Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Small interfering RNA against interleukin-5 decreases airway eosinophilia and hyper-responsiveness

Abstract

Interleukin-5 (IL-5) has been suggested to be involved in the development of airway hyper-responsiveness (AHR). Both clinical and experimental investigations have shown strong correlation between the presence of eosinophils and AHR. In this study, we used small interfering RNA (siRNA) as an approach to inhibiting the expression of IL-5 and reducing AHR. siRNAs targeting IL-5 were characterized in vitro, and siRNA-expressing lentiviruses were administered intratracheally to OVA-sensitized BALB/c mice. AHR, cytokine levels, serum levels of OVA-specific antibodies and infiltration of inflammatory cells were analyzed to investigate the effects of siRNA in an OVA-induced murine model of asthma. Lentivirus-delivered siRNA targeting IL-5 efficiently moderated the characteristics of asthma, including AHR, cellular infiltration of lung tissues, eotaxin levels in the bronchoalveolar lavage fluid and IL-5 mRNA levels in lungs in the mouse model of asthma. However, there was no effect on OVA-specific IgE level. These data demonstrate that siRNA delivered by the lentiviral system is an efficacious therapeutic strategy for asthma.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Kay AB, Phipps S, Robinson DS . A role for eosinophils in airway remodelling in asthma. Trends Immunol 2004; 25: 477–482.

    Article  CAS  Google Scholar 

  2. Bousquet J, Chanez P, Lacoste JY, Barneon G, Ghavanian N, Enander I et al. Eosinophilic inflammation in asthma. N Engl J Med 1990; 323: 1033–1039.

    Article  CAS  Google Scholar 

  3. Filley WV, Holley KE, Kephart GM, Gleich GJ . Identification by immunofluorescence of eosinophil granule major basic protein in lung tissues of patients with bronchial asthma. Lancet 1982; 2: 11–16.

    Article  CAS  Google Scholar 

  4. Sanderson CJ . Interleukin-5, eosinophils, and disease. Blood 1992; 79: 3101–3109.

    CAS  PubMed  Google Scholar 

  5. Yamaguchi Y, Suda T, Suda J, Eguchi M, Miura Y, Harada N et al. Purified interleukin 5 supports the terminal differentiation and proliferation of murine eosinophilic precursors. J Exp Med 1988; 167: 43–56.

    Article  CAS  Google Scholar 

  6. Sanderson CJ . Interleukin-5: an eosinophil growth and activation factor. Dev Biol Stand 1988; 69: 23–29.

    CAS  PubMed  Google Scholar 

  7. Collins PD, Marleau S, Griffiths-Johnson DA, Jose PJ, Williams TJ . Cooperation between interleukin-5 and the chemokine eotaxin to induce eosinophil accumulation in vivo. J Exp Med 1995; 182: 1169–1174.

    Article  CAS  Google Scholar 

  8. Wiktor-Jedrzejczak W . Eosinophil development. Immunol Today 1993; 14: 238.

    Article  CAS  Google Scholar 

  9. Fujisawa T, Kato Y, Nagase H, Atsuta J, Terada A, Iguchi K et al. Chemokines induce eosinophil degranulation through CCR-3. J Allergy Clin Immunol 2000; 106: 507–513.

    Article  CAS  Google Scholar 

  10. Dubucquoi S, Desreumaux P, Janin A, Klein O, Goldman M, Tavernier J et al. Interleukin 5 synthesis by eosinophils: association with granules and immunoglobulin-dependent secretion. J Exp Med 1994; 179: 703–708.

    Article  CAS  Google Scholar 

  11. Walker C, Virchow Jr JC, Bruijnzeel PL, Blaser K . T cell subsets and their soluble products regulate eosinophilia in allergic and nonallergic asthma. J Immunol 1991; 146: 1829–1835.

    CAS  PubMed  Google Scholar 

  12. Till S, Li B, Durham S, Humbert M, Assoufi B, Huston D et al. Secretion of the eosinophil-active cytokines interleukin-5, granulocyte/macrophage colony-stimulating factor and interleukin-3 by bronchoalveolar lavage CD4+ and CD8+ T cell lines in atopic asthmatics, and atopic and non-atopic controls. Eur J Immunol 1995; 25: 2727–2731.

    Article  CAS  Google Scholar 

  13. Humbert M, Corrigan CJ, Kimmitt P, Till SJ, Kay AB, Durham SR . Relationship between IL-4 and IL-5 mRNA expression and disease severity in atopic asthma. Am J Respir Crit Care Med 1997; 156: 704–708.

    Article  CAS  Google Scholar 

  14. Robinson D, Hamid Q, Bentley A, Ying S, Kay AB, Durham SR . Activation of CD4+ T cells, increased TH2-type cytokine mRNA expression, and eosinophil recruitment in bronchoalveolar lavage after allergen inhalation challenge in patients with atopic asthma. J Allergy Clin Immunol 1993; 92: 313–324.

    Article  CAS  Google Scholar 

  15. Kopf M, Brombacher F, Hodgkin PD, Ramsay AJ, Milbourne EA, Dai WJ et al. IL-5-deficient mice have a developmental defect in CD5+ B-1 cells and lack eosinophilia but have normal antibody and cytotoxic T cell responses. Immunity 1996; 4: 15–24.

    Article  CAS  Google Scholar 

  16. Foster PS, Hogan SP, Ramsay AJ, Matthaei KI, Young IG . Interleukin 5 deficiency abolishes eosinophilia, airways hyperreactivity, and lung damage in a mouse asthma model. J Exp Med 1996; 183: 195–201.

    Article  CAS  Google Scholar 

  17. Leckie MJ, ten Brinke A, Khan J, Diamant Z, O’Connor BJ, Walls CM et al. Effects of an interleukin-5 blocking monoclonal antibody on eosinophils, airway hyper-responsiveness, and the late asthmatic response. Lancet 2000; 356: 2144–2148.

    Article  CAS  Google Scholar 

  18. Kips JC, O’Connor BJ, Langley SJ, Woodcock A, Kerstjens HA, Postma DS et al. Effect of SCH55700, a humanized anti-human interleukin-5 antibody, in severe persistent asthma: a pilot study. Am J Respir Crit Care Med 2003; 167: 1655–1659.

    Article  Google Scholar 

  19. Buttner C, Lun A, Splettstoesser T, Kunkel G, Renz H . Monoclonal anti-interleukin-5 treatment suppresses eosinophil but not T-cell functions. Eur Respir J 2003; 21: 799–803.

    Article  CAS  Google Scholar 

  20. Oldhoff JM, Darsow U, Werfel T, Katzer K, Wulf A, Laifaoui J et al. Anti-IL-5 recombinant humanized monoclonal antibody (mepolizumab) for the treatment of atopic dermatitis. Allergy 2005; 60: 693–696.

    Article  CAS  Google Scholar 

  21. Popescu FD . Antisense- and RNA interference-based therapeutic strategies in allergy. J Cell Mol Med 2005; 9: 840–853.

    Article  CAS  Google Scholar 

  22. Lee HJ, Koyano-Nakagawa N, Naito Y, Nishida J, Arai N, Arai K et al. cAMP activates the IL-5 promoter synergistically with phorbol ester through the signaling pathway involving protein kinase A in mouse thymoma line EL-4. J Immunol 1993; 151: 6135–6142.

    CAS  PubMed  Google Scholar 

  23. Wang JM, Rambaldi A, Biondi A, Chen ZG, Sanderson CJ, Mantovani A . Recombinant human interleukin 5 is a selective eosinophil chemoattractant. Eur J Immunol 1989; 19: 701–705.

    Article  CAS  Google Scholar 

  24. Dorman SC, Sehmi R, Gauvreau GM, Watson RM, Foley R, Jones GL et al. Kinetics of bone marrow eosinophilopoiesis and associated cytokines after allergen inhalation. Am J Respir Crit Care Med 2004; 169: 565–572.

    Article  Google Scholar 

  25. Park CS, Choi YS, Ki SY, Moon SH, Jeong SW, Uh ST et al. Granulocyte macrophage colony-stimulating factor is the main cytokine enhancing survival of eosinophils in asthmatic airways. Eur Respir J 1998; 12: 872–878.

    Article  CAS  Google Scholar 

  26. Kung TT, Stelts DM, Zurcher JA, Adams III GK, Egan RW, Kreutner W et al. Involvement of IL-5 in a murine model of allergic pulmonary inflammation: prophylactic and therapeutic effect of an anti-IL-5 antibody. Am J Respir Cell Mol Biol 1995; 13: 360–365.

    Article  CAS  Google Scholar 

  27. Corry DB, Folkesson HG, Warnock ML, Erle DJ, Matthay MA, Wiener-Kronish JP et al. Interleukin 4, but not interleukin 5 or eosinophils, is required in a murine model of acute airway hyperreactivity. J Exp Med 1996; 183: 109–117.

    Article  CAS  Google Scholar 

  28. Garrett JK, Jameson SC, Thomson B, Collins MH, Wagoner LE, Freese DK et al. Anti-interleukin-5 (mepolizumab) therapy for hypereosinophilic syndromes. J Allergy Clin Immunol 2004; 113: 115–119.

    Article  CAS  Google Scholar 

  29. Gevaert P, Lang-Loidolt D, Lackner A, Stammberger H, Staudinger H, Van Zele T et al. Nasal IL-5 levels determine the response to anti-IL-5 treatment in patients with nasal polyps. J Allergy Clin Immunol 2006; 118: 1133–1141.

    Article  CAS  Google Scholar 

  30. Karras JG, McGraw K, McKay RA, Cooper SR, Lerner D, Lu T et al. Inhibition of antigen-induced eosinophilia and late phase airway hyperresponsiveness by an IL-5 antisense oligonucleotide in mouse models of asthma. J Immunol 2000; 164: 5409–5415.

    Article  CAS  Google Scholar 

  31. Pebernard S, Iggo RD . Determinants of interferon-stimulated gene induction by RNAi vectors. Differentiation 2004; 72: 103–111.

    Article  CAS  Google Scholar 

  32. Lee CC, Huang HY, Chiang BL . Lentiviral-mediated GATA-3 RNAi decreases allergic airway inflammation and hyperresponsiveness. Mol Ther 2008; 16: 60–65.

    Article  CAS  Google Scholar 

  33. Jackson AL, Bartz SR, Schelter J, Kobayashi SV, Burchard J, Mao M et al. Expression profiling reveals off-target gene regulation by RNAi. Nat Biotechnol 2003; 21: 635–637.

    Article  CAS  Google Scholar 

  34. Saxena S, Jonsson ZO, Dutta A . Small RNAs with imperfect match to endogenous mRNA repress translation. Implications for off-target activity of small inhibitory RNA in mammalian cells. J Biol Chem 2003; 278: 44312–44319.

    Article  CAS  Google Scholar 

  35. Lee YL, Ye YL, Yu CI, Wu YL, Lai YL, Ku PH et al. Construction of single-chain interleukin-12 DNA plasmid to treat airway hyperresponsiveness in an animal model of asthma. Hum Gene Ther 2001; 12: 2065–2079.

    Article  CAS  Google Scholar 

  36. Chuang YH, Fu CL, Lo YC, Chiang BL . Adenovirus expressing Fas ligand gene decreases airway hyper-responsiveness and eosinophilia in a murine model of asthma. Gene Therapy 2004; 11: 1497–1505.

    Article  CAS  Google Scholar 

  37. Glaab T, Mitzner W, Braun A, Ernst H, Korolewitz R, Hohlfeld JM et al. Repetitive measurements of pulmonary mechanics to inhaled cholinergic challenge in spontaneously breathing mice. J Appl Physiol 2004; 97: 1104–1111.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B-L Chiang.

Additional information

Supplementary Information accompanies the paper on Gene Therapy website (http://www.nature.com/gt)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, HY., Lee, CC. & Chiang, BL. Small interfering RNA against interleukin-5 decreases airway eosinophilia and hyper-responsiveness. Gene Ther 15, 660–667 (2008). https://doi.org/10.1038/gt.2008.15

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gt.2008.15

Keywords

This article is cited by

Search

Quick links