Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

What is damaging the kidney in lupus nephritis?

Key Points

  • Nephritis remains a major cause of morbidity and mortality in systemic lupus erythematosus (SLE), with both extrinsic and intrinsic renal factors influencing long-term prognosis

  • Renal injury involves local immune responses and aberrant responses by the renal parenchyma; some of these responses are not reversed by immunosuppressive therapy and might require targeting of nonimmune mechanisms

  • Although lupus nephritis is initiated by immune complex deposition, the response to injury in individuals varies owing to differences in immune mechanisms, inflammation versus metabolic changes, hypoxia, and tissue repair and fibrosis

  • Disease phenotyping based on mechanism of renal injury, which are being discovered by genetic analyses, molecular profiling and proteomic analyses, could suggest new and more individualized therapeutic approaches

  • Studies in mouse models show that progression to chronic kidney disease is not inevitable even if systemic autoimmunity persists, and that several checkpoints in the progression pathway are amenable to therapy

  • Because clinical remission and renal histologic remission are not always correlated, improved disease monitoring and/or repeated biopsies could help identify patients at risk of progression and in need of high-intensity maintenance therapy

Abstract

Despite marked improvements in the survival of patients with severe lupus nephritis over the past 50 years, the rate of complete clinical remission after immune suppression therapy is <50% and renal impairment still occurs in 40% of affected patients. An appreciation of the factors that lead to the development of chronic kidney disease following acute or subacute renal injury in patients with systemic lupus erythematosus is beginning to emerge. Processes that contribute to end-stage renal injury include continuing inflammation, activation of intrinsic renal cells, cell stress and hypoxia, metabolic abnormalities, aberrant tissue repair and tissue fibrosis. A deeper understanding of these processes is leading to the development of novel or adjunctive therapies that could protect the kidney from the secondary non-immune consequences of acute injury. Approaches based on a molecular–proteomic–lipidomic classification of disease should yield new information about the functional basis of disease heterogeneity so that the most effective and least toxic treatment regimens can be formulated for individual patients.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Glomerular injury in lupus nephritis.
Figure 2: Interstitial injury in lupus nephritis.
Figure 3: Shared pathogenic pathways identified in the kidneys of the three different lupus-prone mouse strains.

Similar content being viewed by others

References

  1. Ortega, L. M., Schultz, D. R., Lenz, O., Pardo, V. & Contreras, G. N. Review: lupus nephritis: pathologic features, epidemiology and a guide to therapeutic decisions. Lupus 19, 557–574 (2010).

    Article  CAS  PubMed  Google Scholar 

  2. Markowitz, G. S. & D'Agati, V. D. Classification of lupus nephritis. Curr. Opin. Nephrol. Hypertens. 18, 220–225 (2009).

    Article  CAS  PubMed  Google Scholar 

  3. Weening, J. J. et al. The classification of glomerulonephritis in systemic lupus erythematosus revisited. Kidney Int. 65, 521–530 (2004).

    Article  PubMed  Google Scholar 

  4. Schwartz, M. M. et al. Irreproducibility of the activity and chronicity indices limits their utility in the management of lupus nephritis. Am. J. Kidney Dis. 21, 374–377 (1993).

    Article  CAS  PubMed  Google Scholar 

  5. Austin, H. A. 3rd, Muenz, L. R., Joyce, K. M., Antonovych, T. T. & Balow, J. E. Diffuse proliferative lupus nephritis: identification of specific pathologic features affecting renal outcome. Kidney Int. 25, 689–695 (1984).

    Article  PubMed  Google Scholar 

  6. Rovin, B. H., Parikh, S. V. & Alvarado, A. The kidney biopsy in lupus nephritis: is it still relevant? Rheum. Dis. Clin. North Am. 40, 537–552 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Vandepapeliere, J. et al. Prognosis of proliferative lupus nephritis subsets in the Louvain Lupus Nephritis inception Cohort. Lupus 23, 159–165 (2014).

    Article  CAS  PubMed  Google Scholar 

  8. Alvarado, A. et al. The value of repeat kidney biopsy in quiescent Argentinian lupus nephritis patients. Lupus 23, 840–847 (2014).

    Article  CAS  PubMed  Google Scholar 

  9. Zickert, A., Sundelin, B., Svenungsson, E. & Gunnarsson, I. Role of early repeated renal biopsies in lupus nephritis. Lupus Sci. Med. 1, e000018 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Dubois, E. L. in Lupus Erythematosus (ed. Dubois, E. L.) 72–89 (USC Press, 1974).

    Google Scholar 

  11. Contreras, G. et al. Factors associated with poor outcomes in patients with lupus nephritis. Lupus 14, 890–895 (2005).

    Article  CAS  PubMed  Google Scholar 

  12. Dooley, M. A. et al. Mycophenolate versus azathioprine as maintenance therapy for lupus nephritis. N. Engl. J. Med. 365, 1886–1895 (2011).

    Article  CAS  PubMed  Google Scholar 

  13. Ginzler, E. M. et al. Atacicept in combination with MMF and corticosteroids in lupus nephritis: results of a prematurely terminated trial. Arthritis Res. Ther. 14, R33 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Houssiau, F. A. & Lauwerys, B. R. Current management of lupus nephritis. Best Pract. Res. Clin. Rheumatol. 27, 319–328 (2013).

    Article  PubMed  Google Scholar 

  15. Schwartz, M. M. The pathology of lupus nephritis. Semin. Nephrol. 27, 22–34 (2007).

    Article  CAS  PubMed  Google Scholar 

  16. Madaio, M. P. The role of autoantibodies in the pathogenesis of lupus nephritis. Semin. Nephrol. 19, 48–56 (1999).

    CAS  PubMed  Google Scholar 

  17. Kalaaji, M., Sturfelt, G., Mjelle, J. E., Nossent, H. & Rekvig, O. P. Critical comparative analyses of anti-α-actinin and glomerulus-bound antibodies in human and murine lupus nephritis. Arthritis Rheum. 54, 914–926 (2006).

    Article  CAS  PubMed  Google Scholar 

  18. Hedberg, A., Mortensen, E. S. & Rekvig, O. P. Chromatin as a target antigen in human and murine lupus nephritis. Arthritis Res. Ther. 13, 214 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Trouw, L. A. et al. Anti-C1q autoantibodies deposit in glomeruli but are only pathogenic in combination with glomerular C1q-containing immune complexes. J. Clin. Invest. 114, 679–688 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Tsirogianni, A., Pipi, E. & Soufleros, K. Relevance of anti-C1q autoantibodies to lupus nephritis. Ann. NY Acad. Sci. 1173, 243–251 (2009).

    Article  CAS  PubMed  Google Scholar 

  21. Ullal, A. J. et al. Microparticles as antigenic targets of antibodies to DNA and nucleosomes in systemic lupus erythematosus. J. Autoimmun. 36, 173–180 (2011).

    Article  CAS  PubMed  Google Scholar 

  22. Hakkim, A. et al. Impairment of neutrophil extracellular trap degradation is associated with lupus nephritis. Proc. Natl Acad. Sci. USA 107, 9813–9818 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Seredkina, N. & Rekvig, O. P. Acquired loss of renal nuclease activity is restricted to DNaseI and is an organ-selective feature in murine lupus nephritis. Am. J. Pathol. 179, 1120–1128 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Vlahakos, D. V. et al. Anti-DNA antibodies form immune deposits at distinct glomerular and vascular sites. Kidney Int. 41, 1690–1700 (1992).

    Article  CAS  PubMed  Google Scholar 

  25. Liang, Z. et al. Pathogenic profiles and molecular signatures of antinuclear autoantibodies rescued from NZM2410 lupus mice. J. Exp. Med. 199, 381–398 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Moroni, G. et al. The value of a panel of autoantibodies for predicting the activity of lupus nephritis at time of renal biopsy. J. Immunol. Res. 2015, 106904 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Bergtold, A., Gavhane, A., D'Agati, V., Madaio, M. & Clynes, R. FcR-bearing myeloid cells are responsible for triggering murine lupus nephritis. J. Immunol. 177, 7287–7295 (2006).

    Article  CAS  PubMed  Google Scholar 

  28. Perez de Lema, G. et al. Chemokine expression precedes inflammatory cell infiltration and chemokine receptor and cytokine expression during the initiation of murine lupus nephritis. J. Am. Soc. Nephrol. 12, 1369–1382 (2001).

    Article  CAS  Google Scholar 

  29. Segerer, S. & Schlondorff, D. Role of chemokines for the localization of leukocyte subsets in the kidney. Semin. Nephrol. 27, 260–274 (2007).

    Article  CAS  PubMed  Google Scholar 

  30. Barrat, F. J. et al. Nucleic acids of mammalian origin can act as endogenous ligands for Toll-like receptors and may promote systemic lupus erythematosus. J. Exp. Med. 202, 1131–1139 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Teichmann, L. L., Schenten, D., Medzhitov, R., Kashgarian, M. & Shlomchik, M. J. Signals via the adaptor MyD88 in B cells and DCs make distinct and synergistic contributions to immune activation and tissue damage in lupus. Immunity 38, 528–540 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Bethunaickan, R. et al. Identification of stage-specific genes associated with lupus nephritis and response to remission induction in (NZB × NZW)F1 and NZM2410 mice. Arthritis Rheumatol. 66, 2246–2258 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Tesch, G. H., Maifert, S., Schwarting, A., Rollins, B. J. & Kelley, V. R. Monocyte chemoattractant protein 1-dependent leukocytic infiltrates are responsible for autoimmune disease in MRL-Faslpr mice. J. Exp. Med. 190, 1813–1824 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Bethunaickan, R. et al. Anti-TNF treatment of IFN induced lupus nephritis reduces the renal macrophage response but does not alter glomerular immune complex formation. Arthritis Rheum. 64, 3399–3408 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Liu, J. et al. Genomic view of systemic autoimmunity in MRLlpr mice. Genes Immun. 7, 156–168 (2006).

    Article  CAS  PubMed  Google Scholar 

  36. Berthier, C. C. et al. Cross-species transcriptional network analysis defines shared inflammatory responses in murine and human lupus nephritis. J. Immunol. 189, 988–1001 (2012).

    Article  CAS  PubMed  Google Scholar 

  37. Migliorini, A. et al. The antiviral cytokines IFN-α and IFN-β modulate parietal epithelial cells and promote podocyte loss: implications for IFN toxicity, viral glomerulonephritis, and glomerular regeneration. Am. J. Pathol. 183, 431–440 (2013).

    Article  CAS  PubMed  Google Scholar 

  38. Gurkan, S. et al. Inhibition of type I interferon signalling prevents TLR ligand-mediated proteinuria. J. Pathol. 231, 248–256 (2013).

    Article  CAS  PubMed  Google Scholar 

  39. Boswell, J. M., Yui, M. A., Burt, D. W. & Kelley, V. E. Increased tumor necrosis factor and IL-1 β gene expression in the kidneys of mice with lupus nephritis. J. Immunol. 141, 3050–3054 (1988).

    CAS  PubMed  Google Scholar 

  40. Herrera-Esparza, R., Barbosa-Cisneros, O., Villalobos-Hurtado, R. & Avalos-Diaz, E. Renal expression of IL-6 and TNFα genes in lupus nephritis. Lupus 7, 154–158 (1998).

    Article  CAS  PubMed  Google Scholar 

  41. Zhao, J. et al. P2X7 blockade attenuates murine lupus nephritis by inhibiting activation of the NLRP3/ASC/caspase 1 pathway. Arthritis Rheum. 65, 3176–3185 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Kahlenberg, J. M. & Kaplan, M. J. The inflammasome and lupus: another innate immune mechanism contributing to disease pathogenesis? Curr. Opin. Rheumatol. 26, 475–481 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Zhao, J. et al. Lupus nephritis: glycogen synthase kinase 3β promotion of renal damage through activation of the NLRP3 inflammasome in lupus-prone mice. Arthritis Rheumatol. 67, 1036–1044 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Reiser, J. et al. Induction of B7-1 in podocytes is associated with nephrotic syndrome. J. Clin. Invest. 113, 1390–1397 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Amarilyo, G., Lourenco, E. V., Shi, F. D. & La Cava, A. IL-17 promotes murine lupus. J. Immunol. 193, 540–543 (2014).

    Article  CAS  PubMed  Google Scholar 

  46. Schmidt, T. et al. Function of the TH17/interleukin-17A immune response in murine lupus nephritis. Arthritis Rheumatol. 67, 475–487 (2015).

    Article  CAS  PubMed  Google Scholar 

  47. Chang, A. et al. In situ B cell-mediated immune responses and tubulointerstitial inflammation in human lupus nephritis. J. Immunol. 186, 1849–1860 (2011).

    Article  CAS  PubMed  Google Scholar 

  48. Kinloch, A. J. et al. Vimentin is a dominant target of in situ humoral immunity in human lupus tubulointerstitial nephritis. Arthritis Rheumatol. 66, 3359–3370 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Winchester, R. et al. Immunologic characteristics of intrarenal T cells: trafficking of expanded CD8+ T cell β-chain clonotypes in progressive lupus nephritis. Arthritis Rheum. 64, 1589–1600 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Tucci, M., Stucci, S., Strippoli, S. & Silvestris, F. Cytokine overproduction, T-cell activation, and defective T-regulatory functions promote nephritis in systemic lupus erythematosus. J. Biomed. Biotechnol. 2010, 457146 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Enghard, P. et al. Urinary CD4 T cells identify SLE patients with proliferative lupus nephritis and can be used to monitor treatment response. Ann. Rheum. Dis. 73, 277–283 (2014).

    Article  CAS  PubMed  Google Scholar 

  52. Rose, M. L. Role of anti-vimentin antibodies in allograft rejection. Hum. Immunol. 74, 1459–1462 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Bruschi, M. et al. Glomerular autoimmune multicomponents of human lupus nephritis in vivo: α-enolase and annexin AI. J. Am. Soc. Nephrol. 25, 2483–2498 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Lech, M. & Anders, H. J. Macrophages and fibrosis: how resident and infiltrating mononuclear phagocytes orchestrate all phases of tissue injury and repair. Biochim. Biophys. Acta 1832, 989–997 (2013).

    Article  CAS  PubMed  Google Scholar 

  55. Duffield, J. S. Macrophages in kidney repair and regeneration. J. Am. Soc. Nephrol. 22, 199–201 (2011).

    Article  PubMed  Google Scholar 

  56. Hill, G. S. et al. Predictive power of the second renal biopsy in lupus nephritis: significance of macrophages. Kidney Int. 59, 304–316 (2001).

    Article  CAS  PubMed  Google Scholar 

  57. Bethunaickan, R. et al. A unique hybrid renal mononuclear phagocyte activation phenotype in murine systemic lupus erythematosus nephritis. J. Immunol. 186, 4994–5003 (2011).

    Article  CAS  PubMed  Google Scholar 

  58. Anders, H. J. et al. Late onset of treatment with a chemokine receptor CCR1 antagonist prevents progression of lupus nephritis in MRL-Fas(lpr) mice. J. Am. Soc. Nephrol. 15, 1504–1513 (2004).

    Article  CAS  PubMed  Google Scholar 

  59. Lin, S. L., Castano, A. P., Nowlin, B. T., Lupher, M. L. Jr & Duffield, J. S. Bone marrow Ly6Chigh monocytes are selectively recruited to injured kidney and differentiate into functionally distinct populations. J. Immunol. 183, 6733–6743 (2009).

    Article  CAS  PubMed  Google Scholar 

  60. Ginhoux, F. & Jung, S. Monocytes and macrophages: developmental pathways and tissue homeostasis. Nat. Rev. Immunol. 14, 392–404 (2014).

    Article  CAS  PubMed  Google Scholar 

  61. Sahu, R., Bethunaickan, R., Singh, S. & Davidson, A. Structure and function of renal macrophages and dendritic cells from lupus-prone mice. Arthritis Rheumatol. 66, 1596–1607 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Heymann, F. et al. Kidney dendritic cell activation is required for progression of renal disease in a mouse model of glomerular injury. J. Clin. Invest. 119, 1286–1297 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Kassianos, A. J. et al. Increased tubulointerstitial recruitment of human CD141hi CLEC9A+ and CD1c+ myeloid dendritic cell subsets in renal fibrosis and chronic kidney disease. Am. J. Physiol. Renal Physiol. 305, F1391–F1401 (2013).

    Article  CAS  PubMed  Google Scholar 

  64. Salmon, A. H., Neal, C. R. & Harper, S. J. New aspects of glomerular filtration barrier structure and function: five layers (at least) not three. Curr. Opin. Nephrol. Hypertens. 18, 197–205 (2009).

    CAS  PubMed  Google Scholar 

  65. Fu, J., Lee, K., Chuang, P. Y., Liu, Z. & He, J. C. Glomerular endothelial cell injury and cross talk in diabetic kidney disease. Am. J. Physiol. Renal Physiol. 308, F287–F297 (2015).

    Article  CAS  PubMed  Google Scholar 

  66. Khan, S. et al. Mesangial cell integrin αvβ8 provides glomerular endothelial cell cytoprotection by sequestering TGF-β and regulating PECAM-1. Am. J. Pathol. 178, 609–620 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Floege, J., Eitner, F. & Alpers, C. E. A new look at platelet-derived growth factor in renal disease. J. Am. Soc. Nephrol. 19, 12–23 (2008).

    Article  CAS  PubMed  Google Scholar 

  68. Daehn, I. et al. Endothelial mitochondrial oxidative stress determines podocyte depletion in segmental glomerulosclerosis. J. Clin. Invest. 124, 1608–1621 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Kriz, W. & LeHir, M. Pathways to nephron loss starting from glomerular diseases-insights from animal models. Kidney Int. 67, 404–419 (2005).

    Article  PubMed  Google Scholar 

  70. Kida, Y., Ieronimakis, N., Schrimpf, C., Reyes, M. & Duffield, J. S. EphrinB2 reverse signaling protects against capillary rarefaction and fibrosis after kidney injury. J. Am. Soc. Nephrol. 24, 559–572 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Alon, R. & Nourshargh, S. Learning in motion: pericytes instruct migrating innate leukocytes. Nat. Immunol. 14, 14–15 (2013).

    Article  CAS  PubMed  Google Scholar 

  72. Kramann, R. & Humphreys, B. D. Kidney pericytes: roles in regeneration and fibrosis. Semin. Nephrol. 34, 374–383 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Schrimpf, C., Teebken, O. E., Wilhelmi, M. & Duffield, J. S. The role of pericyte detachment in vascular rarefaction. J. Vasc. Res. 51, 247–258 (2014).

    Article  PubMed  Google Scholar 

  74. Padberg, J. S. et al. Damage of the endothelial glycocalyx in chronic kidney disease. Atherosclerosis 234, 335–343 (2014).

    Article  CAS  PubMed  Google Scholar 

  75. Kuwabara, A., Satoh, M., Tomita, N., Sasaki, T. & Kashihara, N. Deterioration of glomerular endothelial surface layer induced by oxidative stress is implicated in altered permeability of macromolecules in Zucker fatty rats. Diabetologia 53, 2056–2065 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Dimke, H. et al. Tubulovascular cross-talk by vascular endothelial growth factor A maintains peritubular microvasculature in kidney. J. Am. Soc. Nephrol. 26, 1027–1038 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Kumpers, P. et al. The Tie2 receptor antagonist angiopoietin 2 facilitates vascular inflammation in systemic lupus erythematosus. Ann. Rheum. Dis. 68, 1638–1643 (2009).

    Article  CAS  PubMed  Google Scholar 

  78. Kida, Y., Tchao, B. N. & Yamaguchi, I. Peritubular capillary rarefaction: a new therapeutic target in chronic kidney disease. Pediatr. Nephrol. 29, 333–342 (2014).

    Article  PubMed  Google Scholar 

  79. Gilkeson, G. S. et al. Endothelial nitric oxide synthase reduces crescentic and necrotic glomerular lesions, reactive oxygen production, and MCP1 production in murine lupus nephritis. PLoS ONE 8, e64650 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Thacker, S. G. et al. The detrimental effects of IFN-α on vasculogenesis in lupus are mediated by repression of IL-1 pathways: potential role in atherogenesis and renal vascular rarefaction. J. Immunol. 185, 4457–4469 (2010).

    Article  CAS  PubMed  Google Scholar 

  81. Kahlenberg, J. M. et al. An essential role of caspase 1 in the induction of murine lupus and its associated vascular damage. Arthritis Rheumatol. 66, 152–162 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Shoji, K., Tanaka, T. & Nangaku, M. Role of hypoxia in progressive chronic kidney disease and implications for therapy. Curr. Opin. Nephrol. Hypertens. 23, 161–168 (2014).

    Article  CAS  PubMed  Google Scholar 

  83. Kang, H. M. et al. Defective fatty acid oxidation in renal tubular epithelial cells has a key role in kidney fibrosis development. Nat. Med. 21, 37–46 (2015).

    Article  CAS  PubMed  Google Scholar 

  84. Tran, M. et al. PGC-1α promotes recovery after acute kidney injury during systemic inflammation in mice. J. Clin. Invest. 121, 4003–4014 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Duffield, J. S. Cellular and molecular mechanisms in kidney fibrosis. J. Clin. Invest. 124, 2299–2306 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Falke, L. L., Gholizadeh, S., Goldschmeding, R., Kok, R. J. & Nguyen, T. Q. Diverse origins of the myofibroblast-implications for kidney fibrosis. Nat. Rev. Nephrol. 11, 233–244 (2015).

    Article  CAS  PubMed  Google Scholar 

  87. Kok, H. M., Falke, L. L., Goldschmeding, R. & Nguyen, T. Q. Targeting CTGF, EGF and PDGF pathways to prevent progression of kidney disease. Nat. Rev. Nephrol. 10, 700–711 (2014).

    Article  CAS  PubMed  Google Scholar 

  88. Ostendorf, T., Eitner, F. & Floege, J. The PDGF family in renal fibrosis. Pediatr. Nephrol. 27, 1041–1050 (2012).

    Article  PubMed  Google Scholar 

  89. Kaissling, B., Lehir, M. & Kriz, W. Renal epithelial injury and fibrosis. Biochim. Biophys. Acta 1832, 931–939 (2013).

    Article  CAS  PubMed  Google Scholar 

  90. Eddy, A. A. Overview of the cellular and molecular basis of kidney fibrosis. Kidney Int. 4, 2–8 (2014).

    Article  CAS  Google Scholar 

  91. Van Linthout, S., Miteva, K. & Tschope, C. Crosstalk between fibroblasts and inflammatory cells. Cardiovasc. Res. 102, 258–269 (2014).

    Article  CAS  PubMed  Google Scholar 

  92. Tampe, B. & Zeisberg, M. Contribution of genetics and epigenetics to progression of kidney fibrosis. Nephrol. Dial. Transplant. 29, iv72–iv79 (2014).

    Article  CAS  PubMed  Google Scholar 

  93. Dressler, G. R. & Patel, S. R. Epigenetics in kidney development and renal disease. Transl. Res. 165, 166–176 (2015).

    Article  CAS  PubMed  Google Scholar 

  94. Bechtel, W. et al. Methylation determines fibroblast activation and fibrogenesis in the kidney. Nat. Med. 16, 544–550 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Lai, J. Y. et al. MicroRNA-21 in glomerular injury. J. Am. Soc. Nephrol. 26, 805–816 (2015).

    Article  CAS  PubMed  Google Scholar 

  96. Duffield, J. S., Grafals, M. & Portilla, D. MicroRNAs are potential therapeutic targets in fibrosing kidney disease: lessons from animal models. Drug Discov. Today Dis. Models 10, e127–e135 (2013).

    Article  PubMed  Google Scholar 

  97. Contreras, G. et al. Outcomes in African Americans and Hispanics with lupus nephritis. Kidney Int. 69, 1846–1851 (2006).

    Article  CAS  PubMed  Google Scholar 

  98. Isenberg, D. et al. Influence of race/ethnicity on response to lupus nephritis treatment: the ALMS study. Rheumatology (Oxford) 49, 128–140 (2010).

    Article  Google Scholar 

  99. Tamirou, F. et al. Long-term follow-up of the MAINTAIN Nephritis Trial, comparing azathioprine andmycophenolate mofetil as maintenance therapy of lupus nephritis. Ann. Rheum. Dis. http://dx.doi.org/10.1136/annrheumdis-2014-206897.

  100. Dall'Era, M. et al. Predictors of long-term renal outcome in lupus nephritis trials: lessons learned from the Euro-Lupus Nephritis Cohort. Arthritis Rheumatol. 67, 1305–1313 (2015).

    Article  CAS  PubMed  Google Scholar 

  101. Hsieh, C. et al. Predicting outcomes of lupus nephritis with tubulointerstitial inflammation and scarring. Arthritis Care Res. (Hoboken) 63, 865–874 (2011).

    Article  Google Scholar 

  102. Alsuwaida, A. O. Interstitial inflammation and long-term renal outcomes in lupus nephritis. Lupus 22, 1446–1454 (2013).

    Article  CAS  PubMed  Google Scholar 

  103. Esdaile, J. M., Levinton, C., Federgreen, W., Hayslett, J. P. & Kashgarian, M. The clinical and renal biopsy predictors of long-term outcome in lupus nephritis: a study of 87 patients and review of the literature. Q. J. Med. 72, 779–833 (1989).

    CAS  PubMed  Google Scholar 

  104. Yazdany, J. et al. Quality of care for incident lupus nephritis among Medicaid beneficiaries in the United States. Arthritis Care Res. (Hoboken) 66, 617–624 (2014).

    Article  Google Scholar 

  105. Pokroy-Shapira, E., Gelernter, I. & Molad, Y. Evolution of chronic kidney disease in patients with systemic lupus erythematosus over a long-period follow-up: a single-center inception cohort study. Clin. Rheumatol. 33, 649–657 (2014).

    Article  PubMed  Google Scholar 

  106. Chung, S. A. et al. Lupus nephritis susceptibility loci in women with systemic lupus erythematosus. J. Am. Soc. Nephrol. 25, 2859–2870 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Caster, D. J. et al. ABIN1 dysfunction as a genetic basis for lupus nephritis. J. Am. Soc. Nephrol. 24, 1743–1754 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Sanchez, E. et al. Phenotypic associations of genetic susceptibility loci in systemic lupus erythematosus. Ann. Rheum. Dis. 70, 1752–1757 (2011).

    Article  CAS  PubMed  Google Scholar 

  109. Bolin, K. et al. Association of STAT4 polymorphism with severe renal insufficiency in lupus nephritis. PLoS ONE 8, e84450 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  110. Kim-Howard, X. et al. ITGAM coding variant (rs1143679) influences the risk of renal disease, discoid rash and immunological manifestations in patients with systemic lupus erythematosus with European ancestry. Ann. Rheum. Dis. 69, 1329–1332 (2010).

    Article  PubMed  Google Scholar 

  111. Liu, K. et al. Kallikrein genes are associated with lupus and glomerular basement membrane-specific antibody-induced nephritis in mice and humans. J. Clin. Invest. 119, 911–923 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Lee, Y. H. & Bae, S. C. Association between the functional ITGAM rs1143679 G/A polymorphism and systemic lupus erythematosus/lupus nephritis or rheumatoid arthritis: an update meta-analysis. Rheumatol. Int. 35, 815–823 (2014).

    Article  PubMed  CAS  Google Scholar 

  113. Dong, C. et al. Fcγ receptor IIIa single-nucleotide polymorphisms and haplotypes affect human IgG binding and are associated with lupus nephritis in African Americans. Arthritis Rheumatol. 66, 1291–1299 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Freedman, B. I. et al. End-stage renal disease in African Americans with lupus nephritis is associated with APOL1. Arthritis Rheumatol. 66, 390–396 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Colares, V. S. et al. MYH9 and APOL1 gene polymorphisms and the risk of CKD in patients with lupus nephritis from an admixture population. PLoS ONE 9, e87716 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  116. Lin, C. P. et al. Role of MYH9 and APOL1 in African and non-African populations with lupus nephritis. Genes Immun. 13, 232–238 (2012).

    Article  CAS  PubMed  Google Scholar 

  117. Chung, A. C. & Lan, H. Y. MicroRNAs in renal fibrosis. Front. Physiol. 6, 50 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  118. Rodríguez-Romo, R., Berman, N., Gomez, A. & Bobadilla, N. A. Epigenetic regulation in the acute kidney injury (AKI) to chronic kidney disease transition (CKD). Nephrology (Carlton) http://dx.doi.org/10.1111/nep.12521.

  119. Bomsztyk, K. & Denisenko, O. Epigenetic alterations in acute kidney injury. Semin. Nephrol. 33, 327–340 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Liu, N. & Zhuang, S. Treatment of chronic kidney diseases with histone deacetylase inhibitors. Front. Physiol. 6, 121 (2015).

    PubMed  PubMed Central  Google Scholar 

  121. Lv, L. L. et al. MicroRNA-29c in urinary exosome/microvesicle as a biomarker of renal fibrosis. Am. J. Physiol. Renal Physiol. 305, F1220–F1227 (2013).

    Article  CAS  PubMed  Google Scholar 

  122. Te, J. L. et al. Identification of unique microRNA signature associated with lupus nephritis. PLoS ONE 5, e10344 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  123. Peterson, K. S. et al. Characterization of heterogeneity in the molecular pathogenesis of lupus nephritis from transcriptional profiles of laser-captured glomeruli. J. Clin. Invest. 113, 1722–1733 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Berthier, C. C., Kretzler, M. & Davidson, A. From the large scale expression analysis of lupus nephritis to targeted molecular medicine. J. Data Mining Genomics Proteomics 3, 1000123 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  125. Bethunaickan, R., Berthier, C. C., Zhang, W., Kretzler, M. & Davidson, A. Comparative transcriptional profiling of 3 murine models of SLE nephritis reveals both unique and shared regulatory networks. PLoS ONE 8, e77489 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Jacob, C. O. et al. Paucity of clinical disease despite serological autoimmunity and kidney pathology in lupus-prone New Zealand mixed 2328 mice deficient in BAFF. J. Immunol. 177, 2671–2680 (2006).

    Article  CAS  PubMed  Google Scholar 

  127. Ramanujam, M. et al. Selective blockade of BAFF for the prevention and treatment of systemic lupus erythematosus nephritis in NZM2410 mice. Arthritis Rheum. 62, 1457–1468 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Ge, Y. et al. Cgnz1 allele confers kidney resistance to damage preventing progression of immune complex-mediated acute lupus glomerulonephritis. J. Exp. Med. 210, 2387–2401 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Venkatachalam, M. A., Weinberg, J. M., Kriz, W. & Bidani, A. K. Failed tubule recovery, AKI-CKD transition, and kidney disease progression. J. Am. Soc. Nephrol. 26, 1765–1776 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Srisawat, N., Murugan, R. & Kellum, J. A. Repair or progression after AKI: a role for biomarkers? Nephron Clin. Pract. 127, 185–189 (2014).

    Article  CAS  PubMed  Google Scholar 

  131. Zoja, C., Abbate, M. & Remuzzi, G. Progression of renal injury toward interstitial inflammation and glomerular sclerosis is dependent on abnormal protein filtration. Nephrol. Dial. Transplant. 30, 706–712 (2014).

    Article  PubMed  CAS  Google Scholar 

  132. Schiffer, L. et al. Short term administration of costimulatory blockade and cyclophosphamide induces remission of systemic lupus erythematosus nephritis in NZB/W F1 mice by a mechanism downstream of renal immune complex deposition. J. Immunol. 171, 489–497 (2003).

    Article  CAS  PubMed  Google Scholar 

  133. Kulkarni, O. et al. Anti-Ccl2 Spiegelmer permits 75% dose reduction of cyclophosphamide to control diffuse proliferative lupus nephritis and pneumonitis in MRL-Fas(lpr) mice. J. Pharmacol. Exp. Ther. 328, 371–377 (2009).

    Article  CAS  PubMed  Google Scholar 

  134. Satoskar, A. A. et al. Characterization of glomerular diseases using proteomic analysis of laser capture microdissected glomeruli. Mod. Pathol. 25, 709–721 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Parikh, S. V., Ayoub, I. & Rovin, B. H. The kidney biopsy in lupus nephritis: time to move beyond histology. Nephrol. Dial. Transplant. 30, 3–6 (2015).

    Article  PubMed  Google Scholar 

  136. Rovin, B. H. & Klein, J. B. Proteomics and autoimmune kidney disease. Clin. Immunol. http://dx.doi.org/10.1016/j.clim.2015.04.021.

  137. Romick-Rosendale, L. E. et al. Identification of urinary metabolites that distinguish membranous lupus nephritis from proliferative lupus nephritis and focal segmental glomerulosclerosis. Arthritis Res. Ther. 13, R199 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  138. Nowling, T. K. et al. Renal glycosphingolipid metabolism is dysfunctional in lupus nephritis. J. Am. Soc. Nephrol. 26, 1402–1413 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  139. Reyes-Thomas, J., Blanco, I. & Putterman, C. Urinary biomarkers in lupus nephritis. Clin. Rev. Allergy Immunol. 40, 138–150 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Abulaban, K. M. & Brunner, H. I. Biomarkers for childhood-onset systemic lupus erythematosus. Curr. Rheumatol. Rep. 17, 471 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  141. Davidson, A. & Aranow, C. Lupus nephritis: lessons from murine models. Nat. Rev. Rheumatol. 6, 13–20 (2010).

    Article  CAS  PubMed  Google Scholar 

  142. Corapi, K. M., Dooley, M. A. & Pendergraft, W. F. 3rd. Comparison and evaluation of lupus nephritis response criteria in lupus activity indices and clinical trials. Arthritis Res. Ther. 17, 110 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  143. Lech, M. et al. NLRP3 and ASC suppress lupus-like autoimmunity by driving the immunosuppressive effects of TGF-β receptor signalling. Ann. Rheum. Dis. http://dx.doi.org/10.1136/annrheumdis-2014-205496.

  144. Campbell, A. M., Kashgarian, M. & Shlomchik, M. J. NADPH oxidase inhibits the pathogenesis of systemic lupus erythematosus. Sci. Transl. Med. 4, 157ra141 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  145. Sharma, S. et al. Suppression of systemic autoimmunity by the innate immune adaptor STING. Proc. Natl Acad. Sci. USA 112, E710–E717 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Saxena, V. et al. Dual roles of immunoregulatory cytokine TGF-β in the pathogenesis of autoimmunity-mediated organ damage. J. Immunol. 180, 1903–1912 (2008).

    Article  CAS  PubMed  Google Scholar 

  147. Aringer, M. & Smolen, J. S. Efficacy and safety of TNF-blocker therapy in systemic lupus erythematosus. Expert Opin. Drug Saf. 7, 411–419 (2008).

    Article  CAS  PubMed  Google Scholar 

  148. Liu, Z. & Davidson, A. Taming lupus—a new understanding of pathogenesis is leading to clinical advances. Nat. Med. 18, 871–882 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  149. Houssiau, F. A. Biologic therapy in lupus nephritis. Nephron Clin. Pract. 128, 255–260 (2014).

    Article  CAS  PubMed  Google Scholar 

  150. Liu, Y. & Anders, H. J. Lupus nephritis: from pathogenesis to targets for biologic treatment. Nephron Clin. Pract. 128, 224–231 (2014).

    Article  CAS  PubMed  Google Scholar 

  151. Chan, T. M. Treatment of severe lupus nephritis: the new horizon. Nat. Rev. Nephrol. 11, 46–61 (2015).

    Article  CAS  PubMed  Google Scholar 

  152. Rovin, B. H. & Parikh, S. V. Lupus nephritis: the evolving role of novel therapeutics. Am. J. Kidney Dis. 63, 677–690 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  153. Allegretti, M., Cesta, M. C., Garin, A. & Proudfoot, A. E. Current status of chemokine receptor inhibitors in development. Immunol. Lett. 145, 68–78 (2012).

    Article  CAS  PubMed  Google Scholar 

  154. Asquith, D. L., Bryce, S. A. & Nibbs, R. J. Targeting cell migration in rheumatoid arthritis. Curr. Opin. Rheumatol. 27, 204–211 (2015).

    Article  CAS  PubMed  Google Scholar 

  155. Alexander, T. et al. The proteasome inhibitior bortezomib depletes plasma cells and ameliorates clinical manifestations of refractory systemic lupus erythematosus. Ann. Rheum. Dis. http:dx.doi.org/10.1136/annrheumdis-2014-206016.

  156. Cernaro, V. et al. New therapeutic strategies under development to halt the progression of renal failure. Expert Opin. Investig. Drugs 23, 693–709 (2014).

    Article  CAS  PubMed  Google Scholar 

  157. Sabuda-Widemann, D., Grabensee, B., Schwandt, C. & Blume, C. Mycophenolic acid inhibits the autocrine PDGF-B synthesis and PDGF-BB-induced mRNA expression of Egr-1 in rat mesangial cells. Nephrol. Dial. Transplant. 24, 52–61 (2009).

    Article  CAS  PubMed  Google Scholar 

  158. Chandrashekar, K. & Juncos, L. A. Endothelin antagonists in diabetic nephropathy: back to basics. J. Am. Soc. Nephrol. 25, 869–871 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Lin, S. L. et al. Targeting endothelium-pericyte cross talk by inhibiting VEGF receptor signaling attenuates kidney microvascular rarefaction and fibrosis. Am. J. Pathol. 178, 911–923 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Tampe, D. & Zeisberg, M. Potential approaches to reverse or repair renal fibrosis. Nat. Rev. Nephrol. 10, 226–237 (2014).

    Article  CAS  PubMed  Google Scholar 

  161. Madsen, D. H. et al. M2-like macrophages are responsible for collagen degradation through a mannose receptor-mediated pathway. J. Cell Biol. 202, 951–966 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Kawakami, T., Ren, S. & Duffield, J. S. Wnt signalling in kidney diseases: dual roles in renal injury and repair. J. Pathol. 229, 221–231 (2013).

    Article  CAS  PubMed  Google Scholar 

  163. Anders, H. J. & Ryu, M. Renal microenvironments and macrophage phenotypes determine progression or resolution of renal inflammation and fibrosis. Kidney Int. 80, 915–925 (2011).

    Article  CAS  PubMed  Google Scholar 

  164. Vielhauer, V., Kulkarni, O., Reichel, C. A. & Anders, H. J. Targeting the recruitment of monocytes and macrophages in renal disease. Semin. Nephrol. 30, 318–333 (2010).

    Article  CAS  PubMed  Google Scholar 

  165. Ardoin, S. et al. An approach to validating criteria for proteinuric flare in systemic lupus erythematosus glomerulonephritis. Arthritis Rheum. 63, 2031–2037 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  166. Parikh, S. V., Nagaraja, H. N., Hebert, L. & Rovin, B. H. Renal flare as a predictor of incident and progressive CKD in patients with lupus nephritis. Clin. J. Am. Soc. Nephrol. 9, 279–284 (2014).

    Article  PubMed  Google Scholar 

  167. Vielhauer, V. & Anders, H. J. Chemokines and chemokine receptors as therapeutic targets in chronic kidney disease. Front. Biosci. (Schol Ed) 1, 1–12 (2009).

    Article  Google Scholar 

Download references

Acknowledgements

The author's work is supported by NIH R01 DK085241-01.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anne Davidson.

Ethics declarations

Competing interests

The author declares no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Davidson, A. What is damaging the kidney in lupus nephritis?. Nat Rev Rheumatol 12, 143–153 (2016). https://doi.org/10.1038/nrrheum.2015.159

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrrheum.2015.159

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing