Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Conditional deletion of Gata3 shows its essential function in TH1-TH2 responses

Abstract

Expression of the transcription factor GATA-3 is strongly associated with T helper type 2 (TH2) differentiation, but genetic evidence for its involvement in this process has been lacking. Here, we generated a conditional GATA-3-deficient mouse line. In vitro deletion of Gata3 diminished both interleukin 4 (IL-4)–dependent and IL-4-independent TH2 cell differentiation; without GATA-3, TH1 differentiation occurred in the absence of IL-12 and interferon-γ. Gata3 deletion limited the growth of TH2 cells but not TH1 cells. Deletion of Gata3 from established TH2 cells abolished IL-5 and IL-13 but not IL-4 production. In vivo deletion of Gata3 using OX40-Cre eliminated TH2 responses and allowed the development of interferon-γ-producing cells in mice infected with Nippostrongylus brasiliensis. Thus, GATA-3 serves as a principal switch in determining TH1-TH2 responses.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Generation and screening of floxed and deleted Gata3 alleles.
Figure 2: Both IL-4-dependent and IL-4-independent TH2 differentiation is considerably impaired in cells in which Gata3 has been deleted by hCre-GFP-RV.
Figure 3: GATA-3 is indispensable for IL-5 and IL-13 but not IL-4 production in TH2 lines and in TH2 cells generated in vivo.
Figure 4: GATA-3 is involved in TH2 but not TH1 cell proliferation.
Figure 5: Single-cell cloning after Gata3 deletion shows impaired TH2 but enhanced TH1 cytokine production.
Figure 6: Deletion of Gata3 causes TH1 differentiation in the absence of IL-12 and IFN-γ.
Figure 7: Deletion of Gata3 during in vivo T cell activation by OX40-Cre causes impaired TH2 responses to N. brasiliensis infection.

References

  1. Murphy, K.M. & Reiner, S.L. The lineage decisions of helper T cells. Nat. Rev. Immunol. 2, 933–944 (2002).

    Article  CAS  Google Scholar 

  2. Murphy, K.M. et al. Signaling and transcription in T helper development. Annu. Rev. Immunol. 18, 451–494 (2000).

    Article  CAS  Google Scholar 

  3. Nelms, K., Keegan, A.D., Zamorano, J., Ryan, J.J. & Paul, W.E. The IL-4 receptor: Signaling mechanisms and biologic functions. Annu. Rev. Immunol. 17, 701–738 (1999).

    Article  CAS  Google Scholar 

  4. Shimoda, K. et al. Lack of IL-4-induced TH2 response and IgE class switching in mice with disrupted Stat6 gene. Nature 380, 630–633 (1996).

    Article  CAS  Google Scholar 

  5. Noben-Trauth, N. et al. An interleukin 4 (IL-4)-independent pathway for CD4+ T cell IL-4 production is revealed in IL-4 receptor-deficient mice. Proc. Natl. Acad. Sci. USA 94, 10838–10843 (1997).

    Article  CAS  Google Scholar 

  6. Jankovic, D. et al. Single cell analysis reveals that IL-4 receptor/STAT6 signaling is not required for the in vivo or in vitro development of CD4+ lymphocytes with a TH2 cytokine profile. J. Immunol. 164, 3047–3055 (2000).

    Article  CAS  Google Scholar 

  7. Finkelman, F.D. et al. STAT6 regulation of in vivo IL-4 responses. J. Immunol. 164, 2303–2310 (2000).

    Article  CAS  Google Scholar 

  8. Mohrs, M., Shinkai, K., Mohrs, K. & Locksley, R.M. Analysis of type 2 immunity in vivo with a bicistronic IL-4 reporter. Immunity 15, 303–311 (2001).

    Article  CAS  Google Scholar 

  9. Cote-Sierra, J. et al. Interleukin 2 plays a central role in TH2 differentiation. Proc. Natl. Acad. Sci. USA 101, 3880–3885 (2004).

    Article  CAS  Google Scholar 

  10. Zhu, J., Cote-Sierra, J., Guo, L. & Paul, W.E. STAT5 activation plays a critical role in TH2 differentiation. Immunity 19, 739–748 (2003).

    Article  CAS  Google Scholar 

  11. Zhang, D.H., Cohn, L., Ray, P., Bottomly, K. & Ray, A. Transcription factor GATA-3 is differentially expressed in murine TH1 and TH2 cells and controls TH2-specific expression of the interleukin-5 gene. J. Biol. Chem. 272, 21597–21603 (1997).

    Article  CAS  Google Scholar 

  12. Ouyang, W. et al. Inhibition of TH1 development mediated by GATA-3 through an IL-4 independent mechanism. Immunity 9, 745–755 (1998).

    Article  CAS  Google Scholar 

  13. Ouyang, W.J. et al. STAT6-independent GATA-3 autoactivation directs IL-4-independent TH2 development and commitment. Immunity 12, 27–37 (2000).

    Article  CAS  Google Scholar 

  14. Agarwal, S., Avni, O. & Rao, A. Cell-type-restricted binding of the transcription factor NFAT to a distal IL-4 enhancer in vivo. Immunity 12, 643–652 (2000).

    Article  CAS  Google Scholar 

  15. Takemoto, N. et al. Cutting edge: chromatin remodeling at the IL-4–IL-13 intergenic regulatory region for TH2-specific cytokine gene cluster. J. Immunol. 165, 6687–6691 (2000).

    Article  CAS  Google Scholar 

  16. Siegel, M.D., Zhang, D.H., Ray, P. & Ray, A. Activation of the interleukin-5 promoter by cAMP in murine EL-4 cells requires the GATA-3 and CLE0 elements. J. Biol. Chem. 270, 24548–24555 (1995).

    Article  CAS  Google Scholar 

  17. Klein-Hessling, S. et al. Protein kinase A regulates GATA-3-dependent activation of Il5 gene expression in TH2 cells. J. Immunol. 170, 2956–2961 (2003).

    Article  CAS  Google Scholar 

  18. Kishikawa, H., Sun, J., Choi, A., Miaw, S.C. & Ho, I.C. The cell type-specific expression of the murine Il13 gene is regulated by GATA-3. J. Immunol. 167, 4414–4420 (2001).

    Article  CAS  Google Scholar 

  19. Lavenu-Bombled, C., Trainor, C.D., Makeh, I., Romeo, P.H. & Max-Audit, I. Interleukin-13 gene expression is regulated by GATA-3 in T cells: role of a critical association of a GATA and two GATG motifs. J. Biol. Chem. 277, 18313–18321 (2002).

    Article  CAS  Google Scholar 

  20. Zheng, W. & Flavell, R.A. The transcription factor GATA-3 is necessary and sufficient for TH2 cytokine gene expression in CD4+ T cells. Cell 89, 587–596 (1997).

    Article  CAS  Google Scholar 

  21. Zhang, D.H. et al. Inhibition of allergic inflammation in a murine model of asthma by expression of a dominant-negative mutant of GATA-3. Immunity 11, 473–482 (1999).

    Article  CAS  Google Scholar 

  22. Pandolfi, P.P. et al. Targeted disruption of the Gata3 gene causes severe abnormalities in the nervous system and in fetal liver haematopoiesis. Nat. Genet. 11, 40–44 (1995).

    Article  CAS  Google Scholar 

  23. Ting, C.N., Olson, M.C., Barton, K.P. & Leiden, J.M. Transcription factor GATA-3 is required for development of the T-cell lineage. Nature 384, 474–478 (1996).

    Article  CAS  Google Scholar 

  24. Hernandez-Hoyos, G., Anderson, M.K., Wang, C., Rothenberg, E.V. & Alberola-Ila, J. GATA-3 expression is controlled by TCR signals and regulates CD4/CD8 differentiation. Immunity 19, 83–94 (2003).

    Article  CAS  Google Scholar 

  25. George, K.M. et al. Embryonic expression and cloning of the murine Gata3 gene. Development 120, 2673–2686 (1994).

    CAS  PubMed  Google Scholar 

  26. Lakso, M. et al. Efficient in vivo manipulation of mouse genomic sequences at the zygote stage. Proc. Natl. Acad. Sci. USA 93, 5860–5865 (1996).

    Article  CAS  Google Scholar 

  27. Van Esch, H. et al. Gata3 haplo-insufficiency causes human HDR syndrome. Nature 406, 419–422 (2000).

    Article  CAS  Google Scholar 

  28. Onishi, M. et al. Identification and characterization of a constitutively active STAT5 mutant that promotes cell proliferation. Mol. Cell Biol. 18, 3871–3879 (1998).

    Article  CAS  Google Scholar 

  29. Agarwal, S. & Rao, A. Modulation of chromatin structure regulates cytokine gene expression during T cell differentiation. Immunity 9, 765–775 (1998).

    Article  CAS  Google Scholar 

  30. Guo, L. et al. In TH2 cells the Il4 gene has a series of accessibility states associated with distinctive probabilities of IL-4 production. Proc. Natl. Acad. Sci. USA 99, 10623–10628 (2002).

    Article  CAS  Google Scholar 

  31. Lee, D.U., Agarwal, S. & Rao, A. TH2 lineage commitment and efficient IL-4 production involves extended demethylation of the IL-4 gene. Immunity 16, 649–660 (2002).

    Article  CAS  Google Scholar 

  32. Zhu, J. et al. Growth factor independent-1 induced by IL-4 regulates TH2 cell proliferation. Immunity 16, 733–744 (2002).

    Article  CAS  Google Scholar 

  33. Lee, P.P. et al. A critical role for Dnmt1 and DNA methylation in T cell development, function, and survival. Immunity 15, 763–774 (2001).

    Article  CAS  Google Scholar 

  34. Pai, S.Y. et al. Critical roles for transcription factor GATA-3 in thymocyte development. Immunity 19, 863–875 (2003).

    Article  CAS  Google Scholar 

  35. Paterson, D.J. et al. Antigens of activated rat T lymphocytes including a molecule of 50,000 Mr detected only on CD4 positive T blasts. Mol. Immunol. 24, 1281–1290 (1987).

    Article  CAS  Google Scholar 

  36. al-Shamkhani, A. et al. OX40 is differentially expressed on activated rat and mouse T cells and is the sole receptor for the OX40 ligand. Eur. J. Immunol. 26, 1695–1699 (1996).

    Article  CAS  Google Scholar 

  37. Szabo, S.J. et al. A novel transcription factor, T-bet, directs TH1 lineage commitment. Cell 100, 655–669 (2000).

    Article  CAS  Google Scholar 

  38. Szabo, S.J. et al. Distinct effects of T-bet in TH1 lineage commitment and IFN-γ production in CD4 and CD8 T cells. Science 295, 338–342 (2002).

    Article  CAS  Google Scholar 

  39. Pai, S.Y., Truitt, M.L. & Ho, I.C. GATA-3 deficiency abrogates the development and maintenance of T helper type 2 cells. Proc. Natl. Acad. Sci. USA 101, 1993–1998 (2004).

    Article  CAS  Google Scholar 

  40. Kim, J.I., Ho, I.C., Grusby, M.J. & Glimcher, L.H. The transcription factor c-Maf controls the production of interleukin-4 but not other Th2 cytokines. Immunity 10, 745–751 (1999).

    Article  CAS  Google Scholar 

  41. Zhang, D.H., Yang, L. & Ray, A. Differential responsiveness of the Il5 and Il4 genes to transcription factor GATA-3. J. Immunol. 161, 3817–3821 (1998).

    CAS  PubMed  Google Scholar 

  42. Usui, T., Nishikomori, R., Kitani, A. & Strober, W. GATA-3 suppresses TH1 development by downregulation of STAT4 and not through effects on IL-12Rβ2 chain or T-bet. Immunity 18, 415–428 (2003).

    Article  CAS  Google Scholar 

  43. Nagy, A., Rossant, J., Nagy, R., Abramow-Newerly, W. & Roder, J.C. Derivation of completely cell culture-derived mice from early-passage embryonic stem cells. Proc. Natl. Acad. Sci. USA 90, 8424–8428 (1993).

    Article  CAS  Google Scholar 

  44. Shimshek, D.R. et al. Codon-improved Cre recombinase (iCre) expression in the mouse. Genesis 32, 19–26 (2002).

    Article  CAS  Google Scholar 

  45. Zou, Y.R. et al. Epigenetic silencing of CD4 in T cells committed to the cytotoxic lineage. Nat. Genet. 29, 332–336 (2001).

    Article  CAS  Google Scholar 

  46. Zhu, J., Guo, L., Watson, C.J., Hu-Li, J. & Paul, W.E. STAT6 is necessary and sufficient for IL-4's role in TH2 differentiation and cell expansion. J. Immunol. 166, 7276–7281 (2001).

    Article  CAS  Google Scholar 

  47. Katona, I.M., Urban, J.F., Scher, I., Kanellopoulos, C. & Finkelman, F.D. Induction of an IgE immune response in mice infected with Nippostrongylus brasiliensis: characterization of lymphoid cells with intracytoplasmic or surface IgE. J. Immunol. 130, 350–356 (1983).

    CAS  PubMed  Google Scholar 

  48. Hu-Li, J. et al. Regulation of expression of IL-4 alleles: analysis using a chimeric GFP/IL-4 gene. Immunity 14, 1–11 (2001).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank H. Gu (Columbia University, New York, New York) for providing pL2-Neo vector and advice on targeting vector construction; H. Westphal (National Institute of Child Health and Human Development, Bethesda, Maryland) and C.B. Wilson (University of Washington, Seattle, Washington) for providing C57BL/6EIIa-Cre and CD4-Cre transgenic mice, respectively; D.R. Littman (New York University School of Medicine, New York, New York), T. Kitamura (University of Tokyo, Tokyo, Japan), K.M. Murphy (Washington University, St. Louis, Missouri), W.C. Sha (University of California, Berkeley, California) and G.P. Nolan (Stanford University School of Medicine, Stanford, California) for providing MSCV-Cre, pMX-STAT5A1*6, GFP-RV, MSCV-IRES-tNGFR (NGFR-RV) and the Phoenix-Eco packaging cell line, respectively; T. Moyer (National Institute of Allergy and Infectious Diseases, Flow Cytometry Unit) for cell sorting; and S. Starnes for editorial assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinfang Zhu.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhu, J., Min, B., Hu-Li, J. et al. Conditional deletion of Gata3 shows its essential function in TH1-TH2 responses. Nat Immunol 5, 1157–1165 (2004). https://doi.org/10.1038/ni1128

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni1128

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing