar 

  • Degterev A, Boyce M, Yuan J . (2003). A decade of caspases. Oncogene 22: 8543–8567.

    CAS  PubMed  Google Scholar 

  • Denecker G, Hoste E, Gilbert B, Hochepied T, Ovaere P, Lippens S et al. (2007). Caspase-14 protects against epidermal UVB photodamage and water loss. Nat Cell Biol 9: 666–674.

    CAS  PubMed  Google Scholar 

  • Denecker G, Ovaere P, Vandenabeele P, Declercq W . (2008). Caspase-14 reveals its secrets. J Cell Biol 180: 451–458.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Eckhart L, Ban J, Fischer H, Tschachler E . (2000). Caspase-14: analysis of gene structure and mRNA expression during keratinocyte differentiation. Biochem Biophys Res Commun 277: 655–659.

    CAS  PubMed  Google Scholar 

  • Ellis HM, Horvitz HR . (1986). Genetic control of programmed cell death in the nematode C. elegans. Cell 44: 817–829.

    CAS  PubMed  Google Scholar 

  • Fernando P, Kelly JF, Balazsi K, Slack RS, Megeney LA . (2002). Caspase 3 activity is required for skeletal muscle differentiation. Proc Natl Acad Sci USA 99: 11025–11030.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fernando P, Megeney LA . (2007). Is caspase-dependent apoptosis only cell differentiation taken to the extreme? FASEB J 21: 8–17.

    CAS  PubMed  Google Scholar 

  • Fritz JH, Ferrero RL, Philpott DJ, Girardin SE . (2006). Nod-like proteins in immunity, inflammation and disease. Nat Immunol 7: 1250–1257.

    CAS  PubMed  Google Scholar 

  • Fuentes-Prior P, Salvesen GS . (2004). The protein structures that shape caspase activity, specificity, activation and inhibition. Biochem J 384: 201–232.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fujita J, Crane AM, Souza MK, Dejosez M, Kyba M, Flavell RA et al. (2008). Caspase activity mediates the differentiation of embryonic stem cells. Cell Stem Cell 2: 595–601.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ghayur T, Banerjee S, Hugunin M, Butler D, Herzog L, Carter A et al. (1997). Caspase-1 processes IFN-gamma-inducing factor and regulates LPS-induced IFN-gamma production. Nature 386: 619–623.

    CAS  PubMed  Google Scholar 

  • Gottlob K, Majewski N, Kennedy S, Kandel E, Robey RB, Hay N . (2001). Inhibition of early apoptotic events by Akt/PKB is dependent on the first committed step of glycolysis and mitochondrial hexokinase. Genes Dev 15: 1406–1418.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gross A, McDonnell JM, Korsmeyer SJ . (1999). BCL-2 family members and the mitochondria in apoptosis. Genes Dev 13: 1899–1911.

    CAS  PubMed  Google Scholar 

  • Guo Y, Srinivasula SM, Druilhe A, Fernandes-Alnemri T, Alnemri ES . (2002). Caspase-2 induces apoptosis by releasing proapoptotic proteins from mitochondria. J Biol Chem 277: 13430–13437.

    CAS  PubMed  Google Scholar 

  • Hakem R, Hakem A, Duncan GS, Henderson JT, Woo M, Soengas MS et al. (1998). Differential requirement for caspase 9 in apoptotic pathways in vivo. Cell 94: 339–352.

    CAS  PubMed  Google Scholar 

  • Hammerman PS, Fox CJ, Thompson CB . (2004). Beginnings of a signal-transduction pathway for bioenergetic control of cell survival. Trends Biochem Sci 29: 586–592.

    CAS  PubMed  Google Scholar 

  • Hanahan D, Weinberg RA . (2000). The hallmarks of cancer. Cell 100: 57–70.

    CAS  PubMed  Google Scholar 

  • Hawkins PN, Lachmann HJ, McDermott MF . (2003). Interleukin-1-receptor antagonist in the Muckle–Wells syndrome. N Engl J Med 348: 2583–2584.

    PubMed  Google Scholar 

  • Helfer B, Boswell BC, Finlay D, Cipres A, Vuori K, Bong Kang T et al. (2006). Caspase-8 promotes cell motility and calpain activity under nonapoptotic conditions. Cancer Res 66: 4273–4278.

    CAS  PubMed  Google Scholar 

  • Hengartner MO, Ellis RE, Horvitz HR . (1992). Caenorhabditis elegans gene ced-9 protects cells from programmed cell death. Nature 356: 494–499.

    CAS  PubMed  Google Scholar 

  • Hengartner MO, Horvitz HR . (1994). C. elegans cell survival gene ced-9 encodes a functional homolog of the mammalian proto-oncogene bcl-2. Cell 76: 665–676.

    CAS  PubMed  Google Scholar 

  • Hoffman HM, Rosengren S, Boyle DL, Cho JY, Nayar J, Mueller JL et al. (2004). Prevention of cold-associated acute inflammation in familial cold autoinflammatory syndrome by interleukin-1 receptor antagonist. Lancet 364: 1779–1785.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hotchkiss RS, Chang KC, Swanson PE, Tinsley KW, Hui JJ, Klender P et al. (2000). Caspase inhibitors improve survival in sepsis: a critical role of the lymphocyte. Nat Immunol 1: 496–501.

    CAS  PubMed  Google Scholar 

  • Hotchkiss RS, Nicholson DW . (2006). Apoptosis and caspases regulate death and inflammation in sepsis. Nat Rev Immunol 6: 813–822.

    CAS  PubMed  Google Scholar 

  • Hotchkiss RS, Tinsley KW, Swanson PE, Chang KC, Cobb JP, Buchman TG et al. (1999). Prevention of lymphocyte cell death in sepsis improves survival in mice. Proc Natl Acad Sci USA 96: 14541–14546.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Howley B, Fearnhead HO . (2008). Caspases as therapeutic targets. J Cell Mol Med; 24 February 2008, e-pub ahead of print; doi:10.1111/j.1582-4934.2008.00292.x

    CAS  PubMed  PubMed Central  Google Scholar 

  • Janssens S, Tinel A, Lippens S, Tschopp J . (2005). PIDD mediates NF-kappaB activation in response to DNA damage. Cell 123: 1079–1092.

    CAS  PubMed  Google Scholar 

  • Janzen V, Fleming HE, Riedt T, Karlsson G, Riese MJ, Lo Celso C ; et al. (2008). Hematopoietic stem cell responsiveness to exogenous signals is limited by caspase-3. Cell Stem Cell 2: 584–594.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Juo P, Kuo CJ, Yuan J, Blenis J . (1998). Essential requirement for caspase-8/FLICE in the initiation of the Fas-induced apoptotic cascade. Curr Biol 8: 1001–1008.

    CAS  PubMed  Google Scholar 

  • Kang SJ, Wang S, Hara H, Peterson EP, Namura S, Amin-Hanjani S et al. (2000). Dual role of caspase-11 in mediating activation of caspase-1 and caspase-3 under pathological conditions. J Cell Biol 149: 613–622.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kang TB, Ben-Moshe T, Varfolomeev EE, Pewzner-Jung Y, Yogev N, Jurewicz A et al. (2004). Caspase-8 serves both apoptotic and nonapoptotic roles. J Immunol 173: 2976–2984.

    CAS  PubMed  Google Scholar 

  • Kerr JF, Wyllie AH, Currie AR . (1972). Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer 26: 239–257.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kuida K, Haydar TF, Kuan CY, Gu Y, Taya C, Karasuyama H et al. (1998). Reduced apoptosis and cytochrome c-mediated caspase activation in mice lacking caspase 9. Cell 94: 325–337.

    CAS  PubMed  Google Scholar 

  • Kuida K, Lippke JA, Ku G, Harding MW, Livingston DJ, Su MS et al. (1995). Altered cytokine export and apoptosis in mice deficient in interleukin-1 beta converting enzyme. Science 267: 2000–2003.

    Article  CAS  PubMed  Google Scholar 

  • Kuida K, Zheng TS, Na S, Kuan C, Yang D, Karasuyama H et al. (1996). Decreased apoptosis in the brain and premature lethality in CPP32-deficient mice. Nature 384: 368–372.

    CAS  PubMed  Google Scholar 

  • Lakhani SA, Masud A, Kuida K, Porter Jr GA, Booth CJ, Mehal WZ et al. (2006). Caspases 3 and 7: key mediators of mitochondrial events of apoptosis. Science 311: 847–851.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lassus P, Opitz-Araya X, Lazebnik Y . (2002). Requirement for caspase-2 in stress-induced apoptosis before mitochondrial permeabilization. Science 297: 1352–1354.

    CAS  PubMed  Google Scholar 

  • Lavrik I, Golks A, Krammer PH . (2005). Death receptor signaling. J Cell Sci 118: 265–267.

    CAS  PubMed  Google Scholar 

  • Li H, Zhu H, Xu CJ, Yuan J . (1998). Cleavage of BID by caspase 8 mediates the mitochondrial damage in the Fas pathway of apoptosis. Cell 94: 491–501.

    CAS  PubMed  Google Scholar 

  • Li J, Brieher WM, Scimone ML, Kang SJ, Zhu H, Yin H et al. (2007). Caspase-11 regulates cell migration by promoting Aip1-Cofilin-mediated actin depolymerization. Nat Cell Biol 9: 276–286.

    CAS  PubMed  Google Scholar 

  • Li P, Allen H, Banerjee S, Franklin S, Herzog L, Johnston C et al. (1995). Mice deficient in IL-1 beta-converting enzyme are defective in production of mature IL-1 beta and resistant to endotoxic shock. Cell 80: 401–411.

    CAS  PubMed  Google Scholar 

  • Li P, Nijhawan D, Budihardjo I, Srinivasula SM, Ahmad M, Alnemri ES et al. (1997). Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade. Cell 91: 479–489.

    CAS  PubMed  Google Scholar 

  • Lin XY, Choi MS, Porter AG . (2000a). Expression analysis of the human caspase-1 subfamily reveals specific regulation of the CASP5 gene by lipopolysaccharide and interferon-gamma. J Biol Chem 275: 39920–39926.

    CAS  PubMed  Google Scholar 

  • Lin Y, Ma W, Benchimol S . (2000b). Pidd, a new death-domain-containing protein, is induced by p53 and promotes apoptosis. Nat Genet 26: 122–127.

    CAS  PubMed  Google Scholar 

  • Lippens S, Kockx M, Knaapen M, Mortier L, Polakowska R, Verheyen A et al. (2000). Epidermal differentiation does not involve the pro-apoptotic executioner caspases, but is associated with caspase-14 induction and processing. Cell Death Differ 7: 1218–1224.

    CAS  PubMed  Google Scholar 

  • Liu X, Kim CN, Yang J, Jemmerson R, Wang X . (1996). Induction of apoptotic program in cell-free extracts: requirement for dATP and cytochrome c. Cell 86: 147–157.

    CAS  PubMed  Google Scholar 

  • Luo X, Budihardjo I, Zou H, Slaughter C, Wang X . (1998). Bid, a Bcl2 interacting protein, mediates cytochrome c release from mitochondria in response to activation of cell surface death receptors. Cell 94: 481–490.

    CAS  PubMed  Google Scholar 

  • Luthi AU, Martin SJ . (2007). The CASBAH: a searchable database of caspase substrates. Cell Death Differ 14: 641–650.

    CAS  PubMed  Google Scholar 

  • Lynch DH, Watson ML, Alderson MR, Baum PR, Miller RE, Tough T et al. (1994). The mouse Fas-ligand gene is mutated in gld mice and is part of a TNF family gene cluster. Immunity 1: 131–136.

    CAS  PubMed  Google Scholar 

  • Mariathasan S, Newton K, Monack DM, Vucic D, French DM, Lee WP et al. (2004). Differential activation of the inflammasome by caspase-1 adaptors ASC and Ipaf. Nature 430: 213–218.

    CAS  PubMed  Google Scholar 

  • Mariathasan S, Weiss DS, Newton K, McBride J, O'Rourke K, Roose-Girma M et al. (2006). Cryopyrin activates the inflammasome in response to toxins and ATP. Nature 440: 228–232.

    CAS  PubMed  Google Scholar 

  • Martinon F, Burns K, Tschopp J . (2002). The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-beta. Mol Cell 10: 417–426.

    CAS  PubMed  Google Scholar 

  • Martinon F, Tschopp J . (2004). Inflammatory caspases: linking an intracellular innate immune system to autoinflammatory diseases. Cell 117: 561–574.

    CAS  PubMed  Google Scholar 

  • Martinon F, Tschopp J . (2005). NLRs join TLRs as innate sensors of pathogens. Trends Immunol 26: 447–454.

    CAS  PubMed  Google Scholar 

  • Martinon F, Tschopp J . (2007). Inflammatory caspases and inflammasomes: master switches of inflammation. Cell Death Differ 14: 10–22.

    CAS  PubMed  Google Scholar 

  • Meng XW, Lee SH, Kaufmann SH . (2006). Apoptosis in the treatment of cancer: a promise kept? Curr Opin Cell Biol 18: 668–676.

    CAS  PubMed  Google Scholar 

  • Micheau O, Tschopp J . (2003). Induction of TNF receptor I-mediated apoptosis via two sequential signaling complexes. Cell 114: 181–190.

    CAS  PubMed  Google Scholar 

  • Miura M, Chen XD, Allen MR, Bi Y, Gronthos S, Seo BM et al. (2004). A crucial role of caspase-3 in osteogenic differentiation of bone marrow stromal stem cells. J Clin Invest 114: 1704–1713.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Miura M, Zhu H, Rotello R, Hartwieg EA, Yuan J . (1993). Induction of apoptosis in fibroblasts by IL-1 beta-converting enzyme, a mammalian homolog of the C. elegans cell death gene ced-3. Cell 75: 653–660.

    CAS  PubMed  Google Scholar 

  • Nahle Z, Polakoff J, Davuluri RV, McCurrach ME, Jacobson MD, Narita M et al. (2002). Direct coupling of the cell cycle and cell death machinery by E2F. Nat Cell Biol 4: 859–864.

    CAS  PubMed  Google Scholar 

  • Nakagawa T, Zhu H, Morishima N, Li E, Xu J, Yankner BA et al. (2000). Caspase-12 mediates endoplasmic-reticulum-specific apoptosis and cytotoxicity by amyloid-beta. Nature 403: 98–103.

    CAS  PubMed  Google Scholar 

  • Nutt LK, Margolis SS, Jensen M, Herman CE, Dunphy WG, Rathmell JC et al. (2005). Metabolic regulation of oocyte cell death through the CaMKII-mediated phosphorylation of caspase-2. Cell 123: 89–103.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Poyet JL, Srinivasula SM, Tnani M, Razmara M, Fernandes-Alnemri T, Alnemri ES . (2001). Identification of Ipaf, a human caspase-1-activating protein related to Apaf-1. J Biol Chem 276: 28309–28313.

    CAS  PubMed  Google Scholar 

  • Qin H, Srinivasula SM, Wu G, Fernandes-Alnemri T, Alnemri ES, Shi Y . (1999). Structural basis of procaspase-9 recruitment by the apoptotic protease-activating factor 1. Nature 399: 549–557.

    CAS  PubMed  Google Scholar 

  • Rathmell JC, Fox CJ, Plas DR, Hammerman PS, Cinalli RM, Thompson CB . (2003). Akt-directed glucose metabolism can prevent Bax conformation change and promote growth factor-independent survival. Mol Cell Biol 23: 7315–7328.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Riedl SJ, Fuentes-Prior P, Renatus M, Kairies N, Krapp S, Huber R et al. (2001). Structural basis for the activation of human procaspase-7. Proc Natl Acad Sci USA 98: 14790–14795.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Riedl SJ, Shi Y . (2004). Molecular mechanisms of caspase regulation during apoptosis. Nat Rev Mol Cell Biol 5: 897–907.

    CAS  PubMed  Google Scholar 

  • Robertson JD, Enoksson M, Suomela M, Zhivotovsky B, Orrenius S . (2002). Caspase-2 acts upstream of mitochondria to promote cytochrome c release during etoposide-induced apoptosis. J Biol Chem 277: 29803–29809.

    CAS  PubMed  Google Scholar 

  • Saleh M, Mathison JC, Wolinski MK, Bensinger SJ, Fitzgerald P, Droin N et al. (2006). Enhanced bacterial clearance and sepsis resistance in caspase-12-deficient mice. Nature 440: 1064–1068.

    CAS  PubMed  Google Scholar 

  • Salmena L, Lemmers B, Hakem A, Matysiak-Zablocki E, Murakami K, Au PY et al. (2003). Essential role for caspase 8 in T-cell homeostasis and T-cell-mediated immunity. Genes Dev 17: 883–895.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Salvesen GS, Dixit VM . (1999). Caspase activation: the induced-proximity model. Proc Natl Acad Sci USA 96: 10964–10967.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Scaffidi C, Fulda S, Srinivasan A, Friesen C, Li F, Tomaselli KJ et al. (1998). Two CD95 (APO-1/Fas) signaling pathways. EMBO J 17: 1675–1687.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schweizer A, Briand C, Grutter MG . (2003). Crystal structure of caspase-2, apical initiator of the intrinsic apoptotic pathway. J Biol Chem 278: 42441–42447.

    CAS  PubMed  Google Scholar 

  • Shcherbina A, Remold-O'Donnell E . (1999). Role of caspase in a subset of human platelet activation responses. Blood 93: 4222–4231.

    CAS  PubMed  Google Scholar 

  • Shi Y . (2002). Mechanisms of caspase activation and inhibition during apoptosis. Mol Cell 9: 459–470.

    CAS  PubMed  Google Scholar 

  • Shi Y . (2004). Caspase activation: revisiting the induced proximity model. Cell 117: 855–858.

    CAS  PubMed  Google Scholar 

  • Slee EA, Harte MT, Kluck RM, Wolf BB, Casiano CA, Newmeyer DD et al. (1999). Ordering the cytochrome c-initiated caspase cascade: hierarchical activation of caspases-2, -3, -6, -7, -8, and -10 in a caspase-9-dependent manner. J Cell Biol 144: 281–292.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Stennicke HR, Renatus M, Meldal M, Salvesen GS . (2000). Internally quenched fluorescent peptide substrates disclose the subsite preferences of human caspases 1, 3, 6, 7 and 8. Biochem J 350 (Part 2): 563–568.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Straus SE, Sneller M, Lenardo MJ, Puck JM, Strober W . (1999). An inherited disorder of lymphocyte apoptosis: the autoimmune lymphoproliferative syndrome. Ann Intern Med 130: 591–601.

    CAS  PubMed  Google Scholar 

  • Su H, Bidere N, Zheng L, Cubre A, Sakai K, Dale J et al. (2005). Requirement for caspase-8 in NF-kappaB activation by antigen receptor. Science 307: 1465–1468.

    CAS  PubMed  Google Scholar 

  • Sulston JE, Horvitz HR . (1977). Post-embryonic cell lineages of the nematode, Caenorhabditis elegans. Dev Biol 56: 110–156.

    CAS  PubMed  Google Scholar 

  • Sulston JE, Schierenberg E, White JG, Thomson JN . (1983). The embryonic cell lineage of the nematode Caenorhabditis elegans. Dev Biol 100: 64–119.

    CAS  PubMed  Google Scholar 

  • Thornberry NA, Bull HG, Calaycay JR, Chapman KT, Howard AD, Kostura MJ et al. (1992). A novel heterodimeric cysteine protease is required for interleukin-1 beta processing in monocytes. Nature 356: 768–774.

    CAS  PubMed  Google Scholar 

  • Thornberry NA, Rano TA, Peterson EP, Rasper DM, Timkey T, Garcia-Calvo M et al. (1997). A combinatorial approach defines specificities of members of the caspase family and granzyme B. Functional relationships established for key mediators of apoptosis. J Biol Chem 272: 17907–17911.

    CAS  PubMed  Google Scholar 

  • Tinel A, Tschopp J . (2004). The PIDDosome, a protein complex implicated in activation of caspase-2 in response to genotoxic stress. Science 304: 843–846.

    CAS  PubMed  Google Scholar 

  • Tinsley KW, Cheng SL, Buchman TG, Chang KC, Hui JJ, Swanson PE et al. (2000). Caspases -2, -3, -6, and -9, but not caspase-1, are activated in sepsis-induced thymocyte apoptosis. Shock 13: 1–7.

    CAS  PubMed  Google Scholar 

  • Troy CM, Rabacchi SA, Friedman WJ, Frappier TF, Brown K, Shelanski ML . (2000). Caspase-2 mediates neuronal cell death induced by beta-amyloid. J Neurosci 20: 1386–1392.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Varfolomeev EE, Schuchmann M, Luria V, Chiannilkulchai N, Beckmann JS, Mett IL et al. (1998). Targeted disruption of the mouse Caspase 8 gene ablates cell death induction by the TNF receptors, Fas/Apo1, and DR3 and is lethal prenatally. Immunity 9: 267–276.

    CAS  PubMed  Google Scholar 

  • Vila M, Przedborski S . (2003). Targeting programmed cell death in neurodegenerative diseases. Nat Rev Neurosci 4: 365–375.

    CAS  PubMed  Google Scholar 

  • Vinzing M, Eitel J, Lippmann J, Hocke AC, Zahlten J, Slevogt H et al. (2008). NAIP and Ipaf control Legionella pneumophila replication in human cells. J Immunol 180: 6808–6815.

    CAS  PubMed  Google Scholar 

  • Wang J, Zheng L, Lobito A, Chan FK, Dale J, Sneller M et al. (1999). Inherited human Caspase 10 mutations underlie defective lymphocyte and dendritic cell apoptosis in autoimmune lymphoproliferative syndrome type II. Cell 98: 47–58.

    CAS  PubMed  Google Scholar 

  • Wang S, Miura M, Jung Y, Zhu H, Gagliardini V, Shi L et al. (1996). Identification and characterization of Ich-3, a member of the interleukin-1beta converting enzyme (ICE)/Ced-3 family and an upstream regulator of ICE. J Biol Chem 271: 20580–20587.

    CAS  PubMed  Google Scholar 

  • Wang S, Miura M, Jung YK, Zhu H, Li E, Yuan J . (1998). Murine caspase-11, an ICE-interacting protease, is essential for the activation of ICE. Cell 92: 501–509.

    CAS  PubMed  Google Scholar 

  • Watanabe-Fukunaga R, Brannan CI, Copeland NG, Jenkins NA, Nagata S . (1992). Lymphoproliferation disorder in mice explained by defects in Fas antigen that mediates apoptosis. Nature 356: 314–317.

    CAS  PubMed  Google Scholar 

  • Wesche-Soldato DE, Chung CS, Lomas-Neira J, Doughty LA, Gregory SH, Ayala A . (2005). In vivo delivery of caspase-8 or Fas siRNA improves the survival of septic mice. Blood 106: 2295–2301.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wyllie AH, Kerr JF, Currie AR . (1980). Cell death: the significance of apoptosis. Int Rev Cytol 68: 251–306.

    CAS  PubMed  Google Scholar 

  • Yi CH, Sogah DK, Boyce M, Degterev A, Christofferson DE, Yuan J . (2007). A genome-wide RNAi screen reveals multiple regulators of caspase activation. J Cell Biol 179: 619–626.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yu X, Acehan D, Menetret JF, Booth CR, Ludtke SJ, Riedl SJ et al. (2005). A structure of the human apoptosome at 12.8 A resolution provides insights into this cell death platform. Structure 13: 1725–1735.

    CAS  PubMed  Google Scholar 

  • Yuan J, Horvitz HR . (1992). The Caenorhabditis elegans cell death gene ced-4 encodes a novel protein and is expressed during the period of extensive programmed cell death. Development 116: 309–320.

    CAS  PubMed  Google Scholar 

  • Yuan J, Shaham S, Ledoux S, Ellis HM, Horvitz HR . (1993). The C. elegans cell death gene ced-3 encodes a protein similar to mammalian interleukin-1 beta-converting enzyme. Cell 75: 641–652.

    CAS  PubMed  Google Scholar 

  • Zamboni DS, Kobayashi KS, Kohlsdorf T, Ogura Y, Long EM, Vance RE et al. (2006). The Birc1e cytosolic pattern-recognition receptor contributes to the detection and control of Legionella pneumophila infection. Nat Immunol 7: 318–325.

    CAS  PubMed  Google Scholar 

  • Zeni F, Freeman B, Natanson C . (1997). Anti-inflammatory therapies to treat sepsis and septic shock: a reassessment. Crit Care Med 25: 1095–1100.

    CAS  PubMed  Google Scholar 

  • Zermati Y, Garrido C, Amsellem S, Fishelson S, Bouscary D, Valensi F et al. (2001). Caspase activation is required for terminal erythroid differentiation. J Exp Med 193: 247–254.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zou H, Henzel WJ, Liu X, Lutschg A, Wang X . (1997). Apaf-1, a human protein homologous to C. elegans CED-4 participates in cytochrome c-dependent activation of caspase-3. Cell 90: 405–413.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Yuan Lab members for helpful comments. This work was supported, in part, by a Merit Award from NIA (R37 AG12859). We apologize to colleagues whose work could no be cited due to space constraints.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J Yuan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, J., Yuan, J. Caspases in apoptosis and beyond. Oncogene 27, 6194–6206 (2008). https://doi.org/10.1038/onc.2008.297

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2008.297

Keywords

This article is cited by

Search

Quick links