Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Essential role of MD-2 in LPS responsiveness and TLR4 distribution

Abstract

Toll-like receptor 4 (TLR4) mediates lipopolysaccharide (LPS) signaling in a variety of cell types. MD-2 is associated with the extracellular domain of TLR4 and augments TLR4-dependent LPS responses in vitro. We show here that MD-2−/− mice do not respond to LPS, do survive endotoxic shock but are susceptible to Salmonella typhimurium infection. We found that in MD-2−/− embryonic fibroblasts, TLR4 was not able to reach the plasma membrane and predominantly resided in the Golgi apparatus, whereas TLR4 was distributed at the leading edge surface of cells in wild-type embryonic fibroblasts. Thus, MD-2 is essential for correct intracellular distribution and LPS-recognition of TLR4.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Generation of MD-2−/− mice.
Figure 2: MD-2−/− B cells have impaired LPS responses.
Figure 3: LPS hyporesponsiveness of bone marrow–derived macrophages and DCs from MD-2−/− mice.
Figure 4: MD-2−/− mice have impaired LPS responses in vivo.
Figure 5: Intracellular distribution of TLR4 and organelle markers in MD-2−/− EF cells.

Similar content being viewed by others

References

  1. Janeway, C.A. Jr. & Medzhitov, R. Innate immune recognition. Annu. Rev. Immunol. 20, 197–216 (2002).

    Article  CAS  PubMed  Google Scholar 

  2. Aderem, A. & Ulevitch, R.J. Toll-like receptors in the induction of the innate immune response. Nature 406, 782–787 (2000).

    Article  CAS  PubMed  Google Scholar 

  3. Fearon, D.T. & Locksley, R.M. The instructive role of innate immunity in the acquired immune response. Science 272, 50–53 (1996).

    Article  CAS  PubMed  Google Scholar 

  4. Ulevitch, R.J. & Tobias, P.S. Receptor-dependent mechanisms of cell stimulation by bacterial endotoxin. Annu. Rev. Immunol. 13, 437–457 (1995).

    Article  CAS  PubMed  Google Scholar 

  5. Pugin, J. et al. CD14 is a pattern recognition receptor. Immunity 1, 509–516 (1994).

    Article  CAS  PubMed  Google Scholar 

  6. Haziot, A., Lin, X.Y., Zhang, F. & Goyert, S.M. The induction of acute phase proteins by lipopolysaccharide uses a novel pathway that is CD14-independent. J. Immunol. 160, 2570–2572 (1998).

    CAS  PubMed  Google Scholar 

  7. Medzhitov, R., Preston-Hurlburt, P. & Janeway, C.A. Jr. A human homologue of the Drosophila Toll protein signals activation of adaptive immunity. Nature 388, 394–397 (1997).

    Article  CAS  PubMed  Google Scholar 

  8. Rock, F.L., Hardiman, G., Timans, J.C., Kastelein, R.A. & Bazan, J.F. A family of human receptors structurally related to Drosophila Toll. Proc. Natl. Acad. Sci. USA 95, 588–593 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Poltorak, A. et al. Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene. Science 282, 2085–2088 (1998).

    Article  CAS  PubMed  Google Scholar 

  10. Qureshi, S.T. et al. Endotoxin-tolerant mice have mutations in Toll-like receptor 4 (Tlr4). J. Exp. Med. 189, 615–625 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Hoshino, K. et al. Cutting edge: Toll-like receptor 4 (TLR4)-deficient mice are hyporesponsive to lipopolysaccharide: evidence for TLR4 as the LPS gene product. J. Immunol. 162, 3749–3752 (1999).

    CAS  PubMed  Google Scholar 

  12. Miyake, K., Yamashita, Y., Hitoshi, Y., Takatsu, K. & Kimoto, M. Murine B cell proliferation and protection from apoptosis with an antibody against a 105-kD molecule: unresponsiveness of X-linked immunodeficient B cells. J. Exp. Med. 180, 1217–1224 (1994).

    Article  CAS  PubMed  Google Scholar 

  13. Chan, V.W.F. et al. The molecular mechanism of B cell activation by Toll-like receptor protein RP-105. J. Exp. Med. 188, 93–101 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Miura, Y. et al. RP105 is associated with MD-1 and transmits an activation signal in human B cells. Blood 92, 2815–2822 (1998).

    CAS  PubMed  Google Scholar 

  15. Miyake, K., Yamashita, Y., Ogata, M., Sudo, T. & Kimoto, M. RP105, a novel B cell surface molecule implicated in B cell activation, is a member of the leucine-rich repeat protein family. J. Immunol. 154, 3333–3340 (1995).

    CAS  PubMed  Google Scholar 

  16. Miyake, K. et al. Mouse MD-1, a molecule that is physically associated with RP105 and positively regulates its expression. J. Immunol. 161, 1348–1353 (1998).

    CAS  PubMed  Google Scholar 

  17. Nagai, Y. et al. Requirement for MD-1 in cell surface expression of RP105/CD180 and B-cell responsiveness to lipopolysaccharide. Blood 99, 1699–1705 (2002).

    Article  CAS  PubMed  Google Scholar 

  18. Shimazu, R. et al. MD-2, a molecule that confers lipopolysaccharide responsiveness on Toll-like receptor 4 J. Exp. Med. 189, 1777–1782 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. da Silva Correia, J. & Ulevitch, R.J. MD-2 and TLR4 N-linked glycosylations are important for a functional lipopolysaccharide receptor. J. Biol. Chem. 277, 1845–1854 (2002).

    Article  PubMed  Google Scholar 

  20. Ohnishi, T., Muroi, M. & Tanamoto, K.-I. N-Linked glycosylations at Asn26 and Asn114 of human MD-2 Are required for Toll-like receptor 4-mediated activation of NF-κB by lipopolysaccharide. J. Immunol. 167, 3354–3359 (2001).

    Article  CAS  PubMed  Google Scholar 

  21. Schromm, A.B. et al. Molecular genetic analysis of an endotoxin nonresponder mutant cell line: a point mutation in a conserved region of MD-2 abolishes endotoxin-induced signaling. J. Exp. Med. 194, 79–88 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Visintin, A., Mazzoni, A., Spitzer, J.A. & Segal, D.M. Secreted MD-2 is a large polymeric protein that efficiently confers lipopolysaccharide sensitivity to Toll-like receptor 4. Proc. Natl. Acad. Sci. USA 98, 12156–12161 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Yang, H., Young, D.W., Gusovsky, F. & Chow, J.C. Cellular events mediated by lipopolysaccharide-stimulated toll-like receptor 4. MD-2 is required for activation of mitogen-activated protein kinases and Elk-1. J. Biol. Chem. 275, 20861–20866 (2000).

    Article  CAS  PubMed  Google Scholar 

  24. Viriyakosol, S., Tobias, P.S., Kitchens, R.L. & Kirkland, T.N. MD-2 binds to bacterial lipopolysaccharide. J. Biol. Chem. 276, 38044–38051 (2001).

    CAS  PubMed  Google Scholar 

  25. Akashi, S. et al. Cutting edge: Cell surface expression and lipopolysaccharide signaling via the Toll-like receptor 4-MD-2 complex on mouse peritoneal macrophages. J. Immunol. 164, 3471–3475 (2000).

    Article  CAS  PubMed  Google Scholar 

  26. Kato, K., Morrison, A.M., Nakano, T., Tashiro, K. & Honjo, T. ESOP-1, a secreted protein expressed in the hematopoietic, nervous, and reproductive systems of embryonic and adult mice. Blood 96, 362–364 (2000).

    CAS  PubMed  Google Scholar 

  27. Takeuchi, O. et al. Differential roles of TLR2 and TLR4 in recognition of gram-negative and gram-positive bacterial cell wall components. Immunity 11, 443–451 (1999).

    Article  CAS  PubMed  Google Scholar 

  28. Bernheiden, M. et al. LBP, CD14, TLR4 and the murine innate immune response to a peritoneal Salmonella infection. J. Endotoxin Res. 7, 447–450 (2001).

    Article  CAS  PubMed  Google Scholar 

  29. Thieblemont, N. & Wright, S.D. Transport of bacterial lipopolysaccharide to the Golgi apparatus. J. Exp. Med. 190, 523–534 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Cole, L., Davies, D., Hyde, G.J. & Ashford, A.E. ER-Tracker dye and BODIPY-brefeldin A differentiate the endoplasmic reticulum and Golgi bodies from the tubular-vacuole system in living hyphae of Pisolithus tinctorius. J. Microsc. 197, 239–249 (2000).

    Article  CAS  PubMed  Google Scholar 

  31. Randow, F. & Seed, B. Endoplasmic reticulum chaperone gp96 is required for innate immunity but not cell viability. Nature Cell Biol. 3, 891–896 (2001).

    Article  CAS  PubMed  Google Scholar 

  32. Hornef, M.W., Frisan, T., Vandewalle, A., Normark, S. & Richter-Dahlfors, A. Receptor 4 resides in the Golgi apparatus and colocalizes with internalized lipopolysaccharide in intestinal epithelial cells. J. Exp. Med. 195, 559–570 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Underhill, D.M. et al. The Toll-like receptor 2 is recruited to macrophage phagosomes and discriminates between pathogens. Nature 401, 811–815 (1999).

    Article  CAS  PubMed  Google Scholar 

  34. Kawasaki, K. et al. Mouse Toll-like receptor 4.MD-2 complex mediates lipopolysaccharide-mimetic signal transduction by taxol. J. Biol. Chem. 275, 2251–2254 (2000).

    Article  CAS  PubMed  Google Scholar 

  35. Kawasaki, K., Gomi, K. & Nishijima, M. Cutting edge: Gln22 of mouse MD-2 is essential for species-specific lipopolysaccharide mimetic action of Taxol. J. Immunol. 166, 11–14 (2001).

    Article  CAS  PubMed  Google Scholar 

  36. Akashi, S. et al. Human MD-2 confers on mouse Toll-like receptor 4 species-specific lipopolysaccharide recognition. Int. Immunol. 13, 1595–1599 (2001).

    Article  CAS  PubMed  Google Scholar 

  37. Poltorak, A., Ricciardi-Castagnoli, P., Citterio, S. & Beutler, B. Physical contact between lipopolysaccharide and toll-like receptor 4 revealed by genetic complementation. Proc. Natl. Acad. Sci. USA 97, 2163–2167 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Lien, E. et al. Toll-like receptor 4 imparts ligand-specific recognition of bacterial lipopolysaccharide. J. Clin. Invest. 105, 497–504 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Hajjar, A.M., Ernst, R.K., Tsai, J.H., Wilson, C.B. & Miller, S.I. Toll-like receptor 4 recognizes host-specific LPS modifications. Nature Immunol. 3, 354–359 (2002).

    Article  CAS  Google Scholar 

  40. Yagi, T. et al. A novel negative selection for homologous recombinants using diphtheria toxin A fragment gene. Ann. Biochem. 214, 77–86 (1993).

    Article  CAS  Google Scholar 

  41. Niwa, H., Miyazaki, J. & Smith, A.G. Quantitative expression of Oct-3/4 defines differentiation, dedifferentiation or self-renewal of ES cells. Nature Genet. 24, 372–376 (2000).

    Article  CAS  PubMed  Google Scholar 

  42. Ogata, H. et al. The Toll-like receptor protein RP105 regulates lipopolysaccharide signaling in B cells. J. Exp. Med. 192, 23–30 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Inaba, K. et al. Generation of large numbers of dendritic cells from mouse bone marrow cultures supplemented with granulocyte/macrophage colony-stimulating factor. J. Exp. Med. 176, 1693–1702 (1992).

    Article  CAS  PubMed  Google Scholar 

  44. Morita, S., Kojima, T. & Kitamura, T. Plat-E: an efficient and stable system for transient packaging of retroviruses. Gene Ther. 7, 1063–1066 (2000).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank R. Horai, K. Fukudome and T. Furuta for technical suggestions; and P. W. Kincade and D. R. Liddicoat for helpful comments on the manuscript. Supported by Special Coordination Funds of the Ministry of Education, Culture, Sports, Science and Technology of the Japanese Government (Monbukagakusho); the Uehara Memorial Foundation; the Yamanouchi Foundation for Research on Metabolic Disorders; Mitsubishi Pharma; and Sankyo.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kensuke Miyake.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nagai, Y., Akashi, S., Nagafuku, M. et al. Essential role of MD-2 in LPS responsiveness and TLR4 distribution. Nat Immunol 3, 667–672 (2002). https://doi.org/10.1038/ni809

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni809

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing