Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Progress
  • Published:

Signalling through the lipid products of phosphoinositide-3-OH kinase

Abstract

When a stimulatory agonist molecule binds at the exterior of the cell membrane, a second messenger transduces the signal to the interior of the cell. Second messengers can be derived from phospholipids in the membrane by the action of the enzymes phospholipase C or phosphoinositide-3-OH kinase (PI(3)K). PI(3)K is a key player in many cellular responses, including the movement of organelle membranes, shape alteration through rearrangement of cytoskeletal actin, transformation and chemotaxis. But how PI(3)K mediates these responses is only now becoming clear.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Pathways for phosphoinositide synthesis.
Figure 2: Proteins known to bind phosphoinositides in vitro: possible roles incellular responses.

Similar content being viewed by others

References

  1. Whitman, M., Downes, C. P., Keeler, M., Keller, T. & Cantley, L. Type I phosphatidylinositol kinase makes a novel inositol phospholipid, phosphatidylinositol-3-phosphate. Nature 332, 644–646 (1988).

    Article  ADS  CAS  Google Scholar 

  2. Traynor-Kaplan, A. E., Harris, A. L., Thompson, B. L., Taylor, P. & Sklar, L. A. An inositol tetrakisphosphate-containing phospholipid in activated neutrophils. Nature 334, 353–356 (1988).

    Article  ADS  CAS  Google Scholar 

  3. Franke, T. F. et al. PI3K: downstream AKTion blocks apoptosis. Cell 88, 435–437 (1977).

    Article  Google Scholar 

  4. Chang, H. W. et al. The retroviral oncogene p3k is homologus to the gene encoding for the catalytic subunit of phosphoinositide 3-kinase. Science (in the press).

  5. Morris, J. Z., Tissenbaum, H. A. & Ruvkun, G. Aphosphatidylinositol-3-OH kinase family member regulating longevity and diapause in Caenorhabditis elegans. Nature 382, 536–539 (1996).

    Article  ADS  CAS  Google Scholar 

  6. Rodriguez, V. P. et al. Phosphatidylinositol-3-OH kinase as a direct target of Ras. Nature 370, 527–532 (1994).

    Article  ADS  Google Scholar 

  7. Rameh, L., Chen, C.-S. & Cantley, L. C. Phosphatidylinositol-3,4,5-P3 interacts with SH2 domains and modulates phosphoinositide 3-kinase association with tyrosine-phosphorylated proteins. Cell 83, 821–830 (1995).

    Article  CAS  Google Scholar 

  8. Franke, T. F. et al. The protein kinase encoded the Akt proto-oncogene is a target of the PDGF-activated phosphatidylinositol 3-kinase. Cell 81, 1–20 (1995).

    Article  Google Scholar 

  9. Burgering, B. M. & Coffer, P. J. Protein kinase B (c-Akt) in phosphatidylinositol-3-OH kinase signal transduction. Nature 376, 599–602 (1995).

    Article  ADS  CAS  Google Scholar 

  10. Kohn, A. D., Takeuchi, F. & Roth, R. A. Akt, a pleckstrin homology domain containing kinase, is activated primarily by phosphorylation. J. Biol. Chem. 271, 21920–21926 (1996).

    Article  CAS  Google Scholar 

  11. Franke, T. F., Kaplan, D. R., Cantley, L. C. & Toker, A. Direct regulation of the Akt protooncogene product by PI34P2. Science 275, 665–668 (1997).

    Article  CAS  Google Scholar 

  12. Klippel, A., Kavanaugh, W. M., Pot, D. & Williams, L. T. Aspecific product of PI 3-K directly activates the protein kinase Akt through its pleckstrin homology domain. Mol. Cell. Biol. 17, 338–344 (1997).

    Article  CAS  Google Scholar 

  13. Frech, M. et al. High affinity binding of inositol phosphates and phosphoinositides to the pleckstrin homology domain of RAC/protein kinase B and their influence on kinase activity. J. Biol. Chem. 272, 8474–8481 (1997).

    Article  CAS  Google Scholar 

  14. Alessi, D. R. et al. Characterisation of a 3-phosphoinositide-dependent protein kinase which phosphorylates and activates PKB-α Curr. Biol. 7, 261–269 (1997).

    Article  CAS  Google Scholar 

  15. Konishi, H. et al. Activation of RAC-protein kinase by heat shock and hyperosmolarity stress through a pathway independent of PI 3-K. Proc. Natl Acad. Sci. U.S.A. 93, 7639–7643 (1996).

    Article  ADS  CAS  Google Scholar 

  16. Salim, K. et al. Distinct specificity in the recognition of phosphoinositides by the pleckstrin homology domains of dynamin and Btk. EMBO J. 15, 6241–6250 (1996).

    Article  CAS  Google Scholar 

  17. Fukuda, M., Kojima, T., Kabayama, H. & Mikoshiba, K. Mutation of the pleckstrin homology domain of BTK in immunodeficiency impaired IP4 binding capacity. J. Biol. Chem. 271, 30303–30306 (1996).

    Article  CAS  Google Scholar 

  18. Klarulund, J. K. et al. Signaling by phosphoinositide-3,4,5-trisphosphate through proteins containing pleckstrin and Sec7 Homology domains. Science 275, 1927–1930 (1997).

    Article  Google Scholar 

  19. Kolanus, W. et al. Alpha L beta 2 integrin/LFA-1 binding to ICAM-1 induced by cytohesin-1, a cytoplasmic regulatory molecule. Cell 86, 233–242 (1996).

    Article  CAS  Google Scholar 

  20. Chardin, P. et al. Ahuman exchange factor for ARF contains Sec7 and PH domains. Nature 384, 481–484 (1996).

    Article  ADS  CAS  Google Scholar 

  21. Zhou, M.-M. et al. Structure and ligand recognition of the phosphotyrosine binding domain of Shc. Nature 378, 584–592 (1995).

    Article  ADS  CAS  Google Scholar 

  22. Rameh, L. E. et al. Phosphoinositide binding specificity of plekcastrin homology domains; the Btk domain specifically binds to PIP3. J. Biol. Chem. (in the press).

  23. Palmer, R. H. et al. Activation of PRK1 by phosphatidylinositol 4,5-bisphosphate and phosphatidylinositol 3,4,5-trisphospate. J. Biol. Chem. 270, 22412–22416 (1995).

    Article  CAS  Google Scholar 

  24. Toker, A. et al. Activation of protein kinase C family members by the novel polyphosphoinositides PtdIns-3,4-P2 and PtdIns-3,4,5-P3. J. Biol. Chem. 269, 32358–32367 (1994).

    CAS  PubMed  Google Scholar 

  25. Nakanishi, H., Brewer, K. A. & Exton, J. H. Activation of the zeta isozyme of protein kinase C by phosphatidylinositol 3,4,5-trisphosphate. J. Biol. Chem. 268, 13–16 (1993).

    CAS  PubMed  Google Scholar 

  26. Moriya, S. et al. Platelet-derived growth factor activates protein kinase C-ε through redundant and independent signaling pathways involving phospholipase C-γ or phosphatidylinositol 3-kinase. Proc. Natl Acad. Sci. USA 93, 151–155 (1996).

    Article  ADS  CAS  Google Scholar 

  27. Akimoto, K. et al. EGF or PDGF receptors activate atypical PKCλ through phosphatidylinositol 3-kinase. EMBO J. 15, 788–798 (1996).

    Article  CAS  Google Scholar 

  28. Sossin, W. S., Chen, C.-S. & Toker, A. Stimulation of an insulin receptor activates and downregulates the Ca-independent protein kinase C, Apl II, through a wortmannin sensitive signaling pathway in Aplysia. J. Neurochem. 67, 220–228 (1996).

    Article  CAS  Google Scholar 

  29. Toker, A. et al. Phosphorylation of the platelet p47 phosphorprotein is mediated by the lipid products of phosphoinositide 3-kinase. J. Biol. Chem. 270, 29525–29531 (1995).

    Article  CAS  Google Scholar 

  30. Lu, P. J. & Chen, C.-S. Selective recognition of PIP3 by a synthetic peptide. J. Biol. Chem. 272, 466–472 (1997).

    Article  CAS  Google Scholar 

  31. Derman, M. P. et al. The lipid products of phosphoinositide 3-kinase mediate chemotaxis through protein kinase. J. Biol. Chem. 272, 6465–6470 (1995).

    Article  Google Scholar 

  32. Cross, D. A. et al. The inhibition of glycogen synthase kinase-3 by insulin or insulin-like growth factor 1 in the rat skeletal muscle cell line L6 is blocked by wortmannin, but not by rapamycin: evidence that wortmannin blocks activation of the mitogen-activated protein kinase pathway in L6 cells between Ras and Raf. Biochem. J. 303, 21–26 (1994).

    Article  CAS  Google Scholar 

  33. Lopez-Ilasaca, M., Crespo, P., Pellici, P. G., Gutkind, J. S. & Wetzker, R. Linkage of G protein coupled receptors to the MAPK signaling pathway through PI 3-Kγ. Science 275, 394–397 (1997).

    Article  CAS  Google Scholar 

  34. Klippel, A. et al. Membrane localization of phosphatidylinositol 3-kinase is sufficient to activate multiple signal-transducing kinase pathway. Mol. Cell. Biol. 16, 4117–4127 (1996).

    Article  CAS  Google Scholar 

  35. Schu, P. V. et al. Phosphatidylinositol 3-kinase encoded by yeast VPS34 gene essential for protein sorting. Science 260, 88–91 (1993).

    Article  ADS  CAS  Google Scholar 

  36. Rapaport, I. et al. Regulatory interactions in the recognition of endocytic sorting signals by AP-2 complexes. EMBO J. 16, 2240–2250 (1997).

    Article  Google Scholar 

  37. Hao, W. et al. Regulation of AP-3 function by inositides: identification of PIP3 as a potent ligand. J.Biol. Chem. 272, 6393–6398 (1997).

    Article  CAS  Google Scholar 

  38. Joly, M., Kazlauskas, A., Fay, F. S. & Corvera, S. Disruption of PDGF receptor trafficking by mutation of its PI-3 kinase binding sites. Science 263, 684–687 (1994).

    Article  ADS  CAS  Google Scholar 

  39. Frevert, E. U. & Kahn, B. B. Differential effects of constitutively active PI 3-K on glucose transport, glycogen synthase activity and DNA synthesis in 3T3-L1 adipocytes. Mol. Cell. Biol. 17, 190–198 (1997).

    Article  CAS  Google Scholar 

  40. Schiavo, G., Gu, Q.-M., Prestwich, G. D., Sollner, T. H. & Rothman, J. E. Calcium-dependent switching of the specificity of phosphoinositide binding to synaptotagmin. Proc. Natl Acad. Sci. USA 93, 13327–13332 (1996).

    Article  ADS  CAS  Google Scholar 

  41. Hammonds-Odie, L. P. et al. Identification and cloning of centaurin-α. J. Biol. Chem. 271, 18859–18868 (1996).

    Article  CAS  Google Scholar 

  42. Lu, P. J., Shieh, W.-R., Rhee, S. G., Yin, H. L. & Chen, C.-C. Lipid products of Pi 3-K bind profilin with high affinity. Biochemistry 35, 14027–14034 (1997).

    Article  Google Scholar 

  43. Hartwig, J. H. et al. D3 phosphoinositides and outside-in integrin signaling by GPIIbIIIa mediate platelet actin assembly and filpidial extension induced by PMA. J. Biol. Chem. 271, 32986–32993 (1996).

    Article  CAS  Google Scholar 

  44. Hartwig, J. H. et al. Thrombin receptor-ligation and activated Rac uncap actin filament barbed ends through phosphoinositide synthesis in permeabilized human platelets. Cell 82, 1–20 (1995).

    Article  Google Scholar 

  45. Wennstrom, S. et al. Activation of phosphoinositide 3-kinase is required for PDGF-stimulated membrane ruffling. Curr. Biol. 4, 385–393 (1994).

    Article  CAS  Google Scholar 

  46. Hawkins, P. T. et al. PDGF stimulates an increase in GTP-rac via activation of phosphoinositide 3-kinase. Curr. Biol. 5, 393–403 (1995).

    Article  CAS  Google Scholar 

  47. Reif, K., Nobes, C. D., Thomas, G., Hall, A. & Cantrell, D. A. PI 3-K signals activate a selective subset of Rac/Rho-dependent effector pathways. Curr. Biol. 6, 1445–1455 (1996).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Toker, A., Cantley, L. Signalling through the lipid products of phosphoinositide-3-OH kinase. Nature 387, 673–676 (1997). https://doi.org/10.1038/42648

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/42648

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing