Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Timeline
  • Published:

Analysing differential gene expression in cancer

Abstract

Analysis of messenger RNA and proteins is widely used to compare patterns of gene expression between cells or tissues of different kinds and under different conditions; for example, between normal and cancer cells. The goal of the individuals who are developing these methods has been to enable faster, simpler, more sensitive and systematic analyses, and over the past few decades techniques have become increasingly more sophisticated. This timeline article reviews the evolution of these technologies as well as strategies for identifying differentially expressed genes in normal and cancer cells. It also highlights their use for the search for target genes of the tumour suppressor p53.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Differential hybridization.
Figure 2: Subtractive hybridization.
Figure 3: Differential display.
Figure 4: DNA micrarrays.
Figure 5: SAGE.

References

  1. Knudson, A. G. Two genetic hits (more or less) to cancer. Nature Rev. Cancer 1, 157–162 (2001).

    Article  CAS  Google Scholar 

  2. Sager, R. Expression genetics in cancer: shifting the focus from DNA to RNA. Proc. Natl Acad. Sci. USA 94, 952–955 (1997)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Vogelstein, B., Lane, D. & Levine, A. J. Surfing the p53 network. Nature 408, 307–310 (2000).

    Article  CAS  PubMed  Google Scholar 

  4. Lorkowski, S. & Cullen, P. (eds.) Analyzing Gene Expression. A Handbook of Methods: Possibilities and Pitfalls (Wiley–VCH, Weinheim, 2002).

    Book  Google Scholar 

  5. Linzer, D. I. & Levine, A. J. Characterization of a 54K dalton cellular SV40 tumor antigen present in SV40-transformed cells and uninfected embryonal carcinoma cells. Cell 17, 43–52 (1979).

    Article  CAS  PubMed  Google Scholar 

  6. O'Farrell, P. H. High resolution two-dimensional electrophoresis of proteins. J. Biol. Chem. 250, 4007–4021 (1975).

    CAS  PubMed  Google Scholar 

  7. Croy, R. G. & Pardee, A. B. Enhanced synthesis and stabilization of Mr 68,000 protein in transformed BALB/c-3T3 cells: candidate for restriction point control of cell growth. Proc. Natl Acad. Sci. USA 80, 4699–8703 (1983).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Sargent, T. D. Isolation of differentially expressed genes. Methods Enzymol. 152, 423–432 (1987).

    Article  CAS  PubMed  Google Scholar 

  9. Masiakowski, P. et al. Cloning of cDNA sequences of hormone-regulated genes from the MCF-7 human breast cancer cellline. Nucl. Acids Res. 10, 7895–7903 (1982).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Manzari, V. et al. Abundant transcription of a cellular gene in T cells infected with human T-cell leukemia-lymphoma virus. Proc. Natl Acad. Sci. USA 80, 11–15 (1983).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Zimmermann, C. R. et al. Molecular cloning and selection of genes regulated in Aspergillus development. Cell 21, 709–715 (1980).

    Article  CAS  PubMed  Google Scholar 

  12. Hedrick, S. M. et al. Isolation of cDNA clones encoding T cell-specific membrane-associated proteins. Nature 308, 149–153 (1984).

    Article  CAS  PubMed  Google Scholar 

  13. Davis, M. On the Trail of T-Cell Receptors. Accomplishment in Cancer Research. 87–94 (General Motor Cancer Research Foundation, 1996).

    Google Scholar 

  14. El-Deiry, W. S. et al. WAF1, a potential mediator of p53 tumor suppression. Cell 75, 817–825 (1993).

    Article  CAS  PubMed  Google Scholar 

  15. Liang, P. & Pardee, A. B. Differential display of eukaryotic mRNA by means of the polymerase chain reaction. Science 257, 967–971 (1992).

    Article  CAS  PubMed  Google Scholar 

  16. Welsh, J. et al. Arbitrarily primed PCR fingerprinting of RNA. Nucl. Acids Res. 20, 4965–4970 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Liang, P. et al. Analysis of altered gene expression by differential display. Methods Enzymol. 254, 304–321 (1995).

    Article  CAS  PubMed  Google Scholar 

  18. Liang, P. A decade of differential display. Biotechniques 33, 338–346 (2002).

    Article  CAS  PubMed  Google Scholar 

  19. McCarthy, S. A. et al. Rapid induction of heparin-binding epidermal growth factor/diphtheria toxin receptor expression by Raf and Ras oncogenes. Genes Dev. 9, 1953–1964 (1995).

    Article  CAS  PubMed  Google Scholar 

  20. Zhang, R. et al. Identification of a novel ligand-receptor pair constitutively activated by Ras oncogenes. J. Biol. Chem. 275, 24436–24443 (2000).

    Article  CAS  PubMed  Google Scholar 

  21. You, M. et al. ch-IAP1, a member of the inhibitor-of-apoptosis protein family, is a mediator of the antiapoptotic activity of the v-Rel oncoprotein. Mol. Cell. Biol. 17, 7328–7341 (1997).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Park, B. -W. et al. Induction of the Tat-binding protein 1 gene accompanies the disabling of oncogenic erbB receptor tyrosine kinases. Proc. Natl Acad. Sci. USA 96, 6434–6438 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Wang, M. et al. Interleukin-24 (Mob-5/Mda-7) signals through two heterodimeric receptors, IL-22R1/IL-20R2 and IL-20R1/IL-20R2. J. Biol. Chem. 277, 7341–7347 (2002).

    Article  CAS  PubMed  Google Scholar 

  24. Liang, P. Factors ensuring successful use of differential display. Methods 16, 361–364 (1998).

    Article  CAS  PubMed  Google Scholar 

  25. Shimkets, R. A. et al. Gene expression analysis by transcript profiling coupled to a gene database query. Nature Biotechnol. 17, 798–803 (1999).

    Article  CAS  Google Scholar 

  26. Cho, Y. et al. Multi-color fluorescent differential display. Biotechniques 30, 562–572 (2001).

    Article  CAS  PubMed  Google Scholar 

  27. Schena, M. et al. Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science 270, 467–470 (1995).

    Article  CAS  PubMed  Google Scholar 

  28. Chee, M. et al. Accessing genetic information with high-density DNA arrays. Science 274, 610–614 (1996).

    Article  CAS  PubMed  Google Scholar 

  29. Ramaswamy, S. et al. Multiclass cancer diagnosis using tumor gene expression signatures. Proc. Natl Acad. Sci. USA 98, 15149–15154 (2001).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Chung, C. H., Bernard, P. S. & Perou, C. M. Molecular portraits and the family tree of cancer. Nature Genet. 32, S533–S540 (2002).

    Article  CAS  Google Scholar 

  31. Golub, T. R. et al. Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science 286, 531–537 (1999).

    Article  CAS  PubMed  Google Scholar 

  32. Yeoh, E. J. et al. Classification, subtype discovery, and prediction of outcome in pediatric acute lymphoblastic leukemia by gene expression profiling. Cancer Cell 2, 133–143 (2002).

    Article  Google Scholar 

  33. Alizadeh, A. A. et al. Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature 403, 503–511 (2000).

    Article  CAS  PubMed  Google Scholar 

  34. Garber, M. E. et al. Diversity of gene expression in adenocarcinoma of the lung. Proc. Natl Acad. Sci. USA 98, 13784–13789 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Bhattacharjee, A. et al. Classification of human lung carcinomas by mRNA expression profiling reveals distinct adenocarcinoma subclasses. Proc. Natl Acad. Sci. USA 98, 13790–13795 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Sorlie, T. et al. Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc. Natl Acad. Sci. USA 98, 10869–10874 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Dhanasekaran, S. M. et al. Delineation of prognostic biomarkers in prostate cancer. Nature 412, 822–826 (2001).

    Article  CAS  PubMed  Google Scholar 

  38. Wooster, R. Cancer classification with DNA microarrays: is less more? Trends Genet. 16, 327–329 (2000).

    Article  CAS  PubMed  Google Scholar 

  39. Petricoin, E. F. et al. Medical applications of microarray technologies: a regulatory science perspective. Nature Genet. 32, S474–S4799 (2002).

    Article  CAS  Google Scholar 

  40. Goodman, N. Microarrays: hazardous to your science. Genome Technol. April, 42–45, (2003).

  41. Ring, B. Z. & Ross, D. T. Microarrays and molecular markers for tumor classification. Genome Biol. 3, 2005 (2002).

    Article  Google Scholar 

  42. Kuo, W. P. et al. Analysis of matched mRNA measurements from two different microarray technologies. Bioinformatics 18, 405–412 (2002).

    Article  CAS  PubMed  Google Scholar 

  43. Kothapalli, R. et al. Microarray results: how accurate are they? BMC Bioinformatics 3, 22 (2002).

    Article  PubMed Central  PubMed  Google Scholar 

  44. Goryachev, A. B, Macgregor, P. F. & Edwards, A. M. Unfolding of microarray data. J. Comput. Biol. 8, 443–461 (2001).

    Article  CAS  PubMed  Google Scholar 

  45. King, H. C. & Sinha, A. A. Gene expression profile analysis by DNA microarrays: promise and pitfalls. JAMA 286, 2280–2288 (2001).

    Article  CAS  PubMed  Google Scholar 

  46. Shedden, K. & Cooper, S. Analysis of cell-cycle-specific gene expression in human cells as determined by microarrays and double-thymidine block synchronization. Proc. Natl Acad. Sci. USA 99, 4379–4384 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Cooper, S. Cell cycle analysis and microarrays. Trends Genet. 18, 289–290 (2002).

    Article  CAS  PubMed  Google Scholar 

  48. Jenssen, T. -K. et al. Analysis of repeatability in spotted cDNA microarrays. Nucl. Acids Res. 30, 3235–3244 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Quackenbush, J. Microarray data normalization and transformation. Nature Genet. 32, S496–S501 (2002).

    Article  CAS  Google Scholar 

  50. Adams, M. D. et al. Sequence identification of 2,375 human brain genes. Nature 355, 632–634 (1992).

    Article  CAS  PubMed  Google Scholar 

  51. Velculescu, V. E. et al. Serial analysis of gene expression. Science 270, 484–487 (1995).

    Article  CAS  PubMed  Google Scholar 

  52. Boon, K. et al. An anatomy of normal and malignant gene expression. Proc. Natl Acad. Sci. USA 99, 11287–11292 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Liang, P. SAGE Genie: a suite with panoramic view of gene expression. Proc. Natl Acad. Sci. USA 99, 11547–11548 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Brenner, S. et al. Gene expression analysis by massively parallel signature sequencing (MPSS) on microbead arrays. Nature Biotechnol. 18, 630–634 (2000).

    Article  CAS  Google Scholar 

  55. Kern, S. E. et al. Oncogenic forms of p53 inhibit p53-regulated gene expression. Science 256, 827–830 (1992).

    Article  CAS  PubMed  Google Scholar 

  56. Deng, C. et al. Mice lacking p21CIP1/WAF1 undergo normal development, but are defective in G1 checkpoint control. Cell 82, 675–684 (1995).

    Article  CAS  PubMed  Google Scholar 

  57. El-Deiry, W. S. Regulation of p53 downstream genes. Semin. Cancer Biol. 8, 345–357 (1998).

    Article  CAS  PubMed  Google Scholar 

  58. Zhao, R. et al. Analysis of p53-regulated gene expression patterns using oligonucleotide arrays. Genes Dev. 14, 981–993 (2000).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  59. Wang, L. et al. Analyses of p53 target genes in the human genome by bioinformatic and microarray approaches. J. Biol. Chem. 276, 43604–43610 (2001).

    Article  CAS  PubMed  Google Scholar 

  60. Gibbs, W. W. Shrinking to enormity: DNA microarrays are reshaping basic biology but scientists fear they may soon drown in the data. Sci. Am. 284, 33–34 (2001).

    Article  CAS  Google Scholar 

  61. Brenner, S. Sillycon valley fever. Curr. Biol. 9, R671 (1999).

    Article  CAS  PubMed  Google Scholar 

  62. Gilbert, W. Life after the helix. Nature 421, 315–316 (2003).

    Article  CAS  Google Scholar 

  63. Kornberg, A. Why purify enzyme? Methods Enzymol. 182, 1–5 (1990).

    Article  CAS  PubMed  Google Scholar 

  64. Wu, X. et al. The p53-mdm-2 autoregulatory feedback loop. Genes Dev. 7, 1126–1132 (1993).

    Article  CAS  PubMed  Google Scholar 

  65. Miyashita, T. & Reed, J. C. Tumor suppressor p53 is a direct transcriptional activator of the human bax gene. Cell 80, 293–299 (1995).

    Article  CAS  PubMed  Google Scholar 

  66. Okamoto, K. & Beach, D. Cyclin G is a transcriptional target of the p53 tumor suppressor protein. EMBO J. 13, 4816–4822 (1994).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  67. Buckbinder, L. et al. Induction of the growth inhibitor IGF-binding protein 3 by p53. Nature 377, 646–649 (1995).

    Article  CAS  PubMed  Google Scholar 

  68. Polyak, K. et al. A model for p53-induced apoptosis. Nature 389, 300–305 (1997).

    Article  CAS  PubMed  Google Scholar 

  69. Wu, G. S. et al. KILLER/DR5 is a DNA damage-inducible p53-regulated death receptor gene. Nature Genet. 17, 141–143 (1997).

    Article  CAS  PubMed  Google Scholar 

  70. Gu, Z. et al. ei24, a p53 response gene involved in growth suppression and apoptosis. Mol. Cell. Biol. 20, 233–241 (2000).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  71. Israeli, D. et al. A novel p53-inducible gene, PAG608, encodes a nuclear zinc finger protein whose overexpression promotes apoptosis. EMBO J. 16, 4384–4392 (1997).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  72. Lo, P. K. et al. Identification of a novel mouse p53 target gene DDA3. Oncogene 18, 7765–7774 (1999).

    Article  CAS  PubMed  Google Scholar 

  73. Takei, Y. et al. Isolation of a novel TP53 target gene from a colon cancer cell line carrying a highly regulated wild-type TP53 expression system. Genes Chromosom. Cancer 23, 1–9 (1998).

    Article  CAS  PubMed  Google Scholar 

  74. Ng, C. et al. Isolation and characterization of a novel TP53-inducible gene, TP53TG3. Genes Chromosom. Cancer 26, 329–335 (1999).

    Article  CAS  PubMed  Google Scholar 

  75. Tanaka, H. et al. A ribonucleotide reductase gene involved in a p53-dependent cell-cycle checkpoint for DNA damage. Nature 404, 42–49 (2000).

    Article  CAS  PubMed  Google Scholar 

  76. Attardi, L. et al. PERP, an apoptosis-associated target of p53, is a novel member of the PMP-22/gas3 family. Genes Dev. 14, 704–718 (2000).

    CAS  PubMed Central  PubMed  Google Scholar 

  77. Saller, E. et al. Increased apoptosis induction by 121F mutant p53. EMBO J. 18, 4424–4437 (1999).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  78. Oda, E. et al. Noxa, a BH3-only member of the Bcl-2 familiy and candidate mediator of p53-induced apoptosis. Science 288, 1053–1058 (2000).

    Article  CAS  PubMed  Google Scholar 

  79. Lin, Y., Ma, W. & Benchimol, S. Pidd, a new death-domain-comtaining protein is induced by p53 and promotes apoptosis. Nature Genet. 26, 124–127 (2000).

    Article  CAS  Google Scholar 

  80. Oda, E. et al. p53AIP1, a potential mediator of p53-dependent apoptosis, and its regulation by Ser-46-phosphorylated p53. Cell 102, 849–862 (2000).

    Article  CAS  PubMed  Google Scholar 

  81. Okamura, S. et al. p53DINP1, a p53-inducible gene, regulates p53-dependent apoptosis. Mol. Cell 8, 85–94 (2001).

    Article  CAS  PubMed  Google Scholar 

  82. Yu, J. et al. PUMA induces the rapid apoptosis of colorectal cancer cells. Mol. Cell 7, 673–682 (2001).

    Article  CAS  PubMed  Google Scholar 

  83. Nakano, K. & Vousden, K. H. PUMA, a novel proapoptotic gene, is induced by p53. Mol. Cell 7, 683–694 (2001).

    Article  CAS  PubMed  Google Scholar 

  84. Leng, R. P. et al. Pirh2, a p53-induced ubiquitin-protein ligase, promotes p53 degradation. Cell 112, 779–791 (2003).

    Article  CAS  PubMed  Google Scholar 

  85. Yin, Y. et al. PAC1 phosphatase is a transcription target of p53 in signalling apoptosis and growth suppression. Nature 422, 527–531 (2003).

    Article  CAS  PubMed  Google Scholar 

  86. Owen-Schaub, L. B. et al. Wild-type human p53 and a temperature-sensitive mutant induce Fas/APO-1 expression. Mol. Cell. Biol. 15, 3032–3040 (1995).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  87. Kannan, K. et al. DNA microarray analysis of genes involved in p53 mediated apoptosis: activation of Apaf-1. Oncogene 20, 3449–3455 (2001).

    Article  CAS  PubMed  Google Scholar 

  88. Stambolic, V. et al. Regulation of PTEN transcription by p53. Mol Cell. 8, 317–325 (2001).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Related links

Related links

DATABASES

Cancer.gov

breast cancer

leukaemia

lung cancer

lymphoma

prostate cancer

LocusLink

BAX

ERBB

GADD45

IL-24

MDM2

p53

p68

PIRH2

RAS

v-REL

WAF1

FURTHER INFORMATION

Beads-based EST sequencing

cDNA microarray

Differential display

GeneChip array

International Symposia on Differential Gene Expression

SAGE

SAGE Genie

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liang, P., Pardee, A. Analysing differential gene expression in cancer. Nat Rev Cancer 3, 869–876 (2003). https://doi.org/10.1038/nrc1214

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc1214

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing