Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

Agrobacterium tumefaciens-mediated transformation of filamentous fungi

An Erratum to this article was published on 01 November 1998

Abstract

Agrobacterium tumefaciens transfers part of its Ti plasmid, the T-DNA, to plant cells during tumorigenesis. It is routinely used for the genetic modification of a wide range of plant species. We report that A. tumefaciens can also transfer its T-DNA efficiently to the filamentous fungus Aspergillus awamori, demonstrating DNA transfer between a prokaryote and a filamentous fungus. We transformed both protoplasts and conidia with frequencies that were improved up to 600-fold as compared with conventional techniques for transformation of A. awamori protoplasts. The majority of the A. awamori transformants contained a single T-DNA copy randomly integrated at a chromosomal locus. The T-DNA integrated into the A awamori genome in a manner similar to that described for plants. We also transformed a variety of other filamentous fungi, including Aspergillus niger, Fusarium venenatum, Trichoderma reesei, Colletotrichum gloeosporioides, Neurospora crassa, and the mushroom Agaricus bisporus, demonstrating that transformation using A. tumefaciens is generally applicable to filamentous fungi.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Gouka, R.J., Punt, P.J. and Hondel, van den, A.M.J.J. 1997. Efficient production of secreted proteins by Aspergillus:progress, limitations and prospects. Applied Microbiology and Biotechnology. 47: 1–11.

    Article  CAS  Google Scholar 

  2. Ward, E.R. and Barnes, W.M. 1989. Transformation of Aspergillus awamori and A. nigerby electroporation. Experimental Mycology. 13: 289–293.

    Article  Google Scholar 

  3. Finkelstein, D.B. 1992 Transformation, pp. 113–156 in Biotechnology of filamen-tous fungi, technology and products, Finkelstein, D.B. and Ball, C. (eds.). Butterworth-Heinemann, Stoneham, MA.

    Chapter  Google Scholar 

  4. Hooykaas, P.J.J. and Beijersbergen, A.G.M. 1994 The virulence system of Agrobacterium tumefaciens. Annual Review of Phytopathology. 32: 157–179.

    Article  CAS  Google Scholar 

  5. Zambryski, P.C. 1992. Chronicles from the Agrobacterium-plant cell DNA transfer story. Annu. Rev. Plant Physiol. Plant Mol. Biol. 43: 465–490.

    Article  CAS  Google Scholar 

  6. Kado, C.I. 1991. Molecular mechanisms of crown gall tumorigenesis. Crit. Rev. Plant Sci. 10: 1–32.

    Article  CAS  Google Scholar 

  7. Winans, S.C. 1992. Two way chemical signalling in Agrobacterium-piant interac-tions. Microbiol. Rev. 5612–31.

    Google Scholar 

  8. De Block, M. 1993. The cell biology of plant transformation: current state, prob-lems, prospects and the implications for plant breeding. Euphitica. 71: 1–14.

    Article  CAS  Google Scholar 

  9. Hiei, Y., Ohta, S., Komari, T., and Kumashiro, T. 1994. Efficient transformation of rice (Oryza sativa L.) mediated by Agrobacteriumand sequence analysis of the boundaries of the T-DNA. Plant J. 6: 271–282.

    Article  CAS  Google Scholar 

  10. Ishida, Y., Saito, H., Ohta, S., Hiei, Y., Komari, T., and Kumashiro, T. 1996. High efficiency transformation of maize (Zea mays L.) mediated by Agrobacterium tumefaciens. Nat. Biotechnol. 14: 745–750.

    Article  CAS  Google Scholar 

  11. Bundock, R., Den Dulk-Ras., A., Beijersbergen, A.,and Hooykaas, P.J.J. 1995. Trans-kingdom T-DNA transfer from Agrobacterium tumefaciens to Saccharomyces cerevisiae. EMBOJ. 14: 3206–3214.

    Article  CAS  Google Scholar 

  12. Bundock, P. and Hooykaas, P.J.J. .J. 1996. Integration of Agrobacterium tumefa-ciensT-DNA in the Saccharomyces cerevisiaegenome by illegitimate recombination. Proc, Natl. Acad. Sci. USA 93: 15272–15275.

    Article  CAS  Google Scholar 

  13. Punt, P.J., Olivier, R.R., Dengemanse, M.A., Pouwels, P.H. and nd van den Hondel, A.M.J.J. . 1987. Transformation ofAspergillusbased on the hygromycin B resistance marker from Escherichia coli. Gene. 56: 117–124.

    Article  CAS  Google Scholar 

  14. Sevan, M. 1984. Binary Agrobacterium vectors for plant transformation. Nucleic Acids Res. 22: 8711–8721.

    Google Scholar 

  15. Den Dulk-Ras, A. and Hooykaas, P.J.J. . 1995. Electroporation of Agrobacterium tumefaciens, pp. 63–73 in Methods in molecular biology, Vol. 55: Plant cell elec-troporation and e/ectrofusion protocols. Nickoloff, J.A. (ed.). Humana Press, Totowa, NJ.

    Google Scholar 

  16. Beijersbergen, A., Den Dulk-Ras, A., Schilperoort, R.A. and Hooykaas, P.J.J. . 1992. Conjugative transfer by the virulence system of Agrobacterium tumefa-ciens. Science. 256: 1324–1327.

    Article  CAS  Google Scholar 

  17. Tinland, B. . 1992. The integration of T-DNA into plant genomes. Trends in Plant Science. 1: 178–184.

    Article  Google Scholar 

  18. Royer, J.C., Moyer, D.L., Reiwitch, S.G., Madden, M.S., Bech Jensen, E., Brown, S.H. et al. 1995.1 Fusarium graminearum A3/5 as a novel host for heterologous protein production. Bio/Technology. 13: 1479–1483.

    CAS  PubMed  Google Scholar 

  19. Van de Rhee, M.D., Graca, P.M.A., Huizing, H.J., and Mooibroek, H. . 1996. Transformation of the cultivated mushroom Agaricus bisporusto hygromycin B resistance. Mol. Gen. Genet. 250: 252–258.

    CAS  PubMed  Google Scholar 

  20. Maori, R.L., Schindler, M. and Kubicek, C.R. . 1994. Transformation of Trichoderma reesei based on hygromycin B resistance using homologous expression signals. Curr. Genet. 25: 567–570.

    Article  Google Scholar 

  21. Chakraborty, B.N., Patterson, N.A. and Kapoor, M. 1991.. An electroporation based system for high-efficiency transformation of germinated conidia of filamentous fungi. Can. J. Microbiol. 37: 858–863.

    Article  CAS  Google Scholar 

  22. Stephenson, S., Poplawski, A., Masel, A., Maclean, D. and Manners, J. 1994. Towards the cloning and genetic manipulation of pathogenecity genes in Colletotrichum gloeosporioides. Australian Soc. Biochem. Mol. Biol. 26: 1–31.

    Google Scholar 

  23. Walden, R., Hayashi, H. and Schell, J. . 1991. T-DNA as a gene tag. Plant J. 1: 281–288.

    Article  Google Scholar 

  24. Dunn-Coleman, N. and Prade, R. R. 1998. Toward a global filamentous fungus genome sequencing effort. Nat. Biotechnol. 16: 5

    Article  CAS  Google Scholar 

  25. Hamilton, C.M., Frary, A., Lewis, C. and Tanksley, S. . 1996. Stable transfer of intact high molecular weight DNA into plant chromosomes. Proc. Natl. Acad. Sci. USA 93: 9975–9979.

    Article  CAS  Google Scholar 

  26. Offringa, R. . 1992. Gene targeting in plants using Agrobacterium(PhD Thesis). Leiden University, Leiden, The Netherlands.

  27. Punt, P.J. and nd van den Hondel, C.A.M.J.J. nd van den Hondel, C. 1993. Transformation of filamentous fungi based on hygromycin B and phleomycin resistance markers. Methods Enzymol. 216: 447–457.

    Article  Google Scholar 

  28. Bennett, J.W. and Lasure, L.L. .L. 1991. Growth media, in More gene manipulations in fungi,Bennett, J.W. and Lasure, L.L. (eds.). Academic Press, San Diego, CA.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Groot, M., Bundock, P., Hooykaas, P. et al. Agrobacterium tumefaciens-mediated transformation of filamentous fungi. Nat Biotechnol 16, 839–842 (1998). https://doi.org/10.1038/nbt0998-839

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt0998-839

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing