Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Quartz crystal microbalance with dissipation monitoring of supported lipid bilayers on various substrates

Abstract

Supported lipid bilayers (SLBs) mimic biological membranes and are a versatile platform for a wide range of biophysical research fields including lipid–protein interactions, protein–protein interactions and membrane-based biosensors. The quartz crystal microbalance with dissipation monitoring (QCM-D) has had a pivotal role in understanding SLB formation on various substrates. As shown by its real-time kinetic monitoring of SLB formation, QCM-D can probe the dynamics of biomacromolecular interactions. We present a protocol for constructing zwitterionic SLBs supported on silicon oxide and titanium oxide, and discuss technical issues that need to be considered when working with charged lipid compositions. Furthermore, we explain a recently developed strategy that uses an amphipathic, α-helical (AH) peptide to form SLBs on gold and titanium oxide substrates. The protocols can be completed in less than 3 h.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Quartz crystal microbalance with dissipation (QCM-D)-monitoring principles.
Figure 2: QCM-D monitoring of zwitterionic SLB formation on a silicon oxide substrate.
Figure 3: QCM-D monitoring of charged SLB formation on a silicon oxide substrate.
Figure 4: QCM-D monitoring of negatively charged SLB formation on a titanium oxide substrate induced by divalent calcium cation.
Figure 5: QCM-D monitoring of AH peptide-mediated structural transformation from intact vesicles to an SLB on a gold substrate.

Similar content being viewed by others

References

  1. Sackmann, E. Supported membranes: scientific and practical applications. Science 271, 43–48 (1996).

    Article  CAS  PubMed  Google Scholar 

  2. Tanaka, M. & Sackmann, E. Supported membranes as biofunctional interfaces and smart biosensor platforms. Physica Status Solidi A 203, 3452–3462 (2006).

    Article  CAS  Google Scholar 

  3. Hook, F., Kasemo, B., Grunze, M. & Zauscher, S. Quantitative biological surface science: challenges and recent advances. ACS Nano 2, 2428–2436 (2008).

    Article  CAS  PubMed  Google Scholar 

  4. White, R.J. et al. Ionic conductivity of the aqueous layer separating a lipid bilayer membrane and a glass support. Langmuir 22, 10777–10783 (2006).

    Article  CAS  PubMed  Google Scholar 

  5. White, R.J. et al. Single ion-channel recordings using glass nanopore membranes. J. Am. Chem. Soc. 129, 11766–11775 (2007).

    Article  CAS  PubMed  Google Scholar 

  6. Boxer, S.G. Molecular transport and organization in supported lipid membranes. Curr. Opin. Chem. Biol. 4, 704–709 (2000).

    Article  CAS  PubMed  Google Scholar 

  7. Kaiser, H.J. et al. Order of lipid phases in model and plasma membranes. Proc. Natl. Acad. Sci. USA 106, 16645–16650 (2009).

    Article  PubMed  Google Scholar 

  8. Hook, F., Rodahl, M., Kasemo, B. & Brzezinski, P. Structural changes in hemoglobin during adsorption to solid surfaces: effects of pH, ionic strength, and ligand binding. Proc. Natl. Acad. Sci. USA 95, 12271–12276 (1998).

    Article  CAS  PubMed  Google Scholar 

  9. Hook, F. et al. Variations in coupled water, viscoelastic properties, and film thickness of a Mefp-1 protein film during adsorption and cross-linking: a quartz crystal microbalance with dissipation monitoring, ellipsometry, and surface plasmon resonance study. Anal. Chem. 73, 5796–5804 (2001).

    Article  CAS  PubMed  Google Scholar 

  10. Cho, N.J., Cheong, K.H., Lee, C., Frank, C.W. & Glenn, J.S. Binding dynamics of hepatitis C virus′ NS5A amphipathic peptide to cell and model membranes. J. Virol. 81, 6682–6689 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Cho, N.J., Cho, S.J., Cheong, K.H., Glenn, J.S. & Frank, C.W. Employing an amphipathic viral peptide to create a lipid bilayer on Au and TiO2. J. Am. Chem. Soc. 129, 10050–10051 (2007).

    Article  CAS  PubMed  Google Scholar 

  12. Cooper, M.A. & Singleton, V.T. A survey of the 2001 to 2005 quartz crystal microbalance biosensor literature: applications of acoustic physics to the analysis of biomolecular interactions. J. Mol. Recognit. 20, 154–184 (2007).

    Article  CAS  PubMed  Google Scholar 

  13. Kasemo, B. & Hook, F. Protein and vesicle interaction with surfaces. Abstr. Pap. Am. Chem. Soc. 223, U444–U444 (2002).

    Google Scholar 

  14. Purrucker, O., Fortig, A., Jordan, R., Sackmann, E. & Tanaka, M. Control of frictional coupling of transmembrane cell receptors in model cell membranes with linear polymer spacers. Phys. Rev. Lett. 98 (2007).

  15. Thid, D. et al. Supported phospholipid bilayers as a platform for neural progenitor cell culture. J. Biomed. Mater. Res. 84, 940–953 (2008).

    Article  CAS  Google Scholar 

  16. Tu, R.S. & Tirrell, M. Bottom-up design of biomimetic assemblies. Adv. Drug Deliv. Rev. 56, 1537–1563 (2004).

    Article  CAS  PubMed  Google Scholar 

  17. Tamm, L.K. & McConnell, H.M. Supported phospholipid bilayers. Biophys. J. 47, 105–113 (1985).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Axelrod, D., Koppel, D.E., Schlessinger, J., Elson, E. & Webb, W.W. Mobility measurement by analysis of fluorescence photobleaching recovery kinetics. Biophys. J. 16, 1055–1069 (1976).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Richter, R., Mukhopadhyay, A. & Brisson, A. Pathways of lipid vesicle deposition on solid surfaces: a combined QCM-D and AFM study. Biophys. J. 85, 3035–3047 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Morigaki, K. & Tawa, K. Vesicle fusion studied by surface plasmon resonance and surface plasmon fluorescence spectroscopy. Biophys. J. 91, 1380–1387 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Reimhult, E., Larsson, C., Kasemo, B. & Hook, F. Simultaneous surface plasmon resonance and quartz crystal microbalance with dissipation monitoring measurements of biomolecular adsorption events involving structural transformations and variations in coupled water. Anal. Chem. 76, 7211–7220 (2004).

    Article  CAS  PubMed  Google Scholar 

  22. Oxhamre, C., Richter-Dahlfors, A., Zhdanov, V.P. & Kasemo, B. A minimal generic model of bacteria-induced intracellular Ca2+ oscillations in epithelial cells. Biophys. J. 88, 2976–2981 (2005).

    Article  CAS  PubMed  Google Scholar 

  23. Stroumpoulis, D., Parra, A. & Tirrell, M. A kinetic study of vesicle fusion on silicon dioxide surfaces by ellipsometry. AIChE J. 52, 2931–2937 (2006).

    Article  CAS  Google Scholar 

  24. Cho, N.J. et al. Alpha-helical peptide-induced vesicle rupture revealing new insight into the vesicle fusion process as monitored in situ by quartz crystal microbalance-dissipation and reflectometry. Anal. Chem. 81, 4752–4761 (2009).

    Article  CAS  PubMed  Google Scholar 

  25. Wang, G. et al. A combined reflectometry and quartz crystal microbalance with dissipation setup for surface interaction studies. Rev. Sci. Instrum. 79, 075107 (2008).

    Article  CAS  PubMed  Google Scholar 

  26. Anderson, T.H. et al. Formation of supported bilayers on silica substrates. Langmuir 25, 6997–7005 (2009).

    Article  CAS  PubMed  Google Scholar 

  27. Kanazawa, K. & Gordon, J. The oscillation frequency of a quartz resonator in contact with a liquid. Anal. Chim. Acta 175, 99–106 (1985).

    Article  CAS  Google Scholar 

  28. Kanazawa, K.K. & Reed, C.E. A new description for the viscoelastically loaded quartz resonator. Abstr. Pap. Am. Chem. Soc. 198, 89 Anyl (1989).

    Google Scholar 

  29. Rodahl, M. et al. Simultaneous frequency and dissipation factor QCM measurements of biomolecular adsorption and cell adhesion. Faraday Discuss. 107, 229–246 (1997).

    Article  CAS  Google Scholar 

  30. Rodahl, M., Hook, F. & Kasemo, B. QCM operation in liquids: an explanation of measured variations in frequency and Q factor with liquid conductivity. Anal. Chem. 68, 2219–2227 (1996).

    Article  CAS  PubMed  Google Scholar 

  31. Rodahl, M., Hook, F., Krozer, A., Brzezinski, P. & Kasemo, B. Quartz-crystal microbalance setup for frequency and q-factor measurements in gaseous and liquid environments. Rev. Sci. Instrum. 66, 3924–3930 (1995).

    Article  CAS  Google Scholar 

  32. Rodahl, M. & Kasemo, B. Frequency and dissipation-factor responses to localized liquid deposits on a QCM electrode. Sens. Actuators B Chem. 37, 111–116 (1996).

    Article  CAS  Google Scholar 

  33. Rodahl, M. & Kasemo, B. On the measurement of thin liquid overlayers with the quartz-crystal microbalance. Sens. Actuators A Phys. 54, 448–456 (1996).

    Article  CAS  Google Scholar 

  34. Rodahl, M. & Kasemo, B. A simple setup to simultaneously measure the resonant frequency and the absolute dissipation factor of a quartz crystal microbalance. Rev. Sci. Instrum. 67, 3238–3241 (1996).

    Article  CAS  Google Scholar 

  35. Cho, N.J., Kanazawa, K.K., Glenn, J.S. & Frank, C.W. Employing two different quartz crystal microbalance models to study changes in viscoelastic behavior upon transformation of lipid vesicles to a bilayer on a gold surface. Anal. Chem. 79, 7027–7035 (2007).

    Article  CAS  PubMed  Google Scholar 

  36. Hook, F. & Kasemo, B. The QCM-D technique for probing biomacromolecular recognition reactions. Springer Ser. Chem. Sens. Biosens. 5, 425–447 (2007).

    Article  CAS  Google Scholar 

  37. Keller, C.A. & Kasemo, B. Surface specific kinetics of lipid vesicle adsorption measured with a quartz crystal microbalance. Biophys. J. 75, 1397–1402 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Keller, C.A., Glasmastar, K., Zhdanov, V.P. & Kasemo, B. Formation of supported membranes from vesicles. Phys. Rev. Lett. 84, 5443–5446 (2000).

    Article  CAS  PubMed  Google Scholar 

  39. Lee, S.E. et al. Biologically functional cationic phospholipid-gold nanoplasmonic carriers of RNA. J. Am. Chem. Soc. 131, 14066–14074 (2009).

    Article  CAS  PubMed  Google Scholar 

  40. Larsson, E.M., Edvardsson, M.E., Langhammer, C., Zoric, I. & Kasemo, B. A combined nanoplasmonic and electrodeless quartz crystal microbalance setup. Rev. Sci. Instrum. 80, 125105 (2009).

    Article  CAS  PubMed  Google Scholar 

  41. Jonsson, M.P., Jonsson, P. & Hook, F. Simultaneous nanoplasmonic and quartz crystal microbalance sensing: analysis of biomolecular conformational changes and quantification of the bound molecular mass. Anal. Chem. 80, 7988–7995 (2008).

    Article  CAS  PubMed  Google Scholar 

  42. Jonsson, M.P., Jonsson, P., Dahlin, A.B. & Hook, F. Supported lipid bilayer formation and lipid-membrane-mediated biorecognition reactions studied with a new nanoplasmonic sensor template. Nano Lett. 7, 3462–3468 (2007).

    Article  CAS  PubMed  Google Scholar 

  43. Misra, N. et al. Bioelectronic silicon nanowire devices using functional membrane proteins. Proc. Natl Acad. Sci. USA 106, 13780–13784 (2009).

    Article  PubMed  Google Scholar 

  44. Kasemo, B. & Lausmaa, J. Material-tissue interfaces: the role of surface properties and processes. Environ. Health Perspect. 102 (Suppl 5): 41–45 (1994).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Seifert, U., Berndl, K. & Lipowsky, R. Shape transformations of vesicles—phase-diagram for spontaneous-curvature and bilayer-coupling models. Phys. Rev. A 44, 1182–1202 (1991).

    Article  CAS  PubMed  Google Scholar 

  46. Shillcock, J.C. & Lipowsky, R. Tension-induced fusion of bilayer membranes and vesicles. Nat. Mater. 4, 225–228 (2005).

    Article  CAS  PubMed  Google Scholar 

  47. Polozov, I.V., Anantharamaiah, G.M., Segrest, J.P. & Epand, R.M. Osmotically induced membrane tension modulates membrane permeabilization by class L amphipathic helical peptides: nucleation model of defect formation. Biophys. J. 81, 949–959 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Lasic, D.D. The mechanism of vesicle formation. Biochem. J. 256, 1–11 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Lasic, D.D. & Martin, F.J. On the mechanism of vesicle formation. J. Memb. Sci. 50, 215–222 (1990).

    Article  CAS  Google Scholar 

  50. Watwe, R.M. & Bellare, J.R. Manufacture of liposomes—a review. Curr. Sci. 68, 715–724 (1995).

    CAS  Google Scholar 

  51. Winterhalter, M. & Lasic, D.D. Liposome stability and formation—experimental parameters and theories on the size distribution. Chem. Phys. Lipids 64, 35–43 (1993).

    Article  CAS  PubMed  Google Scholar 

  52. Armengol, X. & Estelrich, J. Physical stability of different liposome compositions obtained by extrusion method. J. Microencapsul. 12, 525–535 (1995).

    Article  CAS  PubMed  Google Scholar 

  53. Shingles, R. & McCarty, R.E. Production of membrane vesicles by extrusion: size distribution, enzyme activity, and orientation of plasma membrane and chloroplast inner-envelope membrane vesicles. Anal. Biochem. 229, 92–98 (1995).

    Article  CAS  PubMed  Google Scholar 

  54. Seantier, B. & Kasemo, B. Influence of mono- and divalent ions on the formation of supported phospholipid bilayers via vesicle adsorption. Langmuir 25, 5767–5772 (2009).

    Article  CAS  PubMed  Google Scholar 

  55. Kasemo, B. Biocompatibility of titanium implants: surface science aspects. J. Prosthet. Dent. 49, 832–837 (1983).

    Article  CAS  PubMed  Google Scholar 

  56. Kasemo, B. & Lausmaa, J. Aspects of surface physics on titanium implants. Swed. Dent. J. Suppl. 28, 19–36 (1985).

    CAS  PubMed  Google Scholar 

  57. Greve, F. et al. Molecular design and characterization of the neuron-microelectrode array interface. Biomaterials 28, 5246–5258 (2007).

    Article  CAS  PubMed  Google Scholar 

  58. Reimhult, E., Hook, F. & Kasemo, B. Vesicle adsorption on SiO2 and TiO2: Dependence on vesicle size. J. Chem. Phys. 117, 7401–7404 (2002).

    Article  CAS  Google Scholar 

  59. Modin, C. et al. QCM-D studies of attachment and differential spreading of pre-osteoblastic cells on Ta and Cr surfaces. Biomaterials 27, 1346–1354 (2006).

    Article  CAS  PubMed  Google Scholar 

  60. Ekeroth, J., Konradsson, P. & Höök, F. Bivalent-ion-mediated vesicle adsorption and controlled supported phospholipid bilayer formation on molecular phosphate and sulfate layers on gold. Langmuir 18, 7923–7929 (2002).

    Article  CAS  Google Scholar 

  61. Rossetti, F.F., Textor, M. & Reviakine, I. Asymmetric distribution of phosphatidyl serine in supported phospholipid bilayers on titanium dioxide. Langmuir 22, 3467–3473 (2006).

    Article  CAS  PubMed  Google Scholar 

  62. Rossetti, F.F., Bally, M., Michel, R., Textor, M. & Reviakine, I. Interactions between titanium dioxide and phosphatidyl serine-containing liposomes: formation and patterning of supported phospholipid bilayers on the surface of a medically relevant material. Langmuir 21, 6443–6450 (2005).

    Article  CAS  PubMed  Google Scholar 

  63. Kunze, A., Sjovall, P., Kasemo, B. & Svedhem, S. In situ preparation and modification of supported lipid layers by lipid transfer from vesicles studied by QCM-D and TOF-SIMS. J. Am. Chem. Soc. 131, 2450–2451 (2009).

    Article  CAS  PubMed  Google Scholar 

  64. Jackman, J.A., Cho, N.J., Duran, R.S. & Frank, C.W. Interfacial binding dynamics of bee venom phospholipase A(2) investigated by dynamic light scattering and quartz crystal microbalance. Langmuir 26, 4103–4112 (2010).

    Article  CAS  PubMed  Google Scholar 

  65. Cho, N.J. et al. Quartz resonator signatures under Newtonian liquid loading for initial instrument check. J. Colloid Interface Sci. 315, 248–254 (2007).

    Article  CAS  PubMed  Google Scholar 

  66. Reimhult, E., Hook, F. & Kasemo, B. Temperature dependence of formation of a supported phospholipid bilayer from vesicles on SiO2. Phy. Rev. E 66 (2002).

  67. Reimhult, E., Hook, F. & Kasemo, B. Intact vesicle adsorption and supported biomembrane formation from vesicles in solution: Influence of surface chemistry, vesicle size, temperature, and osmotic pressure. Langmuir 19, 1681–1691 (2003).

    Article  CAS  Google Scholar 

  68. Zhdanov, V.P., Dimitrievski, K. & Kasemo, B. Adsorption and spontaneous rupture of vesicles composed of two types of lipids. Langmuir 22, 3477–3480 (2006).

    Article  CAS  PubMed  Google Scholar 

  69. Dimitrievski, K., Reimhult, E., Kasemo, B. & Zhdanov, V.P. Simulations of temperature dependence of the formation of a supported lipid bilayer via vesicle adsorption. Colloids Surf. B Biointerfaces 39, 77–86 (2004).

    Article  CAS  PubMed  Google Scholar 

  70. Dimitrievski, K. & Kasemo, B. Influence of lipid vesicle composition and surface charge density on vesicle adsorption events: a kinetic phase diagram. Langmuir 25, 8865–8869 (2009).

    Article  CAS  PubMed  Google Scholar 

  71. Sauerbrey, G. Verwendung von Schwingquarzen zur Wagung dunner Schichten und zur Mikrowagung. Z. Phys. 155, 206–222 (1959).

    Article  CAS  Google Scholar 

  72. Voinova, M.V., Rodahl, M., Jonson, M. & Kasemo, B. Viscoelastic acoustic response of layered polymer films at fluid-solid interfaces: continuum mechanics approach. Phys. Scr. 59, 391–396 (1999).

    Article  CAS  Google Scholar 

  73. Johannsmann, D., Reviakine, I. & Richter, R.P. Dissipation in films of adsorbed nanospheres studied by quartz crystal microbalance (QCM). Anal. Chem. 81, 8167–8176 (2009).

    Article  CAS  PubMed  Google Scholar 

  74. Richter, R.P. & Brisson, A.R. Following the formation of supported lipid bilayers on mica: a study combining AFM, QCM-D, and ellipsometry. Biophys. J. 88, 3422–3433 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Kasemo, B. & Lausmaa, J. Biomaterial and implant surfaces: on the role of cleanliness, contamination, and preparation procedures. J. Biomed. Mater. Res. 22 (A2 Suppl): 145–158 (1988).

    Article  CAS  PubMed  Google Scholar 

  76. Hook, F. et al. A comparative study of protein adsorption on titanium oxide surfaces using in situ ellipsometry, optical waveguide lightmode spectroscopy, and quartz crystal microbalance/dissipation. Colloids Surf. B Biointerfaces 24, 155–170 (2002).

    Article  CAS  Google Scholar 

  77. Mashaghi, A., Swann, M., Popplewell, J., Textor, M. & Reimhult, E. Optical anisotropy of supported lipid structures probed by waveguide spectroscopy and its application to study of supported lipid bilayer formation kinetics. Anal. Chem. 80, 3666–3676 (2008).

    Article  CAS  PubMed  Google Scholar 

  78. Richter, R.P., Maury, N. & Brisson, A.R. On the effect of the solid support on the interleaflet distribution of lipids in supported lipid bilayers. Langmuir 21, 299–304 (2005).

    Article  CAS  PubMed  Google Scholar 

  79. Stelzle, M. & Sackmann, E. Sensitive detection of protein adsorption to supported lipid bilayers by frequency-dependent capacitance measurements and microelectrophoresis. Biochim. Biophys. Acta. 981, 135–142 (1989).

    Article  CAS  PubMed  Google Scholar 

  80. Cho, N.J., Cho, S.J., Hardesty, J.O., Glenn, J.S. & Frank, C.W. Creation of lipid partitions by deposition of amphipathic viral peptides. Langmuir 23, 10855–10863 (2007).

    Article  CAS  PubMed  Google Scholar 

  81. Meyvis, T.K., De Smedt, S.C., Van Oostveldt, P. & Demeester, J. Fluorescence recovery after photobleaching: a versatile tool for mobility and interaction measurements in pharmaceutical research. Pharm. Res. 16, 1153–1162 (1999).

    Article  CAS  PubMed  Google Scholar 

  82. Bailey, L.E. et al. Multistep adsorption of perfluoropolyether hard-disk lubricants onto amorphous carbon substrates from solution. Langmuir 17, 8145–8155 (2001).

    Article  CAS  Google Scholar 

  83. Bobardt, M.D. et al. Hepatitis C virus NS5A anchor peptide disrupts human immunodeficiency virus. Proc. Natl Acad. Sci. USA 105, 5525–5530 (2008).

    Article  PubMed  Google Scholar 

  84. Cho, N.J. et al. The mechanism of an amphipathic α-helical peptide's antiviral activity involves size-dependent virus particle lysis. ACS Chem. Biol. 4, 1061–1067 (2009).

    Article  CAS  PubMed  Google Scholar 

  85. Han, X. et al. Supported bilayer lipid membrane arrays on photopatterned self-assembled monolayers. Chemistry 13, 7957–7964 (2007).

    Article  CAS  PubMed  Google Scholar 

  86. Purrucker, O. et al. Polymer-tethered membranes as quantitative models for the study of integrin-mediated cell adhesion. Soft Matter 3, 333–336 (2007).

    Article  CAS  Google Scholar 

  87. Sklan, E.H. et al. A Rab-GAP TBC domain protein binds hepatitis C virus NS5A and mediates viral replication. J. Virol. 81, 11096–11105 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Yu, X. et al. Cryo-electron microscopy and three-dimensional reconstructions of hepatitis C virus particles. Virology 367, 126–134 (2007).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

N.-J.C. is a recipient of an American Liver Foundation Postdoctoral Fellowship Award and a Global Roche Postdoctoral Fellowship. We wish to thank all the members of the Frank, Kasemo and Hook laboratories, who laid the foundation for future studies in the biomimetic sensor field.

Author information

Authors and Affiliations

Authors

Contributions

N.-J.C. and F.H. conceived and designed the protocol and wrote the paper; C.W.F. and B.K. contributed to data analysis and paper editing.

Corresponding authors

Correspondence to Nam-Joon Cho or Fredrik Höök.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cho, NJ., Frank, C., Kasemo, B. et al. Quartz crystal microbalance with dissipation monitoring of supported lipid bilayers on various substrates. Nat Protoc 5, 1096–1106 (2010). https://doi.org/10.1038/nprot.2010.65

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2010.65

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing