Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Immunogenicity and protective efficacy of a tuberculosis DNA vaccine

Abstract

Tuberculosis is the most widespread and lethal infectious disease affecting humans. Immunization of mice with plasmid DNA constructs encoding one of the secreted components of Mycobacterium tuberculosis, antigen 85 (Ag85), induced substantial humoral and cell–mediated immune responses and conferred significant protection against challenge with live M. tuberculosis and M. bovis bacille Calmette–Guérin (BCG). These results indicate that immunization with DNA encoding a mycobacterial antigen provides an efficient and simple method for generating protective immunity and that this technique may be useful for defining the protective antigens of M. tuberculosis, leading to the development of a more effective vaccine.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Donnelly, J.J., Ulmer, J.B. & Liu, M.A. Immunization with DNA. J. Immunol. Methods 176, 145–152 (1994).

    Article  CAS  Google Scholar 

  2. Ulmer, J.B. et al. Heterologous protection against influenza by injection of DNA encoding a viral protein. Science 259, 1745–1749 (1993).

    Article  CAS  Google Scholar 

  3. Andersen, P. Effective vaccination of mice against Mycobacterium tuberculosis infection with a soluble mixture of secreted mycobacterial proteins. Infect. Immun. 62, 2536–2544 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Wiker, H.G. & Harboe, M. The antigen 85 complex: A major secretion product of Mycobacterium tuberculosis . Microbiol. Rev. 56, 648–661 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Launois, P. et al. T cell epitope mapping of the major secreted mycobacterial antigen Ag85A in tuberculosis and leprosy. Infect. Immun. 62, 3679–3687 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Launois, P. et al. The major secreted antigen complex (Ag85) from M. bovis bacille Calmette-Guérin is associated with protective T cells in leprosy: A follow-up study of 45 household contacts. J. Infect. Dis. 167, 1160–1167 (1993).

    Article  CAS  Google Scholar 

  7. Kaufmann, S.H.E. Immunity to intracellular bacteria. Annu. Rev. Immunol. 11, 129–190 (1993).

    Article  CAS  Google Scholar 

  8. Haanen, J.B.A.G. et al. Selection of a human T helper type-1 like T cell subset by mycobacteria. J. Exp. Med. 174, 583–592 (1991).

    Article  CAS  Google Scholar 

  9. Yamamura, M. et al. Defining protective responses to pathogens: Cytokine profiles in leprosy lesions. Science 254, 277–279 (1991).

    Article  CAS  Google Scholar 

  10. Huygen, K. et al. Spleen cell cytokine secretion in Mycobacterium bovis BCG infected mice. Infect. Immun. 60 2880–2886 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Nathan, C.F., Murray, H.W., Wiebe, M.E. & Rubin, B.Y. Identification of interferon-γ as the lymphokine that activates human macrophage oxidative metabolism and antimicrobial activity. J. Exp. Med. 158, 670–689 (1983).

    Article  CAS  Google Scholar 

  12. Dalton, D.K. et al. Multiple defects of immune cell function in mice disrupted interferon-γ genes. Science 259 1739–1742 (1993).

    Article  CAS  Google Scholar 

  13. Flynn, J.L. et al. Role for interferon-gamma in resistance to Mycobacterium tuberculosis infection. J. Exp. Med. 178, 2249–2254 (1993).

    Article  CAS  Google Scholar 

  14. Cooper, A.M. et al. Disseminated tuberculosis in interferon-gamma gene disrupted mice. J. Exp. Med. 178, 2243–2247 (1993).

    Article  CAS  Google Scholar 

  15. Flynn, J.L. et al. Tumor necrosis factor-α is required in the protective immune response against Mycobacterium tuberculosis in mice. Immunity 2 561–572 (1995).

    Article  CAS  Google Scholar 

  16. Appelberg, R. & Orme, I.M. Effector mechanisms involved in cytokine-mediated bacteriostasis of Mycobacterium avium infections in murine macrophages. Immunology 80, 352–359 (1993).

  17. Denis, M. & Ghadirian, E. Granulocyte-macrophage colony-stimulating factor restricts growth of tubercle bacilli in human macrophages. Immunol. Lett. 24, 203–206 (1990).

    Article  CAS  Google Scholar 

  18. Flynn, J.L., Goldstein, M.A., Treibold, K.J., Roller, B. & Bloom, B.R. Major histocompatibility complex class I-restricted T cells are required for resistance to Mycobacterium tuberculosis . Proc. Natl. Acad. Sci. USA 89, 12013–12017 (1992).

    Article  CAS  Google Scholar 

  19. Silva, C.L. et al. Protection against tuberculosis by bone marrow cells expressing mycobacterial hsp65. Immunology 86, 519–524 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Horwitz, M.A., Lee, B-W.E., Dillon, B.J. & Harth, G. Protective immunity against tuberculosis induced by vaccination with major extracellular proteins of Mycobacterium tuberculosis . Proc. Natl. Acad. Sci. USA 92, 1530–1534 (1995).

    Article  CAS  Google Scholar 

  21. Griffin, J.P. & Orme, I.M. Evolution of CD4 T-cell subsets following infection of naive and memory immune mice with Mycobacterium tuberculosis . Infect. Immun. 62, 1683–1690 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Barry, M.A., Lai, W.C. & Johnston, S.A. Protection against mycoplasma infection using expression-library immunization. Nature 377, 632–634 (1995).

    Article  CAS  Google Scholar 

  23. Borremans, M.L. et al. Cloning, sequence determination and expression of a 32-kDa protein gene from M. tuberculosis . Infect. Immun. 57, 3122–3130 (1989).

    Google Scholar 

  24. Shiver, J.W., Perry, H.C., Davies, M.E. & Liu, M.A. Immune responses to HIV gp120 elicited by DNA vaccination. in Vaccines 95 (eds. Chanock, R.M. Brown, F. Ginsberg, H.S. & Norrby, E.) 95–98 (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, 1995).

    Google Scholar 

  25. Montgomery, D.L. et al. Heterologous and homologous protection against influenza A by DNA vaccination: Optimization of DNA vectors. DNA Cell Biol. 12, 777–783 (1993).

    Article  CAS  Google Scholar 

  26. Huygen, K. et al. Mapping of TH1 helper T cell epitopes on major secreted mycobacterial antigen 85A in mice infected with live Mycobacterium bovis BCG. Infect. Immun. 62, 363–370 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Huygen, K. et al. Influence of genes from the major histocompatibility complex on the antibody repertoire against culture filtrate antigens in mice infected with live Mycobacterium bovis BCG. Infect. Immun. 61, 2687–2693 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. De Bruyn, J. et al. Purification, characterization and identification of a 32 kDa protein antigen of Mycobacterium bovis BCG. Microbial Pathogen. 2, 351–366 (1987).

    Article  CAS  Google Scholar 

  29. Denis, O., Latinne, D., Nisol, F. & Bazin, H. Resting B cells can act as antigen presenting cells in vivo and induce antibody responses. Int. Immunol. 5, 71–78 (1993).

    Article  CAS  Google Scholar 

  30. Parish, C.R. & Müllbacher, A. Automated colorimetric assay for T cell cytotoxicity. J. Immunol. Meth. 58, 225–237 (1983).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huygen, K., Content, J., Denis, O. et al. Immunogenicity and protective efficacy of a tuberculosis DNA vaccine. Nat Med 2, 893–898 (1996). https://doi.org/10.1038/nm0896-893

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm0896-893

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing