Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Lifetime and size of shallow magma bodies controlled by crustal-scale magmatism

Abstract

Magmatic processes on Earth govern the mass, energy and chemical transfer between the mantle, crust and atmosphere. To understand magma storage conditions in the crust that ultimately control volcanic activity and growth of continents, an evaluation of the mass and heat budget of the entire crustal column during magmatic episodes is essential. Here we use a numerical model to constrain the physical conditions under which both lower and upper crustal magma bodies form. We find that over long durations of intrusions (greater than 105 to 106 yr), extensive lower crustal mush zones develop, which modify the thermal budget of the upper crust and reduce the flux of magma required to sustain upper crustal magma reservoirs. Our results reconcile physical models of magma reservoir construction and field-based estimates of intrusion rates in numerous volcanic and plutonic localities. Young igneous provinces (less than a few hundred thousand years old) are unlikely to support large upper crustal reservoirs, whereas longer-lived systems (active for longer than 1 million years) can accumulate magma and build reservoirs capable of producing super-eruptions, even with intrusion rates smaller than 10−3 to 10−2 km3 yr−1. Hence, total duration of magmatism should be combined with the magma intrusion rates to assess the capability of volcanic systems to form the largest explosive eruptions on Earth.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Geometry of the numerical model.
Figure 2: Thermal evolution of the crust in response to lower crustal dyke and sill intrusions.
Figure 3: Normalized volume of magma in the upper crust as a function of magma flux and time.
Figure 4: Summary of the numerical results, showing duration and volume of upper crustal mush bodies (melt fraction >0.4) at different stages of maturation.

Similar content being viewed by others

References

  1. Sparks, R., Huppert, H., Turner, J., Sakuyama, M. & O’Hara, M. The fluid dynamics of evolving magma chambers [and discussion]. Phil. Trans. R. Soc. Lond. A 310, 511–534 (1984).

    Article  Google Scholar 

  2. Marsh, B. D. Magma chambers. Annu. Rev. Earth Planet. Sci. 17, 439–472 (1989).

    Article  Google Scholar 

  3. Bachmann, O. & Huber, C. Silicic magma reservoirs in the Earth’s crust. Am. Mineral. 101, 2377–2404 (2016).

    Article  Google Scholar 

  4. Bachmann, O. & Bergantz, G. W. Rhyolites and their source mushes across tectonic settings. J. Petrol. 49, 2277–2285 (2008).

    Article  Google Scholar 

  5. Claiborne, L. L., Miller, C. F., Flanagan, D. M., Clynne, M. A. & Wooden, J. L. Zircon reveals protracted magma storage and recycling beneath Mount St. Helens. Geology 38, 1011–1014 (2010).

    Article  Google Scholar 

  6. Costa, F. Residence times of silicic magmas associated with calderas. Dev. Volcanol. 10, 1–55 (2008).

    Article  Google Scholar 

  7. Eddy, M. P., Bowring, S. A., Miller, R. B. & Tepper, J. H. Rapid assembly and crystallization of a fossil large-volume silicic magma chamber. Geology 44, 331–334 (2016).

    Article  Google Scholar 

  8. Schoene, B. et al. Rates of magma differentiation and emplacement in a ballooning pluton recorded by U–Pb TIMS-TEA, Adamello batholith, Italy. Earth Planet. Sci. Lett. 355, 162–173 (2012).

    Article  Google Scholar 

  9. Memeti, V., Paterson, S., Matzel, J., Mundil, R. & Okaya, D. Magmatic lobes as “snapshots” of magma chamber growth and evolution in large, composite batholiths: an example from the Tuolumne intrusion, Sierra Nevada, California. Geol. Soc. Am. Bull. 122, 1912–1931 (2010).

    Article  Google Scholar 

  10. Barboni, M. & Schoene, B. Short eruption window revealed by absolute crystal growth rates in a granitic magma. Nat. Geosci. 7, 524–528 (2014).

    Article  Google Scholar 

  11. Pamukcu, A. S., Gualda, G. A., Bégué, F. & Gravley, D. M. Melt inclusion shapes: timekeepers of short-lived giant magma bodies. Geology 43, 947–950 (2015).

    Article  Google Scholar 

  12. Reid, M. R., Coath, C. D., Harrison, T. M. & McKeegan, K. D. Prolonged residence times for the youngest rhyolites associated with Long Valley Caldera: 230Th—238U ion microprobe dating of young zircons. Earth Planet. Sci. Lett. 150, 27–39 (1997).

    Article  Google Scholar 

  13. Druitt, T., Costa, F., Deloule, E., Dungan, M. & Scaillet, B. Decadal to monthly timescales of magma transfer and reservoir growth at a caldera volcano. Nature 482, 77–80 (2012).

    Article  Google Scholar 

  14. Parks, M. M. et al. Evolution of Santorini Volcano dominated by episodic and rapid fluxes of melt from depth. Nat. Geosci. 5, 749–754 (2012).

    Article  Google Scholar 

  15. Kaiser, J. F., de Silva, S., Schmitt, A. K., Economos, R. & Sunagua, M. Million-year melt-presence in monotonous intermediate magma for a volcanic–plutonic assemblage in the Central Andes: contrasting histories of crystal-rich and crystal-poor super-sized silicic magmas. Earth Planet. Sci. Lett. 457, 73–86 (2017).

    Article  Google Scholar 

  16. Keller, C. B., Schoene, B., Barboni, M., Samperton, K. M. & Husson, J. M. Volcanic-plutonic parity and the differentiation of the continental crust. Nature 523, 301–307 (2015).

    Article  Google Scholar 

  17. Deering, C. D. et al. Zircon record of the plutonic-volcanic connection and protracted rhyolite melt evolution. Geology G37539. 37531 (2016).

  18. Hildreth, W. Volcanological perspectives on Long Valley, Mammoth Mountain, and Mono Craters: several contiguous but discrete systems. J. Volcanol. Geotherm. Res. 136, 169–198 (2004).

    Article  Google Scholar 

  19. Gelman, S. E., Deering, C. D., Bachmann, O., Huber, C. & Gutiérrez, F. J. Identifying the crystal graveyards remaining after large silicic eruptions. Earth Planet. Sci. Lett. 403, 299–306 (2014).

    Article  Google Scholar 

  20. Lee, C. T. A. & Bachmann, O. How important is the role of crystal fractionation in making intermediate magmas? Insights from Zr and P systematics. Earth Planet. Sci. Lett. 393, 266–274 (2014).

    Article  Google Scholar 

  21. Menand, T., Annen, C. & de Saint Blanquat, M. Rates of magma transfer in the crust: insights into magma reservoir recharge and pluton growth. Geology 43, 199–202 (2015).

    Article  Google Scholar 

  22. Wotzlaw, J.-F., Bindeman, I. N., Stern, R. A., D’Abzac, F.-X. & Schaltegger, U. Rapid heterogeneous assembly of multiple magma reservoirs prior to Yellowstone supereruptions. Sci. Rep. 5, 14026 (2015).

    Article  Google Scholar 

  23. Annen, C. From plutons to magma chambers: thermal constraints on the accumulation of eruptible silicic magma in the upper crust. Earth Planet. Sci. Lett. 284, 409–416 (2009).

    Article  Google Scholar 

  24. Glazner, A. F., Bartley, J. M., Coleman, D. S., Gray, W. & Taylor, R. Z. Are plutons assembled over millions of years by amalgamation from small magma chambers? GSA Today 14, 4–12 (2004).

    Article  Google Scholar 

  25. White, S. M., Crisp, J. A. & Spera, F. J. Long-term volumetric eruption rates and magma budgets. Geochem. Geophys. Geosyst. 7, Q03010 (2006).

    Google Scholar 

  26. Paterson, S. R., Okaya, D., Memeti, V., Economos, R. & Miller, R. B. Magma addition and flux calculations of incrementally constructed magma chambers in continental margin arcs: combined field, geochronologic, and thermal modeling studies. Geosphere 7, 1439–1468 (2011).

    Article  Google Scholar 

  27. Lipman, P. W. & Bachmann, O. Ignimbrites to batholiths: integrating perspectives from geological, geophysical, and geochronological data. Geosphere 11, 705–743 (2015).

    Article  Google Scholar 

  28. Dimalanta, C., Taira, A., Yumul, G. P., Tokuyama, H. & Mochizuki, K. New rates of western Pacific island arc magmatism from seismic and gravity data. Earth Planet. Sci. Lett. 202, 105–115 (2002).

    Article  Google Scholar 

  29. Gelman, S. E., Gutiérrez, F. J. & Bachmann, O. On the longevity of large upper crustal silicic magma reservoirs. Geology 41, 759–762 (2013).

    Article  Google Scholar 

  30. Caricchi, L., Simpson, G. & Schaltegger, U. Zircons reveal magma fluxes in the Earth’s crust. Nature 511, 457–461 (2014).

    Article  Google Scholar 

  31. Jellinek, A. M. & DePaolo, D. J. A model for the origin of large silicic magma chambers: precursors of caldera-forming eruptions. Bull. Volcanol. 65, 363–381 (2003).

    Article  Google Scholar 

  32. Huang, H.-H. et al. The Yellowstone magmatic system from the mantle plume to the upper crust. Science 348, 773–776 (2015).

    Article  Google Scholar 

  33. Hildreth, W. & Moorbath, S. Crustal contributions to arc magmatism in the Andes of central Chile. Contrib. Mineral. Petrol. 98, 455–489 (1988).

    Article  Google Scholar 

  34. Kiser, E. et al. Magma reservoirs from the upper crust to the Moho inferred from high-resolution Vp and Vs models beneath Mount St. Helens, Washington State, USA. Geology 44, 411–414 (2016).

    Article  Google Scholar 

  35. Walker, B. A., Bergantz, G. W., Otamendi, J. E., Ducea, M. N. & Cristofolini, E. A. A MASH zone revealed: the mafic complex of the Sierra Valle Fértil. J. Petrol. 56, 1863–1896 (2015).

    Article  Google Scholar 

  36. Jagoutz, O. & Schmidt, M. W. The composition of the foundered complement to the continental crust and a re-evaluation of fluxes in arcs. Earth Planet. Sci. Lett. 371, 177–190 (2013).

    Article  Google Scholar 

  37. Coint, N., Barnes, C., Yoshinobu, A., Chamberlain, K. & Barnes, M. Batch-wise assembly and zoning of a tilted calc-alkaline batholith: field relations, timing, and compositional variation. Geosphere 9, 1729–1746 (2013).

    Article  Google Scholar 

  38. Grunder, A. L., Klemetti, E. W., Feeley, T. C. & McKee, C. M. Eleven million years of arc volcanism at the Aucanquilcha Volcanic Cluster, northern Chilean Andes: implications for the life span and emplacement of plutons. Trans. R. Soc. Edinburgh: Earth Sciences 97, 415–436 (2006).

    Article  Google Scholar 

  39. de Silva, S. L. & Gosnold, W. D. Episodic construction of batholiths: insights from the spatiotemporal development of an ignimbrite flare-up. J. Volcanol. Geotherm. Res. 167, 320–335 (2007).

    Article  Google Scholar 

  40. Dufek, J. & Bergantz, G. W. Lower crustal magma genesis and preservation: a stochastic framework for the evaluation of basalt–crust interaction. J. Petrol. 46, 2167–2195 (2005).

    Article  Google Scholar 

  41. Ducea, M. N., Bergantz, G. W., Crowley, J. L. & Otamendi, J. Ultrafast magmatic buildup and diversification to produce continental crust during subduction. Geology 45, 235–238 (2017).

    Article  Google Scholar 

  42. Quick, J. et al. Magmatic plumbing of a large Permian caldera exposed to a depth of 25 km. Geology 37, 603–606 (2009).

    Article  Google Scholar 

  43. Frazer, R. E., Coleman, D. S. & Mills, R. D. Zircon U-Pb geochronology of the Mount Givens Granodiorite: implications for the genesis of large volumes of eruptible magma. J. Geophys. Res. 119, 2907–2924 (2014).

    Article  Google Scholar 

  44. Barboni, M. et al. Warm storage for arc magmas. Proc. Natl Acad. Sci. USA 113, 13959–13964 (2016).

    Article  Google Scholar 

  45. de Saint Blanquat, M. et al. Multiscale magmatic cyclicity, duration of pluton construction, and the paradoxical relationship between tectonism and plutonism in continental arcs. Tectonophysics 500, 20–33 (2011).

    Article  Google Scholar 

  46. Degruyter, W., Huber, C., Bachmann, O., Cooper, K. M. & Kent, A. J. Magma reservoir response to transient recharge events: the case of Santorini volcano (Greece). Geology 44, 23–26 (2016).

    Article  Google Scholar 

  47. Annen, C., Blundy, J. D., Leuthold, J. & Sparks, R. S. J. Construction and evolution of igneous bodies: towards an integrated perspective of crustal magmatism. Lithos 230, 206–221 (2015).

    Article  Google Scholar 

  48. Lipman, P. W., Doe, B. R., Hedge, C. E. & Steven, T. A. Petrologic evolution of San-Juan volcanic field, southwestern Colorado: Pb and Sr isotope evidence. Geol. Soc. Am. Bull. 89, 59–82 (1978).

    Article  Google Scholar 

  49. Melekhova, E., Blundy, J., Robertson, R. & Humphreys, M. C. S. Experimental evidence for polybaric differentiation of primitive arc basalt beneath St. Vincent, Lesser Antilles. J. Petrol. 56, 161–192 (2015).

    Article  Google Scholar 

  50. Annen, C., Blundy, J. D. & Sparks, R. S. J. The genesis of intermediate and silicic magmas in deep crustal hot zones. J. Petrol. 47, 505–539 (2006).

    Article  Google Scholar 

  51. Karakas, O. & Dufek, J. Melt evolution and residence in extending crust: thermal modeling of the crust and crustal magmas. Earth Planet. Sci. Lett. 425, 131–144 (2015).

    Article  Google Scholar 

  52. Patankar, S. Numerical Heat Transfer and Fluid Flow (Chemical Rubber Company, 1980).

    Google Scholar 

  53. Pollack, H. N., Hurter, S. J. & Johnson, J. R. Heat flow from the Earth’s interior: analysis of the global data set. Rev. Geophys. 31, 267–280 (1993).

    Article  Google Scholar 

  54. Pollack, H. N. & Chapman, D. S. On the regional variation of heat flow, geotherms, and lithospheric thickness. Tectonophysics 38, 279–296 (1977).

    Article  Google Scholar 

  55. Davies, J. H. Global map of solid Earth surface heat flow. Geochem. Geophys. Geosyst. 14, 4608–4622 (2013).

    Article  Google Scholar 

  56. Price, R. C. et al. Crustal and mantle influences and U-Th-Ra disequilibrium in andesitic lavas of Ngauruhoe volcano, New Zealand. Chem. Geol. 277, 355–373 (2010).

    Article  Google Scholar 

  57. Bailey, J. C., Jensen, E. S., Hansen, A., Kann, A. D. J. & Kann, K. Formation of heterogeneous magmatic series beneath North Santorini, South Aegean island arc. Lithos 110, 20–36 (2009).

    Article  Google Scholar 

  58. Brady, R. J., Ducea, M. N., Kidder, S. B. & Saleeby, J. B. The distribution of radiogenic heat production as a function of depth in the Sierra Nevada Batholith, California. Lithos 86, 229–244 (2006).

    Article  Google Scholar 

  59. Kumar, P. S. & Reddy, G. K. Radioelements and heat production of an exposed Archaean crustal cross-section, Dharwar craton, South India. Earth Planet. Sci. Lett. 224, 309–324 (2004).

    Article  Google Scholar 

  60. Christensen, N. I. & Mooney, W. D. Seismic velocity structure and composition of the continental crust: a global view. J. Geophys. Res. 100, 9761–9788 (1995).

    Article  Google Scholar 

  61. L’Ecuyer, P. Efficient and portable combined random number generators. Commun. ACM 31, 742–751 (1988).

    Article  Google Scholar 

  62. Williams, M., Hanmer, S., Kopf, C. & Darrach, M. Syntectonic generation and segregation of tonalitic melts from amphibolite dikes in the lower crust, Striding-Athabasca mylonite zone, northern Saskatchewan. J. Geophys. Res. 100, 15717–15734 (1995).

    Article  Google Scholar 

  63. Sisson, T., Ratajeski, K., Hankins, W. & Glazner, A. Voluminous granitic magmas from common basaltic sources. Contrib. Mineral. Petrol. 148, 635–661 (2005).

    Article  Google Scholar 

  64. Piwinskii, A. & Wyllie, P. Experimental studies of igneous rock series: a zoned pluton in the Wallowa batholith, Oregon. J. Geol. 76, 205–234 (1968).

    Article  Google Scholar 

  65. Nandedkar, R. H., Ulmer, P. & Müntener, O. Fractional crystallization of primitive, hydrous arc magmas: an experimental study at 0.7 GPa. Contrib. Mineral. Petrol. 167, 1–27 (2014).

    Article  Google Scholar 

  66. Voller, V. & Swaminathan, C. General source-based method for solidification phase change. Numer. Heat Transfer 19B, 175–189 (1991).

    Article  Google Scholar 

  67. Degruyter, W. & Huber, C. A model for eruption frequency of upper crustal silicic magma chambers. Earth Planet. Sci. Lett. 403, 117–130 (2014).

    Article  Google Scholar 

  68. de Silva, S. L. & Gregg, P. M. Thermomechanical feedbacks in magmatic systems: implications for growth, longevity, and evolution of large caldera-forming magma reservoirs and their supereruptions. J. Volcanol. Geotherm. Res. 282, 77–91 (2014).

    Article  Google Scholar 

  69. Carrigan, C. R. Biot number and thermos bottle effect: implications for magma-chamber convection. Geology 16, 771–774 (1988).

    Article  Google Scholar 

  70. Paterson, S. R. & Ducea, M. N. Arc magmatic tempos: gathering the evidence. Elements 11, 91–98 (2015).

    Article  Google Scholar 

  71. Whittington, A. G., Hofmeister, A. M. & Nabelek, P. I. Temperature-dependent thermal diffusivity of the Earth’s crust and implications for magmatism. Nature 458, 319–321 (2009).

    Article  Google Scholar 

Download references

Acknowledgements

We thank C. Huber and G. Bergantz for their help over the years. O.K. and O.B. acknowledge the support from Swiss SNF project 200020_165501. O.K. and J.D. acknowledge the support from NSF grant EAR 1321843.

Author information

Authors and Affiliations

Authors

Contributions

The conceptual model was developed by O.K., W.D. and O.B. The original numerical model was developed by J.D. and adapted and executed by O.K. for this study. All authors contributed to the writing of the manuscript, with O.K. taking the lead.

Corresponding author

Correspondence to Ozge Karakas.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 338 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karakas, O., Degruyter, W., Bachmann, O. et al. Lifetime and size of shallow magma bodies controlled by crustal-scale magmatism. Nature Geosci 10, 446–450 (2017). https://doi.org/10.1038/ngeo2959

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ngeo2959

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing