Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Intracellular signalling controlling integrin activation in lymphocytes

Key Points

  • Regulation of integrin avidity by inside-out signals (that is, intracellular signals that alter the avidity of integrins at the cell surface) occurs in two ways: regulation of integrin affinity, and regulation of integrin diffusion and clustering in the cell membrane (which is known as valency regulation).

  • Regulation of integrin conformation by the 'switch-blade model' of integrin activation leads to changes in integrin affinity. The cytoplasmic tail of integrins is crucial for transmitting the inside-out signals that induce this conformational change.

  • Inside-out signalling pathways that involve phosphatidylinositol 3-kinase, RHO (RAS homologue), RAP1, RAPL and DOCK2 (dedicator of cytokinesis 2) mediate chemokine-induced modulation of LFA1 (lymphocyte function-associated antigen 1) avidity.

  • Inside-out signalling pathways that involve TEC-family kinases, VAV1, ADAP (adhesion- and degranulation-promoting adaptor protein), RAP1 and RAPL mediate T-cell-receptor-triggered modulation of LFA1 avidity and formation of an immunological synapse.

  • Talin — a 250 kDa cytoskeletal protein that links integrins and the actin cytoskeleton — might be involved in inside-out signalling pathways that regulate lymphocyte adhesion.

  • RHO-H negatively regulates inside-out signalling pathways that increase integrin avidity.

  • A model of regulation of lymphocyte adhesion, based on the control of intracellular trafficking and the development of cell polarity, is discussed.

Abstract

Since the discovery that integrins at the surface of lymphocytes undergo dynamic changes in their adhesive activity after stimulation through the T-cell receptor or stimulation with chemokines, intensive research has been carried out in an attempt to clarify the signalling events that lead to the activation of integrins. Whereas structural studies have provided us with a vivid picture of the conformational flexibility of integrins, the signalling pathways that regulate these conformational changes (known as inside-out signalling) have been elusive. However, as I discuss here, recent studies have provided new insight into the pathways that control the regulation of integrin activity and the coordination of complex cellular functions, such as the homing of lymphocytes and the formation of an immunological synapse.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The integrin family.
Figure 2: Integrin structure and regulation.
Figure 3: The adhesion cascade, from rolling to diapedesis.
Figure 4: Inside-out signalling pathways.
Figure 5: T-cell-receptor signalling that results in integrin activation and immunological-synapse formation.
Figure 6: A model of the regulatory processes that control integrin function.

Similar content being viewed by others

References

  1. Hemler, M. E. VLA proteins in the integrin family: structures, functions, and their role on leukocytes. Annu. Rev. Immunol. 8, 365–400 (1990).

    Article  CAS  PubMed  Google Scholar 

  2. Hynes, R. O. Integrins: versatility, modulation, and signaling in cell adhesion. Cell 69, 11–25 (1992).

    Article  CAS  PubMed  Google Scholar 

  3. Springer, T. A. Traffic signals on endothelium for lymphocyte recirculation and leukocyte emigration. Annu. Rev. Physiol. 57, 827–872 (1995).

    Article  CAS  PubMed  Google Scholar 

  4. Butcher, E. C., Williams, M., Youngman, K., Rott, L. & Briskin, M. Lymphocyte trafficking and regional immunity. Adv. Immunol. 72, 209–253 (1999).

    Article  CAS  PubMed  Google Scholar 

  5. Dustin, M. L. & Springer, T. A. T-cell receptor cross-linking transiently stimulates adhesiveness through LFA-1. Nature 341, 619–624 (1989).

    Article  CAS  PubMed  Google Scholar 

  6. Carman, C. V. & Springer, T. A. Integrin avidity regulation: are changes in affinity and conformation underemphasized? Curr. Opin. Cell Biol. 15, 547–556 (2003).

    Article  CAS  PubMed  Google Scholar 

  7. Bazzoni, G. & Hemler, M. E. Are changes in integrin affinity and conformation overemphasized? Trends Biochem. Sci. 23, 30–34 (1998).

    Article  CAS  PubMed  Google Scholar 

  8. Grakoui, A. et al. The immunological synapse: a molecular machine controlling T cell activation. Science 285, 221–226 (1999).

    Article  CAS  PubMed  Google Scholar 

  9. Monks, C. R., Freiberg, B. A., Kupfer, H., Sciaky, N. & Kufper, A. Three-dimensional segregation of supramolecular activation clusters in T cells. Nature 395, 82–86 (1998).

    Article  CAS  PubMed  Google Scholar 

  10. Bachmann, M. F. et al. Distinct roles for LFA-1 and CD28 during activation of naive T cells: adhesion versus costimulation. Immunity 7, 549–557 (1997).

    Article  CAS  PubMed  Google Scholar 

  11. Kucik, D. F., Dustin, M. L., Miller, J. M. & Brown, E. J. Adhesion-activating phorbol ester increases the mobility of leukocyte integrin LFA-1 in cultured lymphocytes. J. Clin. Invest. 97, 2139–2144 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Yauch, R. L. et al. Mutational evidence for control of cell adhesion through integrin diffusion/clustering, independence of ligand binding. J. Exp. Med. 186, 1347–1355 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Chan, J. R., Hyduk, S. J. & Cybulsky, M. I. Chemoattractants induce a rapid and transient upregulation of monocyte α4 integrin affinity for vascular cell adhesion molecule 1 which mediates arrest: an early step in the process of emigration. J. Exp. Med. 193, 1149–1158 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Lollo, B. A., Chan, K. W., Hanson, E. M., Moy, V. T. & Brian, A. A. Direct evidence for two affinity states for lymphocyte function-associated antigen 1 on activated T cells. J. Biol. Chem. 268, 21693–21700 (1993).

    CAS  PubMed  Google Scholar 

  15. Constantin, G. et al. Chemokines trigger immediate β2 integrin affinity and mobility changes: differential regulation and roles in lymphocyte arrest under flow. Immunity 13, 759–769 (2000).

    Article  CAS  PubMed  Google Scholar 

  16. Takagi, J. & Springer, T. A. Integrin activation and structural rearrangement. Immunol. Rev. 186, 141–163 (2002).

    Article  CAS  PubMed  Google Scholar 

  17. Lee, J. O., Bankston, L. A., Arnaout, M. A. & Liddington, R. C. Two conformations of the integrin A-domain (I-domain): a pathway for activation? Structure 3, 1333–1340 (1995).

    Article  CAS  PubMed  Google Scholar 

  18. Shimaoka, M. et al. Structures of the αL I domain and its complex with ICAM-1 reveal a shape-shifting pathway for integrin regulation. Cell 112, 99–111 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Emsley, J., Knight, C. G., Farndale, R. W., Barnes, M. J. & Liddington, R. C. Structural basis of collagen recognition by integrin α2β1 . Cell 101, 47–56 (2000).

    Article  CAS  PubMed  Google Scholar 

  20. Xiong, J. P. et al. Crystal structure of the extracellular segment of integrin αVβ3 in complex with an Arg-Gly-Asp ligand. Science 296, 151–155 (2002).

    Article  CAS  PubMed  Google Scholar 

  21. Takagi, J., Petre, B. M., Walz, T. & Springer, T. A. Global conformational rearrangements in integrin extracellular domains in outside-in and inside-out signaling. Cell 110, 599–611 (2002). This is the landmark study of the global structural changes in integrins that are associated with ligand binding and occur after cellular activation.

    Article  CAS  PubMed  Google Scholar 

  22. Adair, B. D. et al. Three-dimensional EM structure of the ectodomain of integrin αVβ3 in a complex with fibronectin. J. Cell Biol. 168, 1109–1118 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Dustin, M. L., Bivona, T. G. & Philips, M. R. Membranes as messengers in T cell adhesion signaling. Nature Immunol. 5, 363–372 (2004).

    Article  CAS  Google Scholar 

  24. Lu, C., Ferzly, M., Takagi, J. & Springer, T. A. Epitope mapping of antibodies to the C-terminal region of the integrin β2 subunit reveals regions that become exposed upon receptor activation. J. Immunol. 166, 5629–5637 (2001).

    Article  CAS  PubMed  Google Scholar 

  25. Vinogradova, O. et al. A structural mechanism of integrin αIIbβ3 'inside-out' activation as regulated by its cytoplasmic face. Cell 110, 587–597 (2002).

    Article  CAS  PubMed  Google Scholar 

  26. Hughes, P. E. et al. Breaking the integrin hinge. J. Biol. Chem. 271, 6571–6574 (1996).

    Article  CAS  PubMed  Google Scholar 

  27. Kim, M., Carman, C. V. & Springer, T. A. Bidirectional transmembrane signaling by cytoplasmic domain separation in integrins. Science 301, 1720–1725 (2003). Using FRET technology, this study showed that the cytoplasmic regions of LFA1 separate after ligand binding and cellular activation.

    Article  CAS  PubMed  Google Scholar 

  28. Horwitz, A., Duggan, K., Buck, C., Beckerle, M. C. & Burridge, K. Interaction of plasma membrane fibronectin receptor with talin — a transmembrane linkage. Nature 320, 531–533 (1986).

    Article  CAS  PubMed  Google Scholar 

  29. Burridge, K. & Connell, L. Talin: a cytoskeletal component concentrated in adhesion plaques and other sites of actin–membrane interaction. Cell Motil. 3, 405–417 (1983).

    Article  CAS  PubMed  Google Scholar 

  30. Gomez-Mouton, C. et al. Segregation of leading-edge and uropod components into specific lipid rafts during T cell polarization. Proc. Natl Acad. Sci. USA 98, 9642–9647 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Rees, D. J., Ades, S. E., Singer, S. J. & Hynes, R. O. Sequence and domain structure of talin. Nature 347, 685–689 (1990).

    Article  CAS  PubMed  Google Scholar 

  32. Garcia-Alvarez, B. et al. Structural determinants of integrin recognition by talin. Mol. Cell 11, 49–58 (2003).

    Article  CAS  PubMed  Google Scholar 

  33. Tadokoro, S. et al. Talin binding to integrin β tails: a final common step in integrin activation. Science 302, 103–106 (2003).

    Article  CAS  PubMed  Google Scholar 

  34. Pearson, M. A., Reczek, D., Bretscher, A. & Karplus, P. A. Structure of the ERM protein moesin reveals the FERM domain fold masked by an extended actin binding tail domain. Cell 101, 259–270 (2000).

    Article  CAS  PubMed  Google Scholar 

  35. Calderwood, D. A. et al. The talin head domain binds to integrin β subunit cytoplasmic tails and regulates integrin activation. J. Biol. Chem. 274, 28071–28074 (1999).

    Article  CAS  PubMed  Google Scholar 

  36. Yan, B., Calderwood, D. A., Yaspan, B. & Ginsberg, M. H. Calpain cleavage promotes talin binding to the β3 integrin cytoplasmic domain. J. Biol. Chem. 276, 28164–28170 (2001).

    Article  CAS  PubMed  Google Scholar 

  37. Stewart, M. P., McDowall, A. & Hogg, N. LFA-1-mediated adhesion is regulated by cytoskeletal restraint and by a Ca2+-dependent protease, calpain. J. Cell Biol. 140, 699–707 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Sampath, R., Gallagher, P. J. & Pavalko, F. M. Cytoskeletal interactions with the leukocyte integrin β2 cytoplasmic tail. Activation-dependent regulation of associations with talin and α-actinin. J. Biol. Chem. 273, 33588–33594 (1998).

    Article  CAS  PubMed  Google Scholar 

  39. Stein, J. V. et al. The CC chemokine thymus-derived chemotactic agent 4 (TCA-4, secondary lymphoid tissue chemokine, 6Ckine, exodus-2) triggers lymphocyte function-associated antigen 1-mediated arrest of rolling T lymphocytes in peripheral lymph node high endothelial venules. J. Exp. Med. 191, 61–76 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Warnock, R. A. et al. The role of chemokines in the microenvironmental control of T versus B cell arrest in Peyer's patch high endothelial venules. J. Exp. Med. 191, 77–88 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Okada, T. et al. Chemokine requirements for B cell entry to lymph nodes and Peyer's patches. J. Exp. Med. 196, 65–75 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Ebisuno, Y. et al. The B cell chemokine CXC chemokine ligand 13/B lymphocyte chemoattractant is expressed in the high endothelial venules of lymph nodes and Peyer's patches and affects B cell trafficking across high endothelial venules. J. Immunol. 171, 1642–1646 (2003).

    Article  CAS  PubMed  Google Scholar 

  43. Grabovsky, V. et al. Subsecond induction of α4 integrin clustering by immobilized chemokines stimulates leukocyte tethering and rolling on endothelial vascular cell adhesion molecule 1 under flow conditions. J. Exp. Med. 192, 495–506 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Chan, J. R., Hyduk, S. J. & Cybulsky, M. I. Detecting rapid and transient upregulation of leukocyte integrin affinity induced by chemokines and chemoattractants. J. Immunol. Methods 273, 43–52 (2003).

    Article  CAS  PubMed  Google Scholar 

  45. Salas, A., Shimaoka, M., Chen, S., Carman, C. V. & Springer, T. Transition from rolling to firm adhesion is regulated by the conformation of the I domain of the integrin lymphocyte function-associated antigen-1. J. Biol. Chem. 277, 50255–50262 (2002).

    Article  CAS  PubMed  Google Scholar 

  46. Atarashi, K., Hirata, T., Matsumoto, M., Kanemitsu, N. & Miyasaka, M. Rolling of TH1 cells via P-selectin glycoprotein ligand-1 stimulates LFA-1-mediated cell binding to ICAM-1. J. Immunol. 174, 1424–1432 (2005).

    Article  CAS  PubMed  Google Scholar 

  47. Shamri, R. et al. Lymphocyte arrest requires instantaneous induction of an extended LFA-1 conformation mediated by endothelium-bound chemokines. Nature Immunol. 6, 497–506 (2005). This paper was the first to show that extension of LFA1 triggered by immobilized chemokines is the crucial step in mediating lymphocyte arrest under shear-flow conditions.

    Article  CAS  Google Scholar 

  48. Miller, M. J., Wei, S. H., Parker, I. & Cahalan, M. D. Two-photon imaging of lymphocyte motility and antigen response in intact lymph node. Science 296, 1869–1873 (2002).

    Article  CAS  PubMed  Google Scholar 

  49. Moser, B., Wolf, M., Walz, A. & Loetscher, P. Chemokines: multiple levels of leukocyte migration control. Trends Immunol. 25, 75–84 (2004).

    Article  CAS  PubMed  Google Scholar 

  50. Lo, C. G., Lu, T. T. & Cyster, J. G. Integrin-dependence of lymphocyte entry into the splenic white pulp. J. Exp. Med. 197, 353–361 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Bousso, P. & Robey, E. Dynamics of CD8+ T cell priming by dendritic cells in intact lymph nodes. Nature Immunol. 4, 579–585 (2003).

    Article  CAS  Google Scholar 

  52. Mempel, T. R., Henrickson, S. E. & Von Andrian, U. H. T-cell priming by dendritic cells in lymph nodes occurs in three distinct phases. Nature 427, 154–159 (2004).

    Article  CAS  PubMed  Google Scholar 

  53. Miller, M. J., Safrina, O., Parker, I. & Cahalan, M. D. Imaging the single cell dynamics of CD4+ T cell activation by dendritic cells in lymph nodes. J. Exp. Med. 200, 847–856 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Sanchez-Madrid, F. & del Pozo, M. A. Leukocyte polarization in cell migration and immune interactions. EMBO J. 18, 501–511 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Ward, S. G. Do phosphoinositide 3-kinases direct lymphocyte navigation? Trends Immunol. 25, 67–74 (2004).

    Article  CAS  PubMed  Google Scholar 

  56. Shimizu, Y., Mobley, J. L., Finkelstein, L. D. & Chan, A. S. A role for phosphatidylinositol 3-kinase in the regulation of β1 integrin activity by the CD2 antigen. J. Cell Biol. 131, 1867–1880 (1995).

    Article  CAS  PubMed  Google Scholar 

  57. Zell, T., Hunt, S. W., Mobley, J. L., Finkelstein, L. D. & Shimizu, Y. CD28-mediated up-regulation of β1-integrin adhesion involves phosphatidylinositol 3-kinase. J. Immunol. 156, 883–886 (1996).

    CAS  PubMed  Google Scholar 

  58. Kinashi, T., Escobedo, J. A., Williams, L. T., Takatsu, K. & Springer, T. A. Receptor tyrosine kinase stimulates cell-matrix adhesion by phosphatidylinositol 3 kinase and phospholipase C-γ1 pathways. Blood 86, 2086–2090 (1995).

    CAS  PubMed  Google Scholar 

  59. Kinashi, T., Asaoka, T., Setoguchi, R. & Takatsu, K. Affinity modulation of very late antigen-5 through phosphatidylinositol 3-kinase in mast cells. J. Immunol. 162, 2850–2857 (1999).

    CAS  PubMed  Google Scholar 

  60. Katagiri, K. et al. Rap1 is a potent activation signal for leukocyte function-associated antigen 1 distinct from protein kinase C and phosphatidylinositol-3-kinase. Mol. Cell. Biol. 20, 1956–1969 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Li, Z. et al. Roles of PLC-β2 and -β3 and PI3Kγ in chemoattractant-mediated signal transduction. Science 287, 1046–1049 (2000).

    Article  CAS  PubMed  Google Scholar 

  62. Hirsch, E. et al. Central role for G protein-coupled phosphoinositide 3-kinase γ in inflammation. Science 287, 1049–1053 (2000).

    Article  CAS  PubMed  Google Scholar 

  63. Reif, K. et al. Differential roles for phosphoinositide 3-kinases, p110γ and p110δ, in lymphocyte chemotaxis and homing. J. Immunol. 173, 2236–2240 (2004).

    Article  CAS  PubMed  Google Scholar 

  64. Okkenhaug, K. & Vanhaesebroeck, B. PI3K in lymphocyte development, differentiation and activation. Nature Rev. Immunol. 3, 317–330 (2003).

    Article  CAS  Google Scholar 

  65. Nombela-Arrieta, C. et al. Differential requirements for DOCK2 and phosphoinositide-3-kinase γ during T and B lymphocyte homing. Immunity 21, 429–441 (2004). This study showed that a deficiency in DOCK2 impairs the LFA1-dependent tethering and firm adhesion to endothelial venules of B cells but not T cells.

    Article  CAS  PubMed  Google Scholar 

  66. Kolanus, W. et al. αLβ2 Integrin/LFA-1 binding to ICAM-1 induced by cytohesin-1, a cytoplasmic regulatory molecule. Cell 86, 233–242 (1996).

    Article  CAS  PubMed  Google Scholar 

  67. Meacci, E., Tsai, S. C., Adamik, R., Moss, J. & Vaughan, M. Cytohesin-1, a cytosolic guanine nucleotide-exchange protein for ADP-ribosylation factor. Proc. Natl Acad. Sci. USA 94, 1745–1748 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Weber, K. S. et al. Cytohesin-1 is a dynamic regulator of distinct LFA-1 functions in leukocyte arrest and transmigration triggered by chemokines. Curr. Biol. 11, 1969–1974 (2001).

    Article  CAS  PubMed  Google Scholar 

  69. Perez, O. D. et al. Leukocyte functional antigen 1 lowers T cell activation thresholds and signaling through cytohesin-1 and Jun-activating binding protein 1. Nature Immunol. 4, 1083–1092 (2003).

    Article  CAS  Google Scholar 

  70. Laudanna, C., Campbell, J. J. & Butcher, E. C. Role of Rho in chemoattractant-activated leukocyte adhesion through integrins. Science 271, 981–983 (1996).

    Article  CAS  PubMed  Google Scholar 

  71. Giagulli, C. et al. RhoA and ζ PKC control distinct modalities of LFA-1 activation by chemokines: critical role of LFA-1 affinity triggering in lymphocyte in vivo homing. Immunity 20, 25–35 (2004).

    Article  CAS  PubMed  Google Scholar 

  72. Bos, J. L., de Rooij, J. & Reedquist, K. A. Rap1 signaling: adhering to new models. Nature Rev. Mol. Cell Biol. 2, 369–377 (2001).

    Article  CAS  Google Scholar 

  73. Sebzda, E., Bracke, M., Tugal, T., Hogg, N. & Cantrell, D. A. Rap1A positively regulates T cells via integrin activation rather than inhibiting lymphocyte signaling. Nature Immunol. 3, 251–258 (2002).

    Article  CAS  Google Scholar 

  74. Bertoni, A. et al. Relationships between Rap1b, affinity modulation of integrin αIIbβ3, and the actin cytoskeleton. J. Biol. Chem. 277, 25715–25721 (2002).

    Article  CAS  PubMed  Google Scholar 

  75. Reedquist, K. A. et al. The small GTPase, Rap1, mediates CD31-induced integrin adhesion. J. Cell Biol. 148, 1151–1158 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Tohyama, Y. et al. The critical cytoplasmic regions of the αL/β2 integrin in Rap1-induced adhesion and migration. Mol. Biol. Cell 14, 2570–2582 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Hibbs, M. L., Jakes, S., Stacker, S. A., Wallace, R. W. & Springer, T. A. The cytoplasmic domain of the integrin lymphocyte-function-associated antigen 1 β subunit: sites required for binding to intercellular adhesion molecule 1 and the phorbol ester-stimulated phosphorylation site. J. Exp. Med. 174, 1227–1238 (1991).

    Article  CAS  PubMed  Google Scholar 

  78. Hibbs, M. L., Xu, H., Stacker, S. A. & Springer, T. A. Regulation of adhesion to ICAM-1 by the cytoplasmic domain of LFA-1 integrin β subunit. Science 251, 1611–1613 (1991).

    Article  CAS  PubMed  Google Scholar 

  79. Weber, C., Lu, C. -H., Casanovas, J. M. & Springer, T. A. Role of αLβ2 integrin avidity in transendothelial chemotaxis of mononuclear cells. J. Immunol. 159, 3968–3975 (1997).

    CAS  PubMed  Google Scholar 

  80. Shimonaka, M. et al. Rap1 translates chemokine signals to integrin activation, cell polarization, and motility across vascular endothelium under flow. J. Cell Biol. 161, 417–427 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Kinashi, T. et al. LAD-III, a leukocyte adhesion deficiency syndrome associated with defective Rap1 activation and impaired stabilization of integrin bonds. Blood 103, 1033–1036 (2004).

    Article  CAS  PubMed  Google Scholar 

  82. Alon, R. & Etzioni, A. LAD-III, a novel group of leukocyte integrin activation deficiencies. Trends Immunol. 24, 561–566 (2003).

    Article  CAS  PubMed  Google Scholar 

  83. Katagiri, K., Maeda, A., Shimonaka, M. & Kinashi, T. RAPL, a Rap1-binding molecule that mediates Rap1-induced adhesion through spatial regulation of LFA-1. Nature Immunol. 4, 741–748 (2003). This study identified RAPL as a RAP1 effector in lymphocytes that mediates LFA1- and VLA4-dependent adhesion, and it showed that RAP1–RAPL complexes coordinate affinity and valency regulation of LFA1.

    Article  CAS  Google Scholar 

  84. Tommasi, S. et al. RASSF3 and NORE1: identification and cloning of two human homologues of the putative tumor suppressor gene RASSF1. Oncogene 21, 2713–2720 (2002).

    Article  CAS  PubMed  Google Scholar 

  85. Kinashi, T. & Katagiri, K. Regulation of lymphocyte adhesion and migration by the small GTPase Rap1 and its effector molecule, RAPL. Immunol. Lett. 93, 1–5 (2004).

    Article  CAS  PubMed  Google Scholar 

  86. Katagiri, K. et al. Crucial roles of Rap1 effector molecule RAPL in lymphocyte and dendritic cell trafficking. Nature Immunol. 5, 1045–1051 (2004). Using gene targeting, this study showed that RAPL has an important role in the LFA1- and VLA4-dependent adhesion of lymphocytes stimulated with chemokines.

    Article  CAS  Google Scholar 

  87. Inagaki, T. et al. The retinoic acid-responsive proline-rich protein is identified in promyeloleukemic HL-60 cells. J. Biol. Chem. 278, 51685–51692 (2003).

    Article  CAS  PubMed  Google Scholar 

  88. Jenzora, A., Behrendt, B., Small, J. V., Wehland, J. & Stradal, T. E. PREL1 provides a link from Ras signalling to the actin cytoskeleton via Ena/VASP proteins. FEBS Lett. 579, 455–463 (2005).

    Article  CAS  PubMed  Google Scholar 

  89. Legg, J. A. & Machesky, L. M. MRL proteins: leading Ena/VASP to Ras GTPases. Nature Cell Biol. 6, 1015–1017 (2004).

    Article  CAS  PubMed  Google Scholar 

  90. Fukui, Y. et al. Haematopoietic cell-specific CDM family protein DOCK2 is essential for lymphocyte migration. Nature 412, 826–831 (2001). Using gene targeting, this study showed that DOCK2 is a regulator of RAC and is crucial for assembly of the actin cytoskeleton in, and chemotactic migration of, lymphocytes stimulated with chemokines.

    Article  CAS  PubMed  Google Scholar 

  91. Sanui, T. et al. DOCK2 is essential for antigen-induced translocation of TCR and lipid rafts, but not PKC-θ and LFA-1, in T cells. Immunity 19, 119–129 (2003).

    Article  CAS  PubMed  Google Scholar 

  92. Cherry, L. K., Li, X., Schwab, P., Lim, B. & Klickstein, L. B. RhoH is required to maintain the integrin LFA-1 in a nonadhesive state on lymphocytes. Nature Immunol. 5, 961–967 (2004). This was the first report that the weakly adhesive state of LFA1 is actively controlled by RHO-H.

    Article  CAS  Google Scholar 

  93. Li, X. et al. The hematopoiesis-specific GTP-binding protein RhoH is GTPase deficient and modulates activities of other Rho GTPases by an inhibitory function. Mol. Cell. Biol. 22, 1158–1171 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Oinuma, I., Ishikawa, Y., Katoh, H. & Negishi, M. The semaphorin 4D receptor plexin-B1 is a GTPase activating protein for R-Ras. Science 305, 862–865 (2004).

    Article  CAS  PubMed  Google Scholar 

  95. Zang, Z., Vuori, K., Wang, H. -G., Reed, J. C. & Ruoslahti, E. Integrin activation by R-ras. Cell 85, 61–69 (1996).

    Article  Google Scholar 

  96. Kinashi, T. et al. Distinct mechanisms of α5β1 integrin activation by Ha-Ras and R-Ras. J. Biol. Chem. 275, 22590–22596 (2000).

    Article  CAS  PubMed  Google Scholar 

  97. Lucas, J. A., Miller, A. T., Atherly, L. O. & Berg, L. J. The role of Tec family kinases in T cell development and function. Immunol. Rev. 191, 119–138 (2003).

    Article  CAS  PubMed  Google Scholar 

  98. Woods, M. L. et al. A novel function for the Tec family tyrosine kinase Itk in activation of β1 integrins by the T-cell receptor. EMBO J. 20, 1232–1244 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Takesono, A., Horai, R., Mandai, M., Dombroski, D. & Schwartzberg, P. L. Requirement for Tec kinases in chemokine-induced migration and activation of Cdc42 and Rac. Curr. Biol. 14, 917–922 (2004).

    Article  CAS  PubMed  Google Scholar 

  100. Labno, C. M. et al. Itk functions to control actin polymerization at the immune synapse through localized activation of Cdc42 and WASP. Curr. Biol. 13, 1619–1624 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Fischer, A. M., Mercer, J. C., Iyer, A., Ragin, M. J. & August, A. Regulation of CXC chemokine receptor 4-mediated migration by the Tec family tyrosine kinase ITK. J. Biol. Chem. 279, 29816–29820 (2004).

    Article  CAS  PubMed  Google Scholar 

  102. Kim, C. H. et al. Abnormal chemokine-induced responses of immature and mature hematopoietic cells from motheaten mice implicate the protein tyrosine phosphatase SHP-1 in chemokine responses. J. Exp. Med. 190, 681–690 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Krawczyk, C. et al. Vav1 controls integrin clustering and MHC/peptide-specific cell adhesion to antigen-presenting cells. Immunity 16, 331–343 (2002).

    Article  CAS  PubMed  Google Scholar 

  104. Tybulewicz, V. L., Ardouin, L., Prisco, A. & Reynolds, L. F. Vav1: a key signal transducer downstream of the TCR. Immunol. Rev. 192, 42–52 (2003).

    Article  CAS  PubMed  Google Scholar 

  105. Peterson, E. J. et al. Coupling of the TCR to integrin activation by Slap-130/Fyb. Science 293, 2263–2265 (2001).

    Article  CAS  PubMed  Google Scholar 

  106. Griffiths, E. K. et al. Positive regulation of T cell activation and integrin adhesion by the adapter Fyb/Slap. Science 293, 2260–2263 (2001).

    Article  CAS  PubMed  Google Scholar 

  107. Peterson, E. J. The TCR ADAPts to integrin-mediated cell adhesion. Immunol. Rev. 192, 113–121 (2003). References 106 and 107 identified ADAP as a crucial mediator of activation of T-cell integrins after TCR ligation.

    Article  CAS  PubMed  Google Scholar 

  108. Wang, H. et al. ADAP–SLP-76 binding differentially regulates supramolecular activation cluster (SMAC) formation relative to T cell–APC conjugation. J. Exp. Med. 200, 1063–1074 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Wang, H. et al. SKAP-55 regulates integrin adhesion and formation of T cell–APC conjugates. Nature Immunol. 4, 366–374 (2003).

    Article  CAS  Google Scholar 

  110. Boussiotis, V. A., Freeman, G. J., Berezovskaya, A., Barber, D. L. & Nadler, L. M. Maintenance of human T cell anergy: blocking of IL-2 gene transcription by activated Rap1. Science 278, 124–128 (1997).

    Article  CAS  PubMed  Google Scholar 

  111. Katagiri, K., Hattori, M., Minato, N. & Kinashi, T. Rap1 functions as a key regulator of T-cell and antigen-presenting cell interactions and modulates T-cell responses. Mol. Cell. Biol. 22, 1001–1015 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Katagiri, K., Shimonaka, M. & Kinashi, T. Rap1-mediated LFA-1 activation by the T cell antigen receptor is dependent on PLC-γ1. J. Biol. Chem. 279, 11875–11881 (2004).

    Article  CAS  PubMed  Google Scholar 

  113. McLeod, S. J. & Gold, M. R. Activation and function of the Rap1 GTPase in B lymphocytes. Int. Rev. Immunol. 20, 763–789 (2001).

    Article  CAS  PubMed  Google Scholar 

  114. Amsen, D., Kruisbeek, A., Bos, J. L. & Reedquist, K. Activation of the Ras-related GTPase Rap1 by thymocyte TCR engagement and during selection. Eur. J. Immunol. 30, 2832–2841 (2000).

    Article  CAS  PubMed  Google Scholar 

  115. Zhang, W. et al. Negative regulation of T cell antigen receptor-mediated Crk-L–C3G signaling and cell adhesion by Cbl-b. J. Biol. Chem. 278, 23978–23983 (2003).

    Article  CAS  PubMed  Google Scholar 

  116. Samelson, L. E. Signal transduction mediated by the T cell antigen receptor: the role of adapter proteins. Annu. Rev. Immunol. 20, 371–394 (2002).

    Article  CAS  PubMed  Google Scholar 

  117. Kellermann, S. A., Dell, C. L., Hunt, S. W. & Shimizu, Y. Genetic analysis of integrin activation in T lymphocytes. Immunol. Rev. 186, 172–188 (2002).

    Article  CAS  PubMed  Google Scholar 

  118. Reynolds, L. F. et al. Vav1 transduces T cell receptor signals to the activation of phospholipase C-γ1 via phosphoinositide 3-kinase-dependent and -independent pathways. J. Exp. Med. 195, 1103–1114 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Fabbri, M. et al. A tyrosine-based sorting signal in the β2 integrin cytoplasmic domain mediates its recycling to the plasma membrane and is required for ligand-supported migration. EMBO J. 18, 4915–4925 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Bivona, T. G. et al. Rap1 up-regulation and activation on plasma membrane regulates T cell adhesion. J. Cell Biol. 164, 461–470 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Worthylake, R. A., Lemoine, S., Watson, J. M. & Burridge, K. RhoA is required for monocyte tail retraction during transendothelial migration. J. Cell Biol. 154, 147–160 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Smith, A., Bracke, M., Leitinger, B., Porter, J. C. & Hogg, N. LFA-1-induced T cell migration on ICAM-1 involves regulation of MLCK-mediated attachment and ROCK-dependent detachment. J. Cell Sci. 116, 3123–3133 (2003).

    Article  CAS  PubMed  Google Scholar 

  123. Lawson, M. A. & Maxfield, R. R. Ca2+- and calcineurin-dependent recycling of an integrin to the front of migrating neutrophils. Nature 377, 75–79 (1995).

    Article  CAS  PubMed  Google Scholar 

  124. Martel, V. et al. Talin controls the exit of the integrin α5β1 from an early compartment of the secretory pathway. J. Cell Sci. 113, 1951–1961 (2000).

    CAS  PubMed  Google Scholar 

  125. Arthur, W. T., Quilliam, L. A. & Cooper, J. A. Rap1 promotes cell spreading by localizing Rac guanine nucleotide exchange factors. J. Cell Biol. 167, 111–122 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Caloca, M. J., Zugaza, J. L., Vicente-Manzanares, M., Sanchez-Madrid, F. & Bustelo, X. R. F-actin-dependent translocation of the Rap1 GDP/GTP exchange factor RasGRP2. J. Biol. Chem. 279, 20435–20446 (2004).

    Article  CAS  PubMed  Google Scholar 

  127. Song, M. S. et al. The tumour suppressor RASSF1A regulates mitosis by inhibiting the APC–Cdc20 complex. Nature Cell Biol. 6, 129–137 (2004).

    Article  CAS  PubMed  Google Scholar 

  128. Fujita, H. et al. Local activation of Rap1 contributes to directional vascular endothelial cell migration accompanied by extension of microtubules on which RAPL, a Rap1-associating molecule, localizes. J. Biol. Chem. 280, 5022–5031 (2005).

    Article  CAS  PubMed  Google Scholar 

  129. Kuhn, J. R. & Poenie, M. Dynamic polarization of the microtubule cytoskeleton during CTL-mediated killing. Immunity 16, 111–121 (2002).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

I thank the reviewers and my colleague K. Katagiri for valuable comments and discussion.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The author declares no competing financial interests.

Related links

Related links

DATABASES

Entrez Gene

ADAP

DOCK2

α4β7-integrin

ITK

LFA1

RAC

RAP1

RAPL

RHO-A

RHO-H

talin

VAV1

VLA4

Glossary

MICROCLUSTER

A small aggregate of integrins. These are found scattered around the cell surface.

PATCH-LIKE CLUSTER

A large aggregate of integrins. These form on one side of the cell.

SALT BRIDGE

A type of molecular force that connects two oppositely charged atoms or groups of atoms by electrostatic interactions: for example, when an arginine residue, which is positively charged, binds a glutamic-acid residue, which is negatively charged.

FLUORESCENCE RESONANCE ENERGY TRANSFER

(FRET). A physical phenomenon that can occur when two fluorophores come into close proximity (1–10 nm) and energy from one is transferred to the other without emission of a photon.

HIGH ENDOTHELIAL VENULE

(HEV). A specialized venule with a cuboidal endothelial lining. It is found in peripheral lymph nodes and Peyer's patches. HEVs are sites at which naive lymphocytes enter lymphoid tissues.

MULTI-PHOTON MICROSCOPY

(Multiple-photon excitation fluorescence microscopy). A technique that uses non-linear optical effects to achieve optical sectioning. Compared with conventional imaging methods, it is less toxic to thick living-tissue samples because it uses infrared light, which is of lower energy; in addition, it is more penetrating because infrared light is scattered less as it enters the sample.

UROPOD

A slender protrusion that forms at the rear of migrating leukocytes.

PLECKSTRIN-HOMOLOGY DOMAIN

A domain of 100 amino acids that can bind inositol phosphates or proteins.

GUANINE-NUCLEOTIDE EXCHANGE FACTOR

(GEF). A factor — such as a member of the RAS or RHO (RAS homologue) families — that promotes the exchange of GDP that is bound to GTP-binding proteins for GTP.

ADP-RIBOSYLATION-FACTOR FAMILY

(ARF family). A family of small GTPases. These molecules are involved in the regulation of the actin cytoskeleton and coated-vesicle formation.

PHORBOL ESTER

A phorbol moiety that has been esterified by combination with a long hydrocarbon chain. These compounds are analogues of diacylglycerol.

LEUKOCYTE-ADHESION DEFICIENCY

(LAD). A rare hereditary disease in humans that is characterized by recurrent infection and delayed wound healing as a consequence of defective leukocyte adhesion. There are two types of LAD: type I is caused by mutations of β2-integrin; and type II is caused by a defect in fucose metabolism that results in a failure to express the ligand for endothelial-cell selectin (E-selectin) and platelet selectin (P-selectin), sialyl-Lewis X.

RASSF TUMOUR-SUPPRESSOR FAMILY

A family of proteins that contain a RAS-association domain and are thought to be involved in apoptosis and carcinogenesis. Not all proteins that contain the RAS-association domain bind RAS or RAP1.

SMALL INTERFERING RNA

(siRNA). Sequences of 21–23 nucleotides that are recruited to a ribonuclease complex (known as the RNA-induced silencing complex), which in turn mediates the cleavage of the specific target mRNA.

CDM

A family of proteins that is represented by Caenorhabditis elegans CED-5 (cell-death abnormality 5), human DOCK1 (dedicator of cytokinesis 1) and Drosophila melanogaster myoblast city. These proteins function upstream of RAC to regulate membrane extension, cell migration and phagocytosis of dead cells.

R-RASGAP

(R-RAS (related to RAS) GTPase-activating protein). A GTPase-activating protein that is specific for R-RAS. It hydrolyses GTP to GDP by stimulating the GTPase activity of R-RAS.

TEC FAMILY

A family of non-receptor protein tyrosine kinases that contain a pleckstrin-homology domain. The prototype members are ITK (interleukin-2-inducible T-cell kinase) in T cells and BTK (Bruton's tyrosine kinase) in B cells. TEC-family kinases are involved in the intracellular-signalling mechanisms of cytokine receptors, lymphocyte antigen receptors, heterotrimeric G-protein-coupled receptors and integrins.

VIABLE MOTHEATEN MICE

Viable motheaten (mev/mev) mice have a mutation in the coding region of the catalytic domain of SHP1 (SRC-homology-2-domain-containing protein tyrosine phosphatase 1), which results in two aberrant loss-of-function proteins (one of 67 kDa and one of 71 kDa). These mice develop severe combined immunodeficiency and systemic autoimmunity.

ANERGY

A state of T-cell unresponsiveness to stimulation with antigen. It can be induced by stimulation with a large amount of specific antigen in the absence of engagement of co-stimulatory molecules.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kinashi, T. Intracellular signalling controlling integrin activation in lymphocytes. Nat Rev Immunol 5, 546–559 (2005). https://doi.org/10.1038/nri1646

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri1646

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing