Skip to main content
Log in

Degree of Polymerization of Aluminosilicate Glasses and Melts

  • Published:
Glass Physics and Chemistry Aims and scope Submit manuscript

Abstract

This paper presents the results of analyzing the data available in the literature on the structure and properties of silicate glasses and melts that contain Ti4+, Al3+, and Fe3+ cations in addition to alkali and alkaline-earth cations. It is established that the aforementioned multivalent cations in glasses and melts have a coordination number of four and play the role of network-formers. Aluminosilicate glasses and melts with the mole fraction ratio Al2O3/M 2(M′)O = 1 are of special interest. For these glasses, the structure is considered to be completely polymerized and, contrary to traditional concepts, their properties depend on the concentration ratio Al2O3/SiO2. Taking into account that the structure of aluminosilicate glasses involves unusual structural units (such as triclusters) and a certain number of nonbridging oxygen atoms, a formula is proposed for calculating the degree of polymerization. The proposed formula is used to calculate the degree of polymerization for a number of Na2O · Al2O3 · mSiO2 glasses and the CaO · Al2O3 · 2SiO2 glass. It is demonstrated that the calculated degrees of polymerization correlate with the experimentally measured viscosities of the relevant melts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Sheludyakov, L.N., Sostav, struktura i vyazkost' gomogennykh silikatnykh i alyumosilikatnykh rasplavov (Composition, Structure, and Viscosity of Silicate and Aluminosilicate Homogeneous Melts), Alma-Ata: Nauka, 1980.

    Google Scholar 

  2. Persikov, E.S., Vyazkost' magmaticheskikh rasplavov (Viscosity of Magmatic Melts), Moscow: Nauka, 1984.

    Google Scholar 

  3. Leko, V.K. and Mazurin, O.V., Analysis of Regularities in Composition Dependence of the Viscosity for Glass-Forming Oxide Melts: II. Viscosity of Ternary Alkali Aluminosilicate Melts, Fiz. Khim. Stekla, 2003, vol. 29, no. 1, pp. 26–43 [Glass Phys. Chem. (Engl. transl.), 2003, vol. 29, no. 1, pp. 16-27].

    Google Scholar 

  4. Kuryaeva, R.G. and Kirkinskii, V.A., The Influence of Degree of Connectivity of Silicon-Oxygen Network on the Properties of Silicate Glasses at High Pressures, Geokhimiya, 2001, no. 3, pp. 349-352.

  5. Kuryaeva, R.G. and Kirkinskii, V.A., Refractive Index of SiO2 Glass at Hydrostatic Pressures up to 5.0 GPa, Fiz. Khim. Stekla, 1995, vol. 21, no. 4, pp. 373–382 [Glass Phys. Chem. (Engl. transl.), 1995, vol. 21, no. 4, pp.?273-278].

    Google Scholar 

  6. Kuryaeva, R.G. and Kirkinskii, V.A., Influence of High Pressure on the Refractive Index and Density of Tholeiite Basalt Glass, Phys. Chem. Mineral., 1997, vol. 25, pp. 48–54.

    Google Scholar 

  7. Kuryaeva, R.G. and Kirkinskii, V.A., Refractive Index and Compressibility of Diopside Glass at Pressures up to 5.0 GPa, Geokhimiya, 2000, no. 9, pp. 963-969.

  8. Taylor, M., Brown, G.E., Jr., and Fenn, P.M., Structure of Mineral Glasses: III. NaAlSi3O8 Supercooled Liquid at 805°C and the Effects of Thermal History, Geochim. Cosmochim. Acta, 1980, vol. 44, pp. 109–117.

    Google Scholar 

  9. Mysen, B.O., Virgo, D., and Kushiro, I., The Structural Role of Aluminum in Silicate Melts-A Raman Spectroscopic Study at 1 Atmosphere, Am. Mineral., 1981, vol.?66, pp. 678–701.

    Google Scholar 

  10. Kirpatrick, R.J., Ostrike, R., Weiss, C.A., Smith, K.A., and Oldfield, E., High Resolution 27Al and 29Si NMR Spectroscopy of Glasses and Crystals along the Join CaMgSi2O6-CaAl2SiO6, Am. Mineral., 1986, vol. 71, pp. 705–711.

    Google Scholar 

  11. Merzbacher, C., Sheriff, B.L., Hartman, S.J., and White, ?W.B., A High-Resolution 29Si and 27Al NMR Study of Alkaline Earth Aluminosilicate Glasses, J. Non-Cryst. Solids, 1990, vol. 124, pp. 194–206.

    Google Scholar 

  12. Riebling, E.F., Structural Similarities between a Glass and Its Melt, J. Am. Ceram. Soc., 1968, vol. 51, pp. 143–149.

    Google Scholar 

  13. Navrotsky, A.R., Hon, R., Weill, D.F., and Henry, D.J., Thermochemistry of Glasses and Liquids in the Systems CaMgSi2O6-CaAlSi2O8-NaAlSi3O8, SiO2-CaAl2Si2O8-NaAlSi3O8, and SiO2-Al2O3-CaO-Na2O, Geochim. Cosmochim. Acta, 1980, vol. 44, pp. 1409–1423.

    Google Scholar 

  14. Sweet, J.R. and White, W.B., Study of Sodium Silicate Glasses and Liquids by Infrared Spectroscopy, Phys. Chem. Glasses, 1969, vol. 10, pp. 246–251.

    Google Scholar 

  15. Sharma, S.K., Virgo, D., and Mysen, B.O., Structure of Melts along the Join SiO2-NaAlSiO4 by Raman Spectroscopy, Carnegie Inst. Wash. Yearbook, 1978, vol. 77, pp. 652–658.

    Google Scholar 

  16. Seifert, F., Mysen, B.O., and Virgo, D., Structural Similarity between Melts and Glass Relevant to Petrological Processes, Carnegie Inst. Wash. Yearbook, 1981, vol. 80, pp. 300–301.

    Google Scholar 

  17. Appen, A.A., Khimiya stekla (Chemistry of Glass), Leningrad: Khimiya, 1974.

    Google Scholar 

  18. Godovikov, A.A., Khimicheskie osnovy sistematiki mineralov (Chemical Principles of Mineral Classification), Moscow: Nedra, 1979.

    Google Scholar 

  19. Mysen, B.O., Ryerson, F.J., and Virgo, D., The Influence of TiO2 on the Structure and Derivative Properties of Silicate Melts, Am. Mineral., 1980, vol. 65, pp. 1150–1165.

    Google Scholar 

  20. Wood, M.J. and Hess, P.C., The Structural Role of Al2O3 and TiO2 in Immiscible Silicate Liquids in the System SiO2-MgO-CaO-FeO-TiO2-Al2O3, Contrib. Mineral. Petrol., 1980, vol. 72, pp. 319–328.

    Google Scholar 

  21. Virgo, D., Mysen, B.O., Danckwerth, P., and Seifert, F., The Anionic Structure of 1 Atm. Melts in the System SiO2-NaFeO2, Carnegie Inst. Wash. Yearbook, 1982, vol. 81, pp. 347–349.

    Google Scholar 

  22. Dingwell, D.B. and Virgo, D., Viscosity-Oxidation State Relationship for Hedenbergitic Melt, Carnegie Inst. Wash. Yearbook, 1988, vol. 87, pp. 48–53.

    Google Scholar 

  23. Seifert, F., Virgo, D., and Mysen, B.O., Melt Structures and Redox Equilibria in the System Na2O-FeO-Fe2O3-Al2O3-SiO2, Carnegie Inst. Wash. Yearbook, 1979, vol.?78, pp. 511–519.

    Google Scholar 

  24. Virgo, D., Mysen, B.O., and Seifert, F., Relationship between the Oxidation State of Iron and the Structure of Silicate Melts, Carnegie Inst. Wash. Yearbook, 1981, vol. 80, pp. 308–311.

    Google Scholar 

  25. Waff, H.S., The Structural Role of Ferric Ion in Silicate Melts, Can. Mineral., 1977, vol. 15, pp. 198–199.

    Google Scholar 

  26. Neumann, E.-R., Mysen, B.O., Virgo, D., and Seifert, ?F.A., Redox Equilibria of Iron in Melts in the System CaO-Al2O3-SiO2-Fe-O, Carnegie Inst. Wash. Yearbook, 1982, vol. 81, pp. 353–355.

    Google Scholar 

  27. Seifert, F.A., Mysen, B.O., Virgo, D., and Neumann, E.-R., Ferric-Ferrous Equilibria in Melts in the System MgO-Al2O3-SiO2-Fe-O, Carnegie Inst. Wash. Yearbook, 1982, vol. 81, pp. 355–356.

    Google Scholar 

  28. Kilinc, A., Carmichael, I.S.E., Rivers, M.L., and Sack, ?R.O., The Ferric-Ferrous Ratio of Natural Silicate Liquids Equilibrated in Air, Contrib. Mineral. Petrol., 1983, vol. 83, pp. 136–140.

    Google Scholar 

  29. Mysen, B.O. and Virgo, D., Redox Equilibria, Structure, and Melt Properties in the System Na2O-Al2O3-SiO2-Fe-O, Carnegie Inst. Wash. Yearbook, 1983, vol. 82, pp.?313–317.

    Google Scholar 

  30. Mo, X.-X., Stebbins, J.F., and Carmickael, S.E., The Partial Molar Volume of Fe2O3 in Silicate Liquids and the Pressure Dependence of Oxygen Fugacity, EOS: Trans. Am. Geophys. Union, 1981, vol. 62, p. 1065.

    Google Scholar 

  31. Mysen, B.O., Danckwerth, P., and Virgo, D., The Effect of Pressure on Redox Equilibria in Melts in the System N2O-SiO2-Fe-O, Carnegie Inst. Wash. Yearbook, 1982, vol. 81, pp. 357–360.

    Google Scholar 

  32. Mysen, B.O. and Virgo, D., Effect of Pressure on the Structure of Iron-Bearing Silicate Melts, Carnegie Inst. Wash. Yearbook, 1983, vol. 82, pp. 321–325.

    Google Scholar 

  33. Riebling, E.F., Structure of Sodium Aluminosilicate Melts Containing at Least 50 mol % SiO2 at 1500°C, J.?Chem. Phys., 1966, vol. 44, pp. 2857–2865.

    Google Scholar 

  34. McMillan, P., Piriou, B., and Navrotsky, A., A Raman Spectroscopic Study of Glasses along the Joins Silica-Calcium Aluminate, Silica-Sodium Aluminate, and Silica-Potassium Aluminate, Geochim. Cosmochim. Acta, 1982, vol. 46, pp. 2021–2037.

    Google Scholar 

  35. White, W.B. and Minser, D.G., Raman Spectra and Structure of Natural Glasses, J. Non-Cryst. Solids, 1984, vol. 67, pp. 45–59.

    Google Scholar 

  36. Navrotsky, A., Perandean, G., McMillan, P., and Conturies, J.P., A Thermochemical Study of Glasses and Crystals along the Joins Silica-Calcium Aluminate and Silica-Sodium Aluminate, Geochim. Cosmochim. Acta, 1982, vol. 45, pp. 2039–2047.

    Google Scholar 

  37. Hervig, R.L. and Navrotsky, A., Thermochemical Study of Glasses in the System NaAlSi3O8-KAlSi3O8-Si4O8 and the Join Na1.6Al1.6Si2.4O8-K1.6Al1.6Si2.4O8, Geochim. Cosmochim. Acta, 1984, vol. 48, pp. 513–522.

    Google Scholar 

  38. Taylor, M. and Brown, G.E., Structure of Mineral Glasses: I. The Feldspar Glasses NaAlSi3O8, KAlSi3O8, and CaAl2Si2O8, Geochim. Cosmochim. Acta, 1979, vol.?43, pp. 61–75.

    Google Scholar 

  39. Hochella, M.F. and Brown, G.E., Structure and Viscosity of Rhyolitic Composition Melts, Geochim. Cosmochim. Acta, 1984, vol. 48, pp. 2631–2640.

    Google Scholar 

  40. Urbain, G., Bottinga, Y., and Richet, P., Viscosity of Liquid Silica, Silicates, and Alumino-Silicates, Geochim. Cosmochim. Acta, 1982, vol. 46, pp. 1061–1072.

    Google Scholar 

  41. Hunold, H.E. and Bruckner, R., Physiholioche Figenschaften und struktureller Feinbau von Natrium-Aluminosilicateglasern, Glastech. Ber., 1980, vol. 53, pp. 149–161.

    Google Scholar 

  42. Kushiro, I., Change in Viscosity with Pressure of Melts in the System CaO-Al2O3-SiO2, Carnegie Inst. Wash. Yearbook, 1981, vol. 80, pp. 339–341.

    Google Scholar 

  43. Cranmer, D. and Uhlmann, D.R., Viscosities in the System Albite-Anorthite, J. Geophys. Res., 1981, vol. 86, pp. 7951–7956.

    Google Scholar 

  44. De Jong, B.H.W.S., Schramm, Ch.M., and Parziale, V.E., Polymerization of Silicate and Aluminate Tetrahedra in Glasses, Melts, and Aqueous Solutions: V. The Polymeric Structure of Silica in Albite and Anorthite Composition Glass and the Devetrification of Amorphous Anorthite, Geochim. Cosmochim. Acta, 1984, vol. 48, pp.?2619–2629.

    Google Scholar 

  45. Flood, H. and Knapp, W.J., Structural Characteristics of Liquid Mixtures of Feldspar and Silica, J. Am. Ceram. Soc., 1968, vol. 51, pp. 259–263.

    Google Scholar 

  46. Stebbins, J.F. and Xu, Z., NMR Evidence for Excess Non-Bridging Oxygen in an Aluminosilicate Glass, Nature (London), 1997, vol. 390, pp.?60–62.

    Google Scholar 

  47. Toplis, M.J., Dingwell, D.B., and Lenci, T., Peraluminous Viscosity Maxima in Na2O-Al2O3-SiO2 Liquids: The Role of Triclusters in Tectosilicate Melts, Geochim. Cosmochim. Acta, 1997, vol. 61, pp. 2605–2612.

    Google Scholar 

  48. Lacy, E.D., Aluminum in Glasses and Melts, Phys. Chem. Glasses, 1963, vol. 4, pp. 234–238.

    Google Scholar 

  49. Toplis, M.J. and Dingwell, D.B., Viscosity Maxima of Melts Close to the “Charge Balanced” Join in the Systems (Na2O, CaO, MgO)-Al2O3-SiO2: Implications for the Structural Role of Aluminium, Trans. Am. Geophys. Union, 1996, vol. 77, pp. 848–853.

    Google Scholar 

  50. Oestrike, R., Yang, W.-H., Kirkpatrick, R.J., Hervig, ?R.L., Navrotsky, A., and Montez, B., High-Resolution 23Na, 27Al, and 29Si NMR Spectroscopy of Framework Aluminosilicate Glasses, Geochim. Cosmochim. Acta, 1987, vol. 51, pp. 2199–2209.

    Google Scholar 

  51. Stein, D.J. and Spera, F.J., Molecular Dynamics Simulations of Liquids and Glasses in the System NaAlSiO4-SiO2: Methodology and Melt Structures, Am. Mineral., 1995, vol. 80, pp. 417–431.

    Google Scholar 

  52. Scamehorn, C.A. and Angell, C.A., Viscosity-Temperature Relations and Structure in Fully Polymerized Aluminosilicate Melts from Ion Dynamics Simulations, Geochim. Cosmochim. Acta, 1991, vol. 55, pp. 721–730.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kuryaeva, R.G. Degree of Polymerization of Aluminosilicate Glasses and Melts. Glass Physics and Chemistry 30, 157–166 (2004). https://doi.org/10.1023/B:GPAC.0000024000.19443.f6

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:GPAC.0000024000.19443.f6

Keywords

Navigation