Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Drug interactions in cancer therapy

A Corrigendum to this article was published on 07 August 2006

Key Points

  • Drug–drug interactions are an important concern in the treatment of cancer. They can affect drug dosage, which is important for optimizing the anti-tumour effect of treatments and minimizing their toxicity to normal tissue.

  • Interactions can occur between drugs and other drugs, food or herbal supplements, and can also be affected by a patient's genetic composition and physiological status. Most pharmacokinetic drug interactions involve drug metabolism and/or transport as a mechanistic basis. Therefore, it is important to understand the role of human enzymes and transporters in the metabolism and disposition of antineoplastic agents, as well as the mechanisms by which antineoplastics modulate the expression and activity of human enzymes and transporters.

  • Pharmacodynamic drug interactions could be the result of overlapping mechanisms of action or combined toxicities to the same target organ. These interactions could be used to increase the therapeutic effect of a combination regimen or to minimize its toxicity.

  • It is important that potential drug interactions are identified early in the drug-development process, and this might be made possible by improvements in in vitro model systems.

Abstract

Drug interactions in oncology are of particular importance owing to the narrow therapeutic index and the inherent toxicity of anticancer agents. Interactions with other medications can cause small changes in the pharmacokinetics or pharmacodynamics of a chemotherapy agent that could significantly alter its efficacy or toxicity. Improvements in in vitro methods and early clinical testing have made the prediction of potentially clinically significant drug interactions possible. We outline the types of drug interaction that occur in oncology, the mechanisms that underlie these interactions and describe select examples.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Sites of drug disposition.
Figure 2: Metabolism and transport of irinotecan.

Similar content being viewed by others

References

  1. Kuhlmann, J. & Muck, W. Clinical-pharmacological strategies to assess drug interaction potential during drug development. Drug Saf. 24, 715–725 (2001).

    Article  CAS  PubMed  Google Scholar 

  2. Singh, B. N. & Malhotra, B. K. Effects of food on the clinical pharmacokinetics of anticancer agents: underlying mechanisms and implications for oral chemotherapy. Clin. Pharmacokinet. 43, 1127–1156 (2004). A comprehensive review of the effects of food on the pharmacokinetics of anticancer agents.

    Article  CAS  PubMed  Google Scholar 

  3. Sparreboom, A., Cox, M. C., Acharya, M. R. & Figg, W. D. Herbal remedies in the United States: potential adverse interactions with anticancer agents. J. Clin. Oncol. 22, 2489–503 (2004). Comprehensive review on the potential for adverse drug interactions with anticancer agents based on both preclinical and clinical evaluations.

    Article  CAS  PubMed  Google Scholar 

  4. Ando, Y. in Handbook of Anticancer Pharmacokinetics and Pharmacodynamics (eds W. D. Figg and H. L. McLeod) 215–230 (Humana Press, Totowa, USA, 2004).

    Book  Google Scholar 

  5. Coulthard, S. A. & Boddy, A. V. in Handbook of Anticancer Pharmacokinetics and Pharmacodynamics (eds W. D. Figg and H. L. McLeod) 189–214 (Humana Press, Totowa, USA, 2004).

    Book  Google Scholar 

  6. Scripture, C. D., Sparreboom, A. & Figg, W. D. Modulation of cytochrome P450 activity: implications for cancer therapy. Lancet Oncol. 6, 780–789 (2005).

    Article  CAS  PubMed  Google Scholar 

  7. Weinshilboum, R. Inheritance and drug response. N. Engl. J. Med. 348, 529–537 (2003).

    Article  PubMed  Google Scholar 

  8. Evans, W. E. & McLeod, H. L. Pharmacogenomics — drug disposition, drug targets, and side effects. N. Engl. J. Med. 348, 538–549 (2003). Weinshilboum and Evans provide an excellent discussion of pharmacogenomics and the effects of genetic variation on drug disposition and response.

    Article  CAS  PubMed  Google Scholar 

  9. Druker, B. J. et al. Efficacy and safety of a specific inhibitor of the BCR–ABL tyrosine kinase in chronic myeloid leukemia. N. Engl. J. Med. 344, 1031–1037 (2001).

    Article  CAS  PubMed  Google Scholar 

  10. Demetri, G. D. et al. Efficacy and safety of imatinib mesylate in advanced gastrointestinal stromal tumors. N. Engl. J. Med. 347, 472–480 (2002).

    Article  CAS  PubMed  Google Scholar 

  11. Adair, C. G., Bridges, J. M. & Desai, Z. R. Can food affect the bioavailability of chlorambucil in patients with haematological malignancies? Cancer Chemother. Pharmacol. 17, 99–102 (1986).

    Article  CAS  PubMed  Google Scholar 

  12. Gunnarsson, P. O., Davidsson, T., Andersson, S. B., Backman, C. & Johansson, S. A. Impairment of estramustine phosphate absorption by concurrent intake of milk and food. Eur. J. Clin. Pharmacol. 38, 189–193 (1990).

    Article  CAS  PubMed  Google Scholar 

  13. Pharmacia & Upjohn Company. Emcyt prescribing information. Pfizer, [online] (2003).

  14. Reigner, B. et al. Effect of food on the pharmacokinetics of capecitabine and its metabolites following oral administration in cancer patients. Clin. Cancer Res. 4, 941–948 (1998).

    CAS  PubMed  Google Scholar 

  15. Roche Laboratories Inc. Xeloda prescribing information. Roche, [online] (2005).

  16. Zhang, Y. & Benet, L. Z. The gut as a barrier to drug absorption: combined role of cytochrome P450 3A and P-glycoprotein. Clin. Pharmacokinet. 40, 159–168 (2001).

    Article  CAS  PubMed  Google Scholar 

  17. Bailey, D. G., Arnold, J. M. & Spence, J. D. Grapefruit juice and drugs. How significant is the interaction? Clin. Pharmacokinet. 26, 91–98 (1994).

    Article  CAS  PubMed  Google Scholar 

  18. He, K. et al. Inactivation of cytochrome P450 3A4 by bergamottin, a component of grapefruit juice. Chem. Res. Toxicol. 11, 252–259 (1998).

    Article  CAS  PubMed  Google Scholar 

  19. Edwards, D. J., Bellevue, F. H. 3rd & Woster, P. M. Identification of 6', 7'-dihydroxybergamottin, a cytochrome P450 inhibitor, in grapefruit juice. Drug. Metab. Dispos. 24, 1287–1290 (1996).

    CAS  PubMed  Google Scholar 

  20. Veronese, M. L. et al. Exposure-dependent inhibition of intestinal and hepatic CYP3A4 in vivo by grapefruit juice. J. Clin. Pharmacol. 43, 831–839 (2003).

    Article  CAS  PubMed  Google Scholar 

  21. Lin, J. H. & Yamazaki, M. Role of P-glycoprotein in pharmacokinetics: clinical implications. Clin. Pharmacokinet. 42, 59–98 (2003). A comprehensive review of P-glycoprotein and its effects on pharmacokinetics.

    Article  CAS  PubMed  Google Scholar 

  22. Balayssac, D., Authier, N., Cayre, A. & Coudore, F. Does inhibition of P-glycoprotein lead to drug–drug interactions? Toxicol. Lett. 156, 319–329 (2005).

    Article  CAS  PubMed  Google Scholar 

  23. Zhou, S., Lim, L. Y. & Chowbay, B. Herbal modulation of P-glycoprotein. Drug Metab. Rev. 36, 57–104 (2004).

    Article  CAS  PubMed  Google Scholar 

  24. Martin-Facklam, M. et al. Dose-dependent increase of saquinavir bioavailability by the pharmaceutic aid cremophor EL. Br. J. Clin. Pharmacol. 53, 576–581 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Tayrouz, Y. et al. Pharmacokinetic and pharmaceutic interaction between digoxin and Cremophor RH40. Clin. Pharmacol. Ther. 73, 397–405 (2003).

    Article  CAS  PubMed  Google Scholar 

  26. Woodcock, D. M. et al. Reversal of multidrug resistance by surfactants. Br. J. Cancer 66, 62–68 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. van Zuylen, L., Verweij, J. & Sparreboom, A. Role of formulation vehicles in taxane pharmacology. Invest. New Drugs 19, 125–141 (2001).

    Article  CAS  PubMed  Google Scholar 

  28. Lepper, E. R. et al. Mechanisms of resistance to anticancer drugs: the role of the polymorphic ABC transporters ABCB1 and ABCG2. Pharmacogenomics 6, 115–138 (2005).

    Article  CAS  PubMed  Google Scholar 

  29. Kivisto, K. T., Niemi, M. & Fromm, M. F. Functional interaction of intestinal CYP3A4 and P-glycoprotein. Fundam. Clin. Pharmacol. 18, 621–626 (2004).

    Article  CAS  PubMed  Google Scholar 

  30. Benet, L. Z. & Hoener, B. A. Changes in plasma protein binding have little clinical relevance. Clin. Pharmacol. Ther. 71, 115–121 (2002).

    Article  CAS  PubMed  Google Scholar 

  31. Lin, J. H. & Lu, A. Y. Inhibition and induction of cytochrome P450 and the clinical implications. Clin. Pharmacokinet. 35, 361–390 (1998).

    Article  CAS  PubMed  Google Scholar 

  32. Dresser, G. K., Spence, J. D. & Bailey, D. G. Pharmacokinetic–pharmacodynamic consequences and clinical relevance of cytochrome P450 3A4 inhibition. Clin. Pharmacokinet. 38, 41–57 (2000).

    Article  CAS  PubMed  Google Scholar 

  33. Lehmann, J. M. et al. The human orphan nuclear receptor PXR is activated by compounds that regulate CYP3A4 gene expression and cause drug interactions. J. Clin. Invest. 102, 1016–1023 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Bertilsson, G. et al. Identification of a human nuclear receptor defines a new signaling pathway for CYP3A induction. Proc. Natl Acad. Sci. USA 95, 12208–12213 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kliewer, S. A. et al. An orphan nuclear receptor activated by pregnanes defines a novel steroid signaling pathway. Cell 92, 73–82 (1998).

    Article  CAS  PubMed  Google Scholar 

  36. Wang, H. & LeCluyse, E. L. Role of orphan nuclear receptors in the regulation of drug-metabolising enzymes. Clin. Pharmacokinet. 42, 1331–1357 (2003).

    Article  CAS  PubMed  Google Scholar 

  37. Sueyoshi, T., Kawamoto, T., Zelko, I., Honkakoski, P. & Negishi, M. The repressed nuclear receptor CAR responds to phenobarbital in activating the human CYP2B6 gene. J. Biol. Chem. 274, 6043–6046 (1999).

    Article  CAS  PubMed  Google Scholar 

  38. Blower, P., de Wit, R., Goodin, S. & Aapro, M. Drug–drug interactions in oncology: Why are they important and can they be minimized? Crit. Rev. Oncol. Hematol. 55, 117–142 (2005).

    Article  PubMed  Google Scholar 

  39. Roche Laboratories. Kytril prescribing information. Roche [online] (2005).

  40. Sanwald, P., David, M. & Dow, J. Characterization of the cytochrome P450 enzymes involved in the in vitro metabolism of dolasetron. Comparison with other indole-containing 5-HT3 antagonists. Drug Metab. Dispos. 24, 602–609 (1996).

    CAS  PubMed  Google Scholar 

  41. Cagnoni, P. J. et al. Modification of the pharmacokinetics of high-dose cyclophosphamide and cisplatin by antiemetics. Bone Marrow Transplant. 24, 1–4 (1999).

    Article  CAS  PubMed  Google Scholar 

  42. Gilbert, C. J. et al. Pharmacokinetic interaction between ondansetron and cyclophosphamide during high-dose chemotherapy for breast cancer. Cancer Chemother. Pharmacol. 42, 497–503 (1998).

    Article  CAS  PubMed  Google Scholar 

  43. Gralla, R. J. et al. Recommendations for the use of antiemetics: evidence-based, clinical practice guidelines. American Society of Clinical Oncology. J. Clin. Oncol. 17, 2971–2994 (1999).

    Article  CAS  PubMed  Google Scholar 

  44. OSI Pharmaceuticals Inc. &Genentech Inc. Tarceva prescribing information. Genentech [online] (2005).

  45. Kobayashi, K. et al. A phase I study of CYP3A4 modulation of oral etoposide with ketoconazole in patients with advanced cancer. Proc. Am. Soc. Clin. Oncol. 15, a1489 (1996).

    Google Scholar 

  46. Swaisland, H., Smith, R. P., Farebrother, J. & Laight, A. The effect of the induction and inhibition of CYP3A4 on the pharmacokinetics of single oral doses of ZD1839 ('Iressa'), a selective epidermal growth factor receptor tyrosine kinase inhibitor (EGFR-TKI), in healthy male volunteers. Proc. Am. Soc. Clin. Oncol. 21, 83a (2002).

    Google Scholar 

  47. Ernst, E. & Cassileth, B. R. The prevalence of complementary/alternative medicine in cancer: a systematic review. Cancer 83, 777–782 (1998).

    Article  CAS  PubMed  Google Scholar 

  48. Xie, H. G. & Kim, R. B. St John's wort-associated drug interactions: short-term inhibition and long-term induction? Clin. Pharmacol. Ther. 78, 19–24 (2005).

    Article  CAS  PubMed  Google Scholar 

  49. Burk, O. et al. The induction of cytochrome P450 3A5 (CYP3A5) in the human liver and intestine is mediated by the xenobiotic sensors pregnane X receptor (PXR) and constitutively activated receptor (CAR). J. Biol. Chem. 279, 38379–38385 (2004).

    Article  CAS  PubMed  Google Scholar 

  50. Moore, L. B. et al. St. John's wort induces hepatic drug metabolism through activation of the pregnane X receptor. Proc. Natl Acad. Sci. USA 97, 7500–7502 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Durr, D. et al. St John's Wort induces intestinal P-glycoprotein/MDR1 and intestinal and hepatic CYP3A4. Clin. Pharmacol. Ther. 68, 598–604 (2000).

    Article  CAS  PubMed  Google Scholar 

  52. Mathijssen, R. H., Verweij, J., de Bruijn, P., Loos, W. J. & Sparreboom, A. Effects of St. John's wort on irinotecan metabolism. J. Natl Cancer. Inst. 94, 1247–1249 (2002). The first clinical evaluation that showed a clinically significant interaction between a herbal supplement and chemotherapy.

    Article  CAS  PubMed  Google Scholar 

  53. Ciotti, M., Basu, N., Brangi, M. & Owens, I. S. Glucuronidation of 7-ethyl-10-hydroxycamptothecin (SN-38) by the human UDP-glucuronosyltransferases encoded at the UGT1 locus. Biochem. Biophys. Res. Commun. 260, 199–202 (1999).

    Article  CAS  PubMed  Google Scholar 

  54. Santos, A. et al. Metabolism of irinotecan (CPT-11) by CYP3A4 and CYP3A5 in humans. Clin. Cancer Res. 6, 2012–2020 (2000).

    CAS  PubMed  Google Scholar 

  55. Antoniou, T. & Tseng, A. L. Interactions between antiretrovirals and antineoplastic drug therapy. Clin. Pharmacokinet. 44, 111–145 (2005). A comprehensive review of potential drug interactions between anti-retrovirals and chemotherapy agents.

    Article  CAS  PubMed  Google Scholar 

  56. Huang, L. et al. Induction of P-glycoprotein and cytochrome P450 3A by HIV protease inhibitors. Drug Metab. Dispos. 29, 754–760 (2001).

    CAS  PubMed  Google Scholar 

  57. Schwartz, J. D., Howard, W. & Scadden, D. T. Potential interaction of antiretroviral therapy with paclitaxel in patients with AIDS-related Kaposi's sarcoma. Aids 13, 283–284 (1999).

    Article  CAS  PubMed  Google Scholar 

  58. Leveque, D. & Maloisel, F. Clinical pharmacokinetics of imatinib mesylate. In Vivo 19, 77–84 (2005).

    CAS  PubMed  Google Scholar 

  59. Novartis Pharmaceuticals Corporation. Gleevec product information. Novartis [online] (2005).

  60. Frye, R. F., Fitzgerald, S. M., Lagattuta, T. F., Hruska, M. W. & Egorin, M. J. Effect of St John's wort on imatinib mesylate pharmacokinetics. Clin. Pharmacol. Ther. 76, 323–329 (2004).

    Article  CAS  PubMed  Google Scholar 

  61. Dutreix, C. et al. Pharmacokinetic interaction between ketoconazole and imatinib mesylate (Glivec) in healthy subjects. Cancer Chemother. Pharmacol. 54, 290–294 (2004).

    Article  CAS  PubMed  Google Scholar 

  62. Ingelman-Sundberg, M. Genetic polymorphisms of cytochrome P450 2D6 (CYP2D6): clinical consequences, evolutionary aspects and functional diversity. Pharmacogenomics J. 5, 6–13 (2005).

    Article  CAS  PubMed  Google Scholar 

  63. Crewe, H. K., Ellis, S. W., Lennard, M. S. & Tucker, G. T. Variable contribution of cytochromes P450 2D6, 2C9 and 3A4 to the 4-hydroxylation of tamoxifen by human liver microsomes. Biochem. Pharmacol. 53, 8 (1997).

    Article  Google Scholar 

  64. Coezy, E., Borgna, J. L. & Rochefort, H. Tamoxifen and metabolites in MCF7 cells: correlation between binding to estrogen receptor and inhibition of cell growth. Cancer Res. 42, 317–323 (1982).

    CAS  PubMed  Google Scholar 

  65. Desta, Z., Ward, B. A., Soukhova, N. V. & Flockhart, D. A. Comprehensive evaluation of tamoxifen sequential biotransformation by the human cytochrome P450 system in vitro: prominent roles for CYP3A and CYP2D6. J. Pharmacol. Exp. Ther. 310, 1062–1075 (2004).

    Article  CAS  PubMed  Google Scholar 

  66. Stearns, V. et al. Hot flushes. Lancet 360, 1851–1861 (2002).

    Article  CAS  PubMed  Google Scholar 

  67. Jin, Y. et al. CYP2D6 genotype, antidepressant use, and tamoxifen metabolism during adjuvant breast cancer treatment. J. Natl Cancer. Inst. 97, 30–39 (2005).

    Article  CAS  PubMed  Google Scholar 

  68. Phillips, K. A., Veenstra, D. L., Oren, E., Lee, J. K. & Sadee, W. Potential role of pharmacogenomics in reducing adverse drug reactions: a systematic review. JAMA 286, 2270–2279 (2001).

    Article  CAS  PubMed  Google Scholar 

  69. Boddy, A. V. & Yule, S. M. Metabolism and pharmacokinetics of oxazaphosphorines. Clin. Pharmacokinet. 38, 291–304 (2000).

    Article  CAS  PubMed  Google Scholar 

  70. Chang, T. K., Weber, G. F., Crespi, C. L. & Waxman, D. J. Differential activation of cyclophosphamide and ifosphamide by cytochromes P-450 2B and 3A in human liver microsomes. Cancer Res. 53, 5629–5637 (1993).

    CAS  PubMed  Google Scholar 

  71. Arboix, M., Paz, O. G., Colombo, T. & D'Incalci, M. Multidrug resistance-reversing agents increase vinblastine distribution in normal tissues expressing the P-glycoprotein but do not enhance drug penetration in brain and testis. J. Pharmacol. Exp. Ther. 281, 1226–1230 (1997).

    CAS  PubMed  Google Scholar 

  72. Marsh, S. & McLeod, H. Pharmacogenetics of irinotecan toxicity. Pharmacogenomics 5, 835–843 (2004).

    Article  CAS  PubMed  Google Scholar 

  73. Yoshikawa, M. et al. Transport of SN-38 by the wild type of human ABC transporter ABCG2 and its inhibition by quercetin, a natural flavonoid. J. Exp. Ther. Oncol. 4, 25–35 (2004).

    CAS  PubMed  Google Scholar 

  74. Veronese, M. L. et al. A phase II trial of gefitinib with 5-fluorouracil, leucovorin, and irinotecan in patients with colorectal cancer. Br. J. Cancer 92, 1846–1849 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Iacono, L. C. et al. Effect of gefitinib on the systemic disposition of intravenous irinotecan (IRN) in pediatric patients with refractory solid tumors. Proc. Am. Soc. Clin. Oncol. 22, a2011 (2004).

    Article  Google Scholar 

  76. Ozvegy-Laczka, C. et al. High-affinity interaction of tyrosine kinase inhibitors with the ABCG2 multidrug transporter. Mol. Pharmacol. 65, 1485–1495 (2004).

    Article  PubMed  Google Scholar 

  77. Wierdl, M. et al. Carboxylesterase-mediated sensitization of human tumor cells to CPT-11 cannot override ABCG2-mediated drug resistance. Mol. Pharmacol. 64, 279–288 (2003).

    Article  CAS  PubMed  Google Scholar 

  78. Kim, R. B. Organic anion-transporting polypeptide (OATP) transporter family and drug disposition. Eur. J. Clin. Invest. 33 (Suppl. 2), 1–5 (2003).

    Article  PubMed  Google Scholar 

  79. Marzolini, C., Tirona, R. G. & Kim, R. B. Pharmacogenomics of the OATP and OAT families. Pharmacogenomics 5, 273–282 (2004).

    Article  CAS  PubMed  Google Scholar 

  80. Mikkaichi, T., Suzuki, T., Tanemoto, M., Ito, S. & Abe, T. The organic anion transporter (OATP) family. Drug Metab. Pharmacokinet. 19, 171–179 (2004).

    Article  CAS  PubMed  Google Scholar 

  81. Smith, N. F., Acharya, M. R., Desai, N., Figg, W. D. & Sparreboom, A. Identification of OATP1B3 as a high-affinity hepatocellular transporter of paclitaxel. Cancer. Biol. Ther. 4, e5–e8 (2005).

    Google Scholar 

  82. Takeda, M. et al. Characterization of methotrexate transport and its drug interactions with human organic anion transporters. J. Pharmacol. Exp. Ther. 302, 666–671 (2002).

    Article  CAS  PubMed  Google Scholar 

  83. Dean, R., Nachman, J. & Lorenzana, A. N. Possible methotrexate-mezlocillin interaction. Am. J. Pediatr. Hematol. Oncol. 14, 88–89 (1992).

    Article  CAS  PubMed  Google Scholar 

  84. Frenia, M. L. & Long, K. S. Methotrexate and nonsteroidal antiinflammatory drug interactions. Ann. Pharmacother. 26, 234–247 (1992).

    Article  CAS  PubMed  Google Scholar 

  85. Baker, H. Intermittent high dose oral methotrexate therapy in psoriasis. Br. J. Dermatol. 82, 65–69 (1970).

    Article  CAS  PubMed  Google Scholar 

  86. Machover, D. et al. Treatment of advanced colorectal and gastric adenocarcinomas with 5-FU combined with high-dose folinic acid: a pilot study. Cancer Treat. Rep. 66, 1803–1807 (1982).

    CAS  PubMed  Google Scholar 

  87. Morgan, R. G. Leucovorin enhancement of the effects of the fluoropyrimidines on thymidylate synthase. Cancer 63, 1008–1012 (1989).

    Article  CAS  PubMed  Google Scholar 

  88. Kohne, C. H. et al. Randomized phase III study of high-dose fluorouracil given as a weekly 24-hour infusion with or without leucovorin versus bolus fluorouracil plus leucovorin in advanced colorectal cancer: European Organization of Research and Treatment of Cancer Gastrointestinal Group Study 40952. J. Clin. Oncol. 21, 3721–3728 (2003).

    Article  CAS  PubMed  Google Scholar 

  89. Shiloni, E. & Matzner, Y. Inhibition of interleukin-2-induced tumor necrosis factor release by dexamethasone: does it reduce the antitumor therapeutic efficacy? Blood 78, 1389–1390 (1991).

    CAS  PubMed  Google Scholar 

  90. Mier, J. W. et al. Inhibition of interleukin-2-induced tumor necrosis factor release by dexamethasone: prevention of an acquired neutrophil chemotaxis defect and differential suppression of interleukin-2-associated side effects. Blood 76, 1933–1940 (1990).

    CAS  PubMed  Google Scholar 

  91. Vetto, J. T., Papa, M. Z., Lotze, M. T., Chang, A. E. & Rosenberg, S. A. Reduction of toxicity of interleukin-2 and lymphokine-activated killer cells in humans by the administration of corticosteroids. J. Clin. Oncol. 5, 496–503 (1987).

    Article  CAS  PubMed  Google Scholar 

  92. Papa, M. Z., Vetto, J. T., Ettinghausen, S. E., Mule, J. J. & Rosenberg, S. A. Effect of corticosteroid on the antitumor activity of lymphokine-activated killer cells and interleukin 2 in mice. Cancer Res. 46, 5618–5623 (1986).

    CAS  PubMed  Google Scholar 

  93. Seidman, A. et al. Cardiac dysfunction in the trastuzumab clinical trials experience. J. Clin.Oncol. 20, 1215–1221 (2002).

    Article  CAS  PubMed  Google Scholar 

  94. Haas, A., Anderson, L. & Lad, T. The influence of aminoglycosides on the nephrotoxicity of cis-diamminedichloroplatinum in cancer patients. J. Infect. Dis. 147, 363 (1983).

    Article  CAS  PubMed  Google Scholar 

  95. Christensen, M. L., Stewart, C. F. & Crom, W. R. Evaluation of aminoglycoside disposition in patients previously treated with cisplatin. Ther. Drug Monit. 11, 631–636 (1989).

    Article  CAS  PubMed  Google Scholar 

  96. Bergstrom, P., Johnsson, A., Cavallin-Stahl, E., Bergenheim, T. & Henriksson, R. Effects of cisplatin and amphotericin B on DNA adduct formation and toxicity in malignant glioma and normal tissues in rat. Eur. J. Cancer 33, 153–159 (1997).

    Article  CAS  PubMed  Google Scholar 

  97. Genentech, Inc. Rituxan product information. Genentech [online] (2001).

  98. Scalone, S. et al. Vinorelbine-induced acute reversible peripheral neuropathy in a patient with ovarian carcinoma pretreated with carboplatin and paclitaxel. Acta. Oncol. 43, 209–211 (2004).

    Article  PubMed  Google Scholar 

  99. Pierre-Fabre Pharmaceuticals. Navelbine prescribing information. Pierre-Fabre Pharmaceuticals [online] (2005).

  100. Parimoo, D., Jeffers, S. & Muggia, F. M. Severe neurotoxicity from vinorelbine-paclitaxel combinations. J. Natl Cancer. Inst. 88, 1079–1080 (1996).

    Article  CAS  PubMed  Google Scholar 

  101. Huizing, M. T. et al. Pharmacokinetics of paclitaxel and carboplatin in a dose-escalating and dose-sequencing study in patients with non-small-cell lung cancer. The European Cancer Centre. J. Clin. Oncol. 15, 317–329 (1997).

    Article  CAS  PubMed  Google Scholar 

  102. Baker, A. F. & Dorr, R. T. Drug interactions with the taxanes: clinical implications. Cancer Treat. Rev. 27, 221–233 (2001). A comprehensive review of potential drug interactions with anticancer agents that are classified as taxanes.

    Article  CAS  PubMed  Google Scholar 

  103. Baker, S. D. Drug interactions with the taxanes. Pharmacotherapy 17, 126S–132S (1997).

    CAS  PubMed  Google Scholar 

  104. Bookman, M. A. et al. Carboplatin and paclitaxel in ovarian carcinoma: a phase I study of the Gynecologic Oncology Group. J. Clin. Oncol. 14, 1895–1902 (1996).

    Article  CAS  PubMed  Google Scholar 

  105. Belani, C. P. et al. Phase I trial, including pharmacokinetic and pharmacodynamic correlations, of combination paclitaxel and carboplatin in patients with metastatic non-small-cell lung cancer. J. Clin. Oncol. 17, 676–684 (1999).

    Article  CAS  PubMed  Google Scholar 

  106. Vaughn, D., Mick, R., Ratajczak, J., Ratajczak, M. K. & Gewirtz, A. Investigating the platelet sparing mechanism of paclitaxel/carboplatin chemotherapy. Proc. Am. Soc. Clin. Oncol. 16, 897a (1997).

    Google Scholar 

  107. Nabholtz, J. M. & Riva, A. Taxane/anthracycline combinations: setting a new standard in breast cancer? Oncologist 6 (Suppl. 3), 5–12 (2001).

    Article  CAS  PubMed  Google Scholar 

  108. Venturini, M. et al. Sequence effect of epirubicin and paclitaxel treatment on pharmacokinetics and toxicity. J. Clin. Oncol. 18, 2116–2125 (2000).

    Article  CAS  PubMed  Google Scholar 

  109. Holmes, F. A. et al. Sequence-dependent alteration of doxorubicin pharmacokinetics by paclitaxel in a phase I study of paclitaxel and doxorubicin in patients with metastatic breast cancer. J. Clin. Oncol. 14, 2713–2721 (1996).

    Article  CAS  PubMed  Google Scholar 

  110. Lederle Parenterals. Methotrexate Prescribing Information. US Food and Drugs Administration [online] (1999).

  111. Relling, M. V. et al. Adverse effect of anticonvulsants on efficacy of chemotherapy for acute lymphoblastic leukaemia. Lancet 356, 285–290 (2000).

    Article  CAS  PubMed  Google Scholar 

  112. Thorn, C. F. et al. Irinotecan pathway. PharmGKB, [online] (2005).

  113. Kehrer, D. F., Mathijssen, R. H., Verweij, J., de Bruijn, P. & Sparreboom, A. Modulation of irinotecan metabolism by ketoconazole. J. Clin. Oncol. 20, 3122–3129 (2002).

    Article  CAS  PubMed  Google Scholar 

  114. Schuler, U. et al. Busulfan pharmacokinetics in bone marrow transplant patients: is drug monitoring warranted? Bone Marrow Transplant 14, 759–765 (1994).

    CAS  PubMed  Google Scholar 

  115. Janish, L., Mani, S. & Schilsky, R. L. Phase I study to determine the effects of food on the absorption of oral 776C85 (776) plus 5-fluorouracil (FU) in patients (pts) with advanced cancer [abstract]. 34th Annu. Meeting Am. Soc. Clin. Oncol. 16–19 May, A862 (1998).

  116. Pinkerton, C. R., Welshman, S. G., Glasgow, J. F. & Bridges, J. M. Can food influence the absorption of methotrexate in children with acute lymphoblastic leukaemia? Lancet 2, 944–946 (1980).

    Article  CAS  PubMed  Google Scholar 

  117. Herben, V. M. et al. Oral topotecan: bioavailablity and effect of food co-administration. Br. J. Cancer 80, 1380–1386 (1999).

    Article  PubMed  PubMed Central  Google Scholar 

  118. Barker, I. K., Crawford, S. M. & Fell, A. F. Determination of altretamine in human plasma with high-performance liquid chromatography. J. Chromatogr. 660, 121–126 (1994).

    Article  CAS  Google Scholar 

  119. Swaisland, H. et al. Pharmacokinetics and tolerability of the orally active selective epidermal growth factor receptor tyrosine kinase inhibitor ZD1839 in healthy volunteers. Clin. Pharmacokinet. 40, 297–306 (2001).

    Article  CAS  PubMed  Google Scholar 

  120. Reece, P. A., Kotasek, D., Morris, R. G., Dale, B. M. & Sage, R. E. The effect of food on oral melphalan absorption. Cancer Chemother. Pharmacol. 16, 194–197 (1986).

    Article  CAS  PubMed  Google Scholar 

  121. Lancaster, D. L., Patel, N., Lennard, L. & Lilleyman, J. S. 6-Thioguanine in children with acute lymphoblastic leukaemia: influence of food on parent drug pharmacokinetics and 6-thioguanine nucleotide concentrations. Br. J. Clin. Pharmacol. 51, 531–539 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Usuki, K. et al. Pharmacokinetics of all-trans-retinoic acid in Japanese patients with acute promyelocytic leukemia. Int. J. Hematol. 63, 19–23 (1996).

    Article  CAS  PubMed  Google Scholar 

  123. Harvey, V. J., Slevin, M. L., Joel, S. P., Johnston, A. & Wrigley, P. F. The effect of food and concurrent chemotherapy on the bioavailability of oral etoposide. Br. J. Cancer 52, 363–367 (1985).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Reckmann, A. H., FIscher, T. & Peng, B. Effect of food on STI571 pharmacokinetics and bioavailability [abstract]. 37th Annu. Meeting Am. Soc. Clin. Oncol 12–15 May 12–15, A1223 (2001).

  125. Lonnerholm, G., Kreuger, A., Lindstrom, B. & Myrdal, U. Oral mercaptopurine in childhood leukemia: influence of food intake on bioavailability. Pediatr. Hematol. Oncol. 6, 105–112 (1989).

    Article  CAS  PubMed  Google Scholar 

  126. Brada, M. et al. Phase I dose-escalation and pharmacokinetic study of temozolomide (SCH 52365) for refractory or relapsing malignancies. Br. J. Cancer 81, 1022–1030 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Astra Zeneca Pharmaceuticals. Arimidex Prescribing Information. Astra Zeneca [online] (2005).

  128. Buggia, I. et al. Itraconazole can increase systemic exposure to busulfan in patients given bone marrow transplantation. GITMO (Gruppo Italiano Trapianto di Midollo Osseo). Anticancer Res. 16, 2083–2088 (1996).

    CAS  PubMed  Google Scholar 

  129. Merck &Co. Decadron prescribing information. Merck [online] (2004).

  130. Chang, T. K., Yu, L., Maurel, P. & Waxman, D. J. Enhanced cyclophosphamide and ifosfamide activation in primary human hepatocyte cultures: response to cytochrome P-450 inducers and autoinduction by oxazaphosphorines. Cancer Res. 57, 1946–1954 (1997).

    CAS  PubMed  Google Scholar 

  131. Colburn, D. E., Giles, F. J., Oladovich, D. & Smith, J. A. In vitro evaluation of cytochrome P450-mediated drug interactions between cytarabine, idarubicin, itraconazole and caspofungin. Hematology 9, 217–221 (2004).

    Article  CAS  PubMed  Google Scholar 

  132. Hirth, J. et al. The effect of an individual's cytochrome CYP3A4 activity on docetaxel clearance. Clin. Cancer Res. 6, 8 (2000).

    Google Scholar 

  133. Royer, I., Monsarrat, B., Sonnier, M., Wright, M. & Cresteil, T. Metabolism of docetaxel by human cytochromes P450: interactions with paclitaxel and other antineoplastic drugs. Cancer Res. 56, 58–65 (1996).

    CAS  PubMed  Google Scholar 

  134. Kivisto, K. T., Kroemer, H. K. & Eichelbaum, M. The role of human cytochrome P450 enzymes in the metabolism of anticancer agents: implications for drug interactions. Br. J. Clin. Pharmacol. 40, 523–530 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Zhuo, X., Zheng, N., Felix, C. A. & Blair, I. A. Kinetics and regulation of cytochrome P450-mediated etoposide metabolism. Drug Metab. Dispos. 32, 993–1000 (2004).

    CAS  PubMed  Google Scholar 

  136. Pharmacia &Upjohn Co. Aromasin prescribing information. Pfizer [online] (2005).

  137. Astra Zeneca Pharmaceuticals. Iressa prescribing information. Astra Zeneca Pharmaceuticals [online] (2005).

  138. Kaijser, G. P., Korst, A., Beijnen, J. H., Bult, A. & Underberg, W. J. The analysis of ifosfamide and its metabolites (review). Anticancer Res. 13, 1311–1324 (1993).

    CAS  PubMed  Google Scholar 

  139. Zhang, W. et al. Inhibition of cytochromes P450 by antifungal imidazole derivatives. Drug Metab. Dispos. 30, 314–318 (2002).

    Article  CAS  PubMed  Google Scholar 

  140. Novartis Pharmaceuticals Corporation. Femara prescribing information. Novartis Pharmaceuticals [online] (2005).

  141. Harris, J. W., Rahman, A., Kim, B. R., Guengerich, F. P. & Collins, J. M. Metabolism of taxol by human hepatic microsomes and liver slices: participation of cytochrome P450 3A4 and an unknown P450 enzyme. Cancer Res. 54, 4026–4035 (1994).

    CAS  PubMed  Google Scholar 

  142. Rahman, A., Korzekwa, K. R., Grogan, J., Gonzalez, F. J. & Harris, J. W. Selective biotransformation of taxol to 6 α-hydroxytaxol by human cytochrome P450 2C8. Cancer Res. 54, 5543–5546 (1994).

    CAS  PubMed  Google Scholar 

  143. Sridar, C., Kent, U. M., Notley, L. M., Gillam, E. M. & Hollenberg, P. F. Effect of tamoxifen on the enzymatic activity of human cytochrome CYP2B6. J. Pharmacol. Exp. Ther. 301, 52 (2002).

    Article  Google Scholar 

  144. Jordan, V. C., Collins, M. M., Rowsby, L. & Prestwich, G. A monohydroxylated metabolite of tamoxifen with potent antioestrogenic activity. J. Endocrinol. 75, 305–316 (1977).

    Article  CAS  PubMed  Google Scholar 

  145. Roche Laboratories. Vesanoid prescribing information. Roche [online] (2004).

  146. Zhou, X. J., Placidi, M. & Rahmani, R. Uptake and metabolism of vinca alkaloids by freshly isolated human hepatocytes in suspension. Anticancer Res. 14, 1017–1022 (1994).

    CAS  PubMed  Google Scholar 

  147. Lam, M. S. H. & Ignoffo, R. J. A guide to clinically relevant drug interactions in oncology. J. Oncol. Pharm. Practice 9, 45–85 (2003). A comprehensive review in tabular format on actual and theoretical drug interactions in oncology.

    Article  CAS  Google Scholar 

  148. Innocenti, F. et al. A phase I trial of pharmacologic modulation of irinotecan with cyclosporine and phenobarbital. Clin. Pharmacol. Ther. 76, 490–502 (2004).

    Article  CAS  PubMed  Google Scholar 

  149. Yong, W. P., Ramirez, J., Innocenti, F. & Ratain, M. J. Effects of ketoconazole on glucuronidation by UDP-glucuronosyltransferase enzymes. Clin. Cancer. Res. 11, 6699–6704 (2005).

    Article  CAS  PubMed  Google Scholar 

  150. Friedman, H. S. et al. Irinotecan therapy in adults with recurrent or progressive malignant glioma. J. Clin. Oncol. 17, 1516–1525 (1999).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Intramural Research Program of the US National Cancer Institute. This is a US Government work. There are no restrictions on its use. The views expressed within this paper do not necessarily reflect those of the US Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William D. Figg.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

DATABASES

National Cancer Institute

chronic myeloid leukaemia

FURTHER INFORMATION

William D. Figg's homepage

Glossary

Excipients

Inert substances that are used as diluents or vehicles for drugs.

First-pass effects

The decrease in the bioavailability of an orally administered drug caused by enteric metabolism, hepatic metabolism or elimination before the drug reaches the systemic circulation.

AUC

The area under the curve in a graph of plasma concentration versus time. It is a measure of drug exposure.

Cytochrome P450 enzymes

A membrane-bound family of haem-containing intracellular oxidizing enzymes that are responsible for the first phase of (oxidative) metabolism of many endogenous steroids, hormones and medications. The CYP3A4 isozyme accounts for approximately 70% of the total CYP activity in the intestine.

Substrates

Substrates are metabolized by enzymes and their plasma concentrations are influenced by substances that inhibit or induce their metabolic pathway.

Inhibitor

Inhibitors inactivate specific CYP enzymes in an irreversible way. Metabolism will return to normal once the inhibitor has been removed and new enzymes have been produced.

Inducer

Inducers increase the production of enzymes and therefore accelerate metabolism. Consequently, the plasma levels of substrates are lowered.

P-glycoprotein

A transmembrane protein that is formed by two homologous halves, and which works as an ATP-dependent efflux pump. It is the product of the ATP-binding cassette gene ABCB1, which is also referred to as the multidrug resistance gene MDR1.

Polymorphism

The presence of two or more alleles with a frequency of at least 1% in the general population at the same gene locus.

Induction

Induction means that a substance stimulates the synthesis of an enzyme and metabolic capacity is increased.

Cmax

The highest concentration that a drug reaches in the serum/plasma.

Pharmacogenetics

The study of genetically determined variations in drug response.

Uptake transporters

Membrane-bound proteins that are predominately involved in the movement of substances and/or drugs into the cell.

Efflux transporters

Membrane-bound proteins that are predominately involved in the movement of sustances and/or drugs out of the cell.

Competitive inhibition

Competitive inhibition occurs when two or more drugs compete for the active (binding) site of a single CYP enzyme. This competitive inhibition can decrease the metabolism of one of the drugs, therefore altering its pharmacokinetic behaviour.

Clinically significant drug interactions

Interactions that lead to a change in the therapeutic activity or toxicity of a drug to the extent that dosage adjustment or increased monitoring is necessary.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Scripture, C., Figg, W. Drug interactions in cancer therapy. Nat Rev Cancer 6, 546–558 (2006). https://doi.org/10.1038/nrc1887

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc1887

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing