Skip to main content
Log in

Recent Advances of Tea (Camellia Sinensis) Biotechnology

  • Published:
Plant Cell, Tissue and Organ Culture Aims and scope Submit manuscript

Abstract

Tea is one of the most important non-alcoholic beverage drinks worldwide and gaining further popularity as an important ‘health drink’. It is served as morning drink for 2/3rd of world population daily. Although conventional breeding and propagation contributed significantly for last several decades for varietal improvement, due to the limitations of conventional breeding coupled with the demand for increasing productivity with lower cost of production, application of biotechnology becomes an alternative approach. Therefore, apart from a dozen of tea research institutes globally, several other groups are working on tea and related genera that have registered many valuable information with several achievements. The present review deals with progress in-depth of various aspects of biotechnological works such as micropropagation and alternative approaches, cell and organ culture techniques, genetic transformation, DNA markers as well as organelle genome and gene cloned from tea and related genera which will be valuable information for the workers working on various aspects of Camellia biotechnology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abraham GC & Raman K (1986) Somatic embryogenesis in tissue culture of immature cotyledons of tea (Camellia sinensis). In: Somers DA, Gengenbach BG, Biesboor DD, Hackett WP & Green CE (eds) 6th Inter. Congr. on Plant Tissue and Cell Culture. Univ. Minnesota, Minneapolis (p. 294)

    Google Scholar 

  • Ackerman WL (1971) Genetic and cytological studies with Camellia and related genera. Technical Bull. No.1427, USDA, U.S.Govt Print Office, Washington, D.C. (p. 115)

    Google Scholar 

  • Agarwal B, Singh U & Banerjee M (1992) In vitro clonal propagation of tea (Camellia sinensis (L.) O. Kuntze). Plant Cell Tiss. Org. Cult. 30: 1–5

    Google Scholar 

  • Aitken-Christie J, Kozai T & Takayama S (1995) Automation in plant tissue culture. General introduction and overview. In: Aitken-Christie J, Kozai T & Smith MAL (eds) Automation and Environmental Control in Plant Tissue Culture (pp. 1–15). Kluwer Academic Publishers, The Netherlands

    Google Scholar 

  • Akula A & Dodd WA (1998) Direct somatic embryogenesis in a selected tea clone, ‘TRI-2025’ (Camellia sinensis (L).O. Kuntze) from nodal segment. Plant Cell Rep. 17: 804–809

    Google Scholar 

  • Akula A & Akula C (1999) Somatic embryogenesis in tea (Camellia sinensis (L)O Kuntze. In: Jain SM, Gupta PK & Newton RJ (eds) Somatic Embryogenesis in Woody Plants, Vol. 5 (pp. 239–259). Kluwer Academic Publishers, The Netherlands

    Google Scholar 

  • Akula A, Akula C & Bateson M (2000) Betaine, a novel candidate for rapid induction of somatic embryogenesis in tea (Camelia sinensis (L.) O.Kuntze). Plant Growth Regu. 30: 241–246

    Google Scholar 

  • Akula A, Becker D & Bateson M (2000) High-yielding repetitive somatic embryogenesis and plant recovery in a selected tea clone, TRI-2025, by temporary immersion. Pant Cell Rep. 19: 12–19

    Google Scholar 

  • Anderson S (1994) Isozyme analysis to differentiate between tea clones. Inligtingsbulletin Institut vir Tropiese en Subtropiese Gewasse. 266 (p. 15)

    Google Scholar 

  • Annual Report (1999) Research and Development Department, Tata Tea Ltd, Munnar, India

    Google Scholar 

  • Arulpragasam PV & Latiff R (1986) Studies on the tissue culture on tea (Camellia sinensis (L.) O. Kuntze). 1. Development of a culture method for the multiplication of shoots. Sri Lank J. Tea Sci. 55: 44–47

    Google Scholar 

  • Arulpragasam PV, Latiff R & Seneviratne P (1988) Studies on tissue culture of tea (Camellia sinensis (L.)O. Kuntze). 3. Regeneration of plants from cotyledon callus. Sri Lank J. Tea Sci. 57: 20–23

    Google Scholar 

  • Avgioglu A & Knox RB (1989) Storage lipid accumulation by zygotic and somatic embryo in culture. Ann. Bot. 63: 409–412

    Google Scholar 

  • Bag N, Palni LMS & Nandi SK (1997) Mass propagation of tea using tissue culture methods. Physiol. Mol. Biol. Plants. 3: 99–103

    Google Scholar 

  • Bagratishvili DG, Zaprometov MN & Butenko RG (1979) Obtaining a cell suspension culture from the tea plant. Fiziol. Rast. 26: 449–451

    Google Scholar 

  • Balasubramanian S, Marimuthu S, Rajkumar R & Balasaravanan T (2000a) Isolation, culture and fusion of protoplast in tea. In: Muraleedharan N & Rajkumar R (eds) Recent Advance in Plants Crops Research (pp. 3–9). Allied Publishers Ltd. India

    Google Scholar 

  • Balasubramanian S, Marimuthu S, Rajkumar R & Haridas V (2000b) Somatic embryogenesis and multiple shoot induction in Camellia sinensis (L.) O. Kuntze. J. Plant Crops. 28: 44–49

    Google Scholar 

  • Banerjee B (1992) Botanical classification of tea. In: Wilson KC & Clifford MN (eds) Tea Cultivation to Consumption (pp. 25–51). Chapman and Hall, London

    Google Scholar 

  • Banerjee M & Agarwal B (1990) In vitro rooting of tea, Camellia sinensis (L.) O. Kuntze. Ind. J. Exp. Biol. 28: 936–939

    Google Scholar 

  • Banerjee AK, Agrawal DC, Nalawade SM & Krishnamurty KV (2000) Recovery of in vitro cotton shoots through micrografting. Curr. Sci. 78: 623–626

    Google Scholar 

  • Bano Z, Rajaratnam S & Mohanty BD (1991) Somatic embryogenesis in cotyledon culture of tea (Thea sinensis L.) J. Hort. Sci. 66: 465–470

    Google Scholar 

  • Barciela J & Vieitez AM (1993) Anatomical sequence and morphometric analysis during somatic embryogenesis on cultured cotyledon explants of Camellia japonica L. Ann. Bot. 71: 395–404

    Google Scholar 

  • Barua DN & Dutta AC (1959) Leaf scleroids in taxonomy of Thea camellias II. Camellia sinensis L. Phytomorp. 9: 372–382

    Google Scholar 

  • Barua DN (1958) Leaf scleroids in the taxonomy of the Thea camellias. I. Wilson's and related camellias. Phytomorp. 8: 257–264

    Google Scholar 

  • Barua PK (1963) Classification of tea plant. Two and a Bud. 10: 3–11

    Google Scholar 

  • Batschauer A Ehmann B & Schaefer E (1991) Cloning and charecterizatrion of a chalcone synthase gene from mustered and its light-dependent expression. Plant Mol. Biol. 16: 175–185

    Google Scholar 

  • Bedrook JR & Kolodner R (1979) The structure of choloroplast DNA. Annu. Rev. Plant Physiol. 30: 593–620

    Google Scholar 

  • Bennett WY & Scheibert P (1982) In vitro generation of callus and plantlets from cotyledons of Camellia japonica. Camellia J. 37: 12–15

    Google Scholar 

  • Beretta D, Vanoli M & Eccher T (1987) The influence of glucose, vitamins and IBA on rooting of Camellia shoots in vitro. Abstr. Symp. on Vegetative Propagation of Woody Species, Italy. p. 105

  • Bezbaruah HP (1971) Cytological investigation in the family theaceae-I. Chromosome numbers in some Camellia species and allied genera. Carylogia 24: 421–426

    Google Scholar 

  • Bhatia CR, Murty GSS, Mouli C & Kale DM (1986) Nuclear techniques and in vitro culture for plant improvement. In: Proc. Inter. Symp. on Nuclear Techniques and in vitro Culture for Plant Improvement. IAEE, FAO and UN, Vienna, 19–23 August (pp. 419–427)

  • Biao X, Kuboi T, Xu J & Yongyan B (1998) Effect of polyphenol compounds on tea plant transformation. Am. Soc. Plant Physiol. Abstr. pp 314

  • Borthakur S, Mondal TK, Borthakur A & Deka PC (1995) Variation in peroxidase and esterase isoenzymes in tea leaves. Two and a Bud. 42: 20–23

    Google Scholar 

  • Borthakur S, Mondal TK, Parveen SS, Guha A, Sen P, Borthakur A & Deka PC (1998) Isolation of chloroplast DNA from tea, Camellia sp. Ind. J. Exp. Biol. 36: 1165–1167

    Google Scholar 

  • Carlisi JC & Torres KC (1986) In vitro shoot proliferation of Camellia ‘Purple Dawn’. Hort. Science. 21: 314

    Google Scholar 

  • Chaudhaury R, Lakhanpal S & Chandel KPS (1990) Germination and desiccation tolerance of tea (Camellia sinensis (L.) O. Kuntze) seeds and feasibility of cryopreservation. Sri Lank. J. Tea Sci. 59: 89–94.

    Google Scholar 

  • Chaudhury R, Radhamani J & Chandel KPS (1991) Preliminary observation in the crypreservation of desiccated embryonic axes of tea (Camellia sinensis) L.O.Kuntze) seeds for genetic conservation. Cryo-Lett. 12: 31–36

    Google Scholar 

  • Chen C (1996) Analysis on the isozymes of tea plants F1 hybrids. J. Tea. Sci. 16: 31–3

    Google Scholar 

  • Chen Z & Liao H (1982) Obtaining plantlet through anther culture of tea plants. Zhongguo Chaye. 4: 6–7

    Google Scholar 

  • Chen Z & Liao H (1983) A success in bringing out tea plants from the anthers. China Tea 5: 6–7

    Google Scholar 

  • Chen Z (1999) Pharmalogical functions of tea. In: Jain NK (ed) Global Advances in Tea Science (pp. 333–358). Aravali Books International (P) Ltd. India

    Google Scholar 

  • Chengyin L, Weihua L & Mingjun R (1992) Relationship between the evolutionary relatives and the variation of esterase isozymes in tea plant. J. Tea Sci. 12: 15–20

    Google Scholar 

  • Corley RHV, Lee CH & Wong CV (1986) Abnormal flower development in oil palm clones. Planter 62: 233–240

    Google Scholar 

  • Creze J & Beauchesne MG (1980) Camellia cultivation in vitro. Int. Camellia J. 12: 31–34

    Google Scholar 

  • Damasco OP, Godwin ID, Smith MK & Adkins SW (1996) Gibberellic acid detection of dwarf off-types in micropropagated Cavendish bananas. Aus. J. Expt. Agric. 36: 237–241

    Google Scholar 

  • Das SC (1992) Non-conventional techniques of regenerating polyploids in tea. Proc. 31st Tocklai Conf., TRA, Jorhat; 1992: 26–30

    Google Scholar 

  • Das SC (2001) Tea. In: Parthasarathy VA, Bose TK, Deka PC, Das P, Mitra SK & Mohandas S (eds) Biotechnology of Horticultural Crops, Vol. 1(pp. 526–546). Naya Prokash, India

    Google Scholar 

  • Das SC & Barman TS (1988) Current state and future potential of tissue culture in tea. Proc. 30th Tocklai Conf. TRA Jorhat (pp. 90–94)

    Google Scholar 

  • Das A, Gosal SS, Sidhu JS & Dhaliwal HS (2002) Biochemical characterization of induced variants of potato (Solanum tuberosum L.). Indian J. Genet. 62(2): 146–148

    Google Scholar 

  • Debergh PC & Vanderschaeghe AM (1988) Some symptoms indicating the presence of bacterial contaminants in plant tissue culture. Acta Hort. 255: 77–81

    Google Scholar 

  • Demesure B, Sodzi N & Petit RJ (1995) A set of universal primers for amplification of polymorphic non-coding regions of mitochondrial and chloroplast DNA in plants. Mol Ecol. 4: 129–131

    Google Scholar 

  • Dood A W (1994) Tissue culture of tea (Camellia sinensis (L.) O.Kuntze) – A review. Inter. J. Trop Argic. 12 (3 & 4) 212–247

    Google Scholar 

  • Draper J & Scott R (1991) Gene transfers to plants. In: Grierson D (ed) Plant Genetic Engineering, Vol. 1 (pp. 39–81). Blackie, Glasgow

    Google Scholar 

  • Eden T (1958) The development of tea culture. In: Eden T (ed) Tea (pp. 1–4). Longman, London

    Google Scholar 

  • Evans DA & Sharp WR (1986) Somaclonal and gametoclonal variation: In: Evans DA, Sharp WR & Ammirato PV (eds) Hand Book of Plant Cell Culture, Vol.4. Technique and Applications (pp. 97–132). Macmillan Publishing Company, New York

    Google Scholar 

  • Feinbaum RL, Storz G & Ausubel FM (1991) High intensity and blue light regulated expression of chimeric chalcone synthase genes in transgenic Arabidopsis thaliana plants. Mol. Gen. Genet. 226: 449–456

    Google Scholar 

  • Ferguson JM & Grabe DF (1986) Identification of cultivars of perennial rye grass by SDS–PAGE of seed proteins. Crop. Sci. 26: 170–176

    Google Scholar 

  • Forrest GI (1969) Studies on the polyphenol metabolism of tissue culture derived from the tea plant (C. sinensis L.) Biochem. J. 113: 765–772

    Google Scholar 

  • Fukushima E, Iwasa S, Endo N & Yoshinari T (1966) Cytogenetics studies in Camellia. I. Chromosome survey in some Camellia species. Jap J. Hort. 35: 413–421

    Google Scholar 

  • Furuya T, Orihara T & Tsuda Y (1990) Caffeine and theanine from cultured cells of Camellia sinensis. Phytochem. Vol 29(8): 2539–2547

    Google Scholar 

  • Gamborg O, Miller R & Ojima K (1968) Nutrient requirements of suspension cultures of soyabean root cells. Exp. Cell. Res. 50: 157–158

    Google Scholar 

  • Ghosh B & Sen S (1994) Plant regeneration from alginate encapsulated somatic embryos of Asperagus cooperi baker. Plant Cell Rep. 13: 381–385

    Google Scholar 

  • Ghosh-Hazra N (2001) Advances in selection and breeding of tea-a review. J. Plant Crop. 29(3): 1–17

    Google Scholar 

  • Hackett CA, Wachira FN, Paul S, Powell W & Waugh R (2000) Construction of a genetic linkage map for Camellia sinensis (tea). Heredity 85(4): 346–355

    Google Scholar 

  • Hairong X, Qiqing T & Wanfanz Z (1987) Studies on the genetic tendency of tea plant hybrid generation using isozyme technique. In: Proc. Inter. Symp. on Tea Quality and Human Health, China, November 4–9 (pp. 21–25)

  • Haldeman JH, Thomas RL & Mckamy DL (1987) Use of benomyl and rifampicin for in vitro shoot tip culture of Camellia sinensis and Camellia japonica. Hort. Science 22: 306–307

    Google Scholar 

  • Hammerschlag FA (1992) Somaclonal Variation: In: Hammerschlag, FA & Lit RE (eds) Biotechnology of Perennial Fruit Crops (pp. 35–55). C.A.B International

  • Hao C, Wang Y & Yang S (1994) Effects of macroelements on the growth of tea callus and the accumulation of catechins. J. Tea Sci (China). 14: 31–36

    Google Scholar 

  • Haridas V, Balasaravanan T, Rajkumar R & Marimuthu S (2000) Factor influencing somatic embryogenesis in Camellia sinensis (L.) O.Kuntze. In: Muraleedharan N & RajKumar R (eds) Recent Advances in Plantation Crops Research (pp. 31–35). Allied Publishers Ltd, India

    Google Scholar 

  • Harry JS, Gene JG & Zimmerman RH (1983) Field performance and phenotypic stability of tissue culture propagated thornless blackberries. J. Amer. Soc. Hort. Sci. 108: 285–290

    Google Scholar 

  • Hazarika M & Mahanta PK (1984) Composition changes in chlorophylls and carotenoids during the four flushes of tea in north-east India. J. Sci. Food Agric. 35: 298–303

    Google Scholar 

  • Heller R (1953) Recherches sur la nutrition minerale des tissus vegetaux cultives in vitro Annales des Sciences Naturelles (Botanique) Biologie Vegetale. 14: 1–223

    Google Scholar 

  • Hirai M & Kozaki I (1986) Isozymes of citrus leaves. In: Kitaura K, Akihama T, Kukimura H, Nakajima H, Horie M & Kozaki I (eds) Development of New Technology for Identification and Classification of Tree Crops and Ornamentals (pp. 73–76). Fruit Tree Research Station, Ministry of Agriculture, Forestry and Fisheries, Japan

    Google Scholar 

  • Hooykass PJJ & Schilerpoort RA (1992) Agrobacterium and plant genetic engineering. Plant Mol.Biol. 19: 15–38

    Google Scholar 

  • Hu H (1983) Genetic stability and variability of pollen derived plants. In: Sen SK & Giles KL (eds) Plant Cell Culture in Crop Improvement (pp. 145–157). Plenum Press, New York

    Google Scholar 

  • Hua LD, Dai ZD & Hui X (1999) Studies on somatic embryo and adventitious bud differentiation rate among different tissues of Camellia sinensis L. Acta Agron. Sin. 25 (3): 291–295

    Google Scholar 

  • Iddagoda N, Kataeva NN & Butenko RG (1988) In vitro clonal micropropagation of tea (Camellia sinensis L.) 1. Defining the optimum condition for culturing by means of a mathematical design technique. Ind. J. Plant Physiol. 31: 1–10

    Google Scholar 

  • Ikeda N, Kawada M & Takeda Y (1991) Isozymic analysis of Camellia sinensis and its interspecific hybrids In: Proc. Inter. Symp.of Tea Science, Shizuoka, Japan, Aug. 26–28 (p. 98)

  • Isabel NL, Tremblay MM, Tremblay FM & Bousquet J (1993) RAPD as an aid to evaluate the genetic integrity of somatic embryogenesis derived population of Picea mariana (Mill) B.S.P. Theor. Appl. Genet. 86: 81–87

    Google Scholar 

  • Jain SM & Newton R J (1990) Prospects of biotechnology for tea improvement. Proc. Indian. Natl. Sci. Acad. 6: 441–448

    Google Scholar 

  • Jain SM, Das SC & Barman TS (1991) Induction of roots from regenerated shoots of tea (Camellia sinensis L.). Acta Hort. 289: 339–340

    Google Scholar 

  • Jain SM, Das SC & Barman TS (1993) Enhancement of root induction from in vitro regenerated shoots of tea (Camellia sinensis L.) Proc. Ind. Natl. Sci. Acad. 59: 623–628

    Google Scholar 

  • Janeiro LV, Ballester A & Vieitez AM (1995) Effect of cold storage on somatic embryogenesis systems of Camellia. J. Hort. Sci. 70: 665–667

    Google Scholar 

  • Jha TB & Sen SK (1992) Micropropagation of an elite Darjeeling tea clone. Plant Cell Rep. 11: 101–104

    Google Scholar 

  • Jha TB, Jha S & Sen SK (1992) Somatic embryogenesis from immature cotyledon of an elite Darjeeling tea clone. Plant Sci. 84: 209–213

    Google Scholar 

  • Jorgensen RA & Cluster PD (1989) Modes and tempos in the evolution of nuclear ribosomal DNA: new character for evolutionary studies and new markers for genetic and population studies. Ann. Mo. Bot. Gard. 75: 1238–1247

    Google Scholar 

  • Kato M (1982) Results of organ culture on Camellia japonica and C. sinensis. Jpn. J. Breed. 32: 267–277

    Google Scholar 

  • Kato M (1985) Regeneration of plantlets from tea stem callus. Jpn. J. Breed. 35: 317–322

    Google Scholar 

  • Kato M (1986a) Micropropagation through cotyledon culture in Camellia japonica L. and Camellia sinensis L. Jpn. J. Breed. 36: 31–38

    Google Scholar 

  • Kato M (1986b) Micropropagation through cotyledon culture in Camellia sasanqua. Jpn. J. Breed. 36: 82–83

    Google Scholar 

  • Kato M (1989a) Camellia sinensis L. (Tea): In vitro regeneration. In: Bajaj YSP (ed) Biotechnology in Agriculture and Forestry, Vol. 7. Medicinal and Aromatic Plants II (pp. 83–98). Springer-Verlag, Berlin, Heidelberg

    Google Scholar 

  • Kato M (1989b) Polyploids of Camellia through culture of somatic embryos. Hort. Science. 24: 1023–1025

    Google Scholar 

  • Kato M (1996) Somatic embryogenesis from immature leaves of fin vitro grown tea shoots. Plant Cell Rep. 15: 920–923

    Google Scholar 

  • Kato M (2001) Analysis of differentiation of tea using DNA markers in evergreens forest. Int Conf. on O-Cha (tea) Culture and Science. Shizuoka, Japan (p. 18)

  • Katsuo K (1969) Anther culture in tea plant (a preliminary report) Study of tea. 4: 31

    Google Scholar 

  • Kaundun SS, Zhyvoloup A & Young-Goo P (2000) Evaluation of the genetic diversity among elite tea (Camellia sinensis var. sinensis) accessions using RAPD markers. Euphytica. 115(1): 7–16

    Google Scholar 

  • Kim KJ, Jansen RK & Olmstead RC (1999) Submitted to EMBL. Accession No. AF 130216

  • Klee HJ, Horsch R & Rogers S (1987) Agrobacterium-mediated plant transformation and its further application to plant biology. Ann. Rev. Plant Physiol. 38: 467–486

    Google Scholar 

  • Kondo K (1975) Cytological studies in cultivated species of Camellia. PhD thesis. Univ. N.C. Chapel Hill (p. 260)

  • Kondo K (1977) Chromosome numbers in the genus Camellia. Biotropica 9: 86–94

    Google Scholar 

  • Kondo K (1978a) Cytological studies in cultivated species of Camellia In: Encyclopodia of Camellia (Ed.) Japan. Camellia Soc. Vol. 2, Kodansha Publ. Co., Tokyo (p. 456)

    Google Scholar 

  • Kondo K (1978b) Cytological studies in cultivated species of Camellia. Shi-Kaki 99: 41–53

    Google Scholar 

  • Kondo K (1979) Cytological studies in cultivated species of Camellia. V. Intraspecific variation of karyotypes in two species of sect. Thea. Jap J. Breed. 29: 205–210

    Google Scholar 

  • Kondo K & Parks CR (1979) Giemsa C-banding and karyotype of Camellia (-banded karyotypes can tell more detail on inter and intra-specific relationships in Camellia). Am. Camellia Yb. 34: 40–47

    Google Scholar 

  • Kondo K & Parks CR (1980) Giemsa C-banding and karyotype of Camellia. Proc. Inter. Camellia Congress. Kyoto. 55–57

  • Kondo K & Parks CR (1981) Cytological studies in cultivated species of Camellia. VI. Giemsa C-banded karyotypes of seven accessions of Camellia japonica L. sensu lato. Jap. J Breed. 31(1): 25–34

    Google Scholar 

  • Konwar BK, Das SC, Bordoloi BJ & Dutta RK (1998) Hairy root development in tea through Agrobacterium rhizogenes-mediated genetic transformation. Two and a Bud. 45: 19–20

    Google Scholar 

  • Koretskaya TF & Zaprometov MN (1975) Phenolic compounds in the tissue culture of Camellia sinensis and effect of light on their formation. Fiziol Rast. 22: 941–946

    Google Scholar 

  • Kron KA & Chase MW (1993) Systematics of the Ericaceae, Empetraceae, Epacridaceae and allied taxa based upon rbcL sequence data. Ann Mo Bot. Gad. 80: 128

    Google Scholar 

  • Kuboi T, Suda M & Konishi S (1991) Preparation of protoplasts from the leaves. Proc Int. Symp.Tea Sci., Shizuoka, Japan. 427–431

  • Kuhlemeiere C, Green PJ & Chua NH (1987) Regulation of gene expression in higher plants. Ann. Rev. Plant Physiol. 38: 221–257

    Google Scholar 

  • Kulasegaram S (1980) Technical developments in tea production. Tea Q. 49: 157–183

    Google Scholar 

  • Kung SD (1977) The expression of chloroplast genomes in higher plants. Ann. Rev. Plant Physiol. 28: 401–437

    Google Scholar 

  • Kuranuki Y & Yoshida S (1991) Cryopreservation of tea seeds and excised embryonic axes in liquid nitrogen. Proc. Int. Symp. Tea Sci. Shizuoka. (pp 419–420) Japan

  • Kuranuki Y & Shibata M (1992) Effect of concentration of plant growth regulators on the shoot apex culture of tea plant. Bull. Shizuoka Tea Expt. Station. 16: 1–6

    Google Scholar 

  • Kuranuki Y & Shibata M (1993) Improvement of medium components for in vitro cuttings of tea plant. 2. Optimum concentration of plant growth regulators. J. Tea Sci. 77: 39–45

    Google Scholar 

  • Lammerts WE (1958) Embryo culture in Camellia seed germination. In: Tourje EC (ed) Camellia Culture (pp. 171–174). Southern California Camellia Society, Pasadena, California

    Google Scholar 

  • Lecouteux CG, Lai FM & Mckersie BD (1993) Maturation of alfalfa (Medicago sativa L.) somatic embryos by abscisic acid, sucrose and chilling stress. Plant Sci. 94: 207–213

    Google Scholar 

  • Liang Y-R, Tanaka JC & Takeda YY (2000) Study on diversity of tea germplasm by RAPD method. JI Zejiang Forestry College 17(2). 215–218

    Google Scholar 

  • Llyod G & McCown B (1980) Commercially feasible micropropagation of mountain laurel, Kalmia lalifolia by use of shoot tip culture. Comb. Proc. Int. Pl. Prop. Soc. 30: 421–427

    Google Scholar 

  • Luo Y-Y & Liang Y-R (2000) Studies on the construction of Bt gene expression vector and its transformation in tea plant. J. Tea Sci. 20(2): 141–147

    Google Scholar 

  • Magoma GN, Wachira FN, Obanda M, Imbuga M & Agong SG (2000) The use of catechins as biochemical markers in diversity stuides of tea (Camellia sinensis). Gene Resource Crop Evalu. 47: 107–114

    Google Scholar 

  • Marcotrigiano M, Boyle TH, Morgan PA & Ambach KL (1990) Leaf color variants from coleus shoots cultures. J. Am. Soc. Hort. Sci. 115: 681–696

    Google Scholar 

  • Matsumoto S, Takeuchi A, Hayastsu M & Kondo S (1994) Molecular cloning of phenylalanine ammonia-lyase cDNA and classification of varieties and cultivars of tea plants (Camellia sinensis) using the tea PAL cDNA probes. Theor. Appl. Genet. 89: 671–675

    Google Scholar 

  • Matsumoto S & Fukui M (1998) Agrobacterium tumefaciens medaited gene transfer in tea plant (Camellia sinensis) cells. Jpn Agri. Res. Quart. 32: 287–291

    Google Scholar 

  • Matsumoto S & Fukui M (1999) Effect of Acetosyringone application on Agrobacterium-mediated transfer in tea plant (Camellia sinensis). Bull Natl Res Ins Veg Orn. of Tea, Shizuoka, Japan. 14: 9–15

    Google Scholar 

  • Matsuura T, Kakuda T, Kinoshita T, Takeuchi N & Sasaki K (1991) Production of theanine by callus culture of tea. In: Proc Intl. Symp on Tea Sci, Shizuka. Japan (pp. 432–436)

  • Maugh TH (1981) The natural occurring brassionoide in the plant species. Science 212: 33–34

    Google Scholar 

  • Meksen K, Leister D, Peleman J, Zabeau m, Salamini F & Gebhardt C (1995) A high resolution map of the vicinity of the R1 locus on chromosome V of potato based on RFLP and AFLP markers. Mol Gen Genet. 249: 74–81

    Google Scholar 

  • Mercuri A, Beneditti LD, Burchi G & Schiva T (2000) Agrobacterium-mediated genetic transformation of African violet. Plant Cell Tiss. Org. Cult. 60: 39–46

    Google Scholar 

  • Mishra RK & Sen-Mandi S (2001) DNA fingerprinting and genetic relationship study of tea plants using amplified fragment length polymorphism (AFLP) technique. Ind. J Plant Genet. Resour. 14(2): 148–149

    Google Scholar 

  • Mondal TK (2000) Studies on RAPD marker for detection of genetic diversity, in vitro regeneration and Agrobacterium-mediated genetic transformation of tea (Camellia sinensis). Ph.D thesis. Utkal University, India

    Google Scholar 

  • Mondal TK (2002a) Camellia biotechnology: A bibliographic search. Inter. J. Tea Sci. 1(2&3): 28–37

    Google Scholar 

  • Mondal TK (2002b) Detection of genetic diversity among the Indian tea (Camellia sinensis) germplasm by Inter-simple sequence repeats (ISSR). Euphytica 128: 307–315

    Google Scholar 

  • Mondal TK (2003) Micropropagation of tea (Camellia sinensis). In: Jain SM & Ishii K (eds) Micropropagation of Woody Trees and Fruits (pp. 671–720). Kluwer Academic Publishers. The Netherlands

    Google Scholar 

  • Mondal TK, Bhattacharya A, Sood A & Ahuja PS (1998) Micropropagation of tea using thidiazuran. Plant Growth Regu. 26: 57–61

    Google Scholar 

  • Mondal TK, Bhattachraya A, Sood A & Ahuja PS (1999) An efficient protocol for somatic embryogenesis and its use in developing transgenic tea (Camellia sinensis (L) O. Kuntze) for field transfer. In: Altman A, Ziv M & Izhar S (cds) Plant Biotechnology and In Vitro Biology in 21st Century (pp. 101–104). Kluwer Academic Publishers, Dordrecht, The Netherlands

    Google Scholar 

  • Mondal TK, Singh HP & Ahuja PS (2000a) Isolation of genomic DNA from tea and other phenolic rich plants. J. Planta Crops. 28(1): 30–34

    Google Scholar 

  • Mondal TK, Bhattacharya A, Sood A & Ahuja PS (2000b) Factor effecting induction and storage of encapsulated tea (Camellia sinensis L. O.Kuntze) somatic embryos. Tea. 21(2): 92–100

    Google Scholar 

  • Mondal TK, Bhattacharya A & Ahuja PS (2001a) Induction of synchronous secondary embryogenesis of tea (Camellia sinensis). J. Plant Physiol. 158: 945–951

    Google Scholar 

  • Mondal TK, Bhattachary A & Ahuja PS (2001b) Development of a selection system for Agrobacterium-mediated genetic transformation of tea (Camellia sinensis). J. Plant. Crops. 29(2): 45–48

    Google Scholar 

  • Mondal TK, Bhattacharya A, Ahuja PS & Chand PK (2001c) Factor effecting Agrobacterium tumefaciens mediated transformation of tea (Camellia sinensis (L). O.Kuntze). Plant Cell Rep. 20: 712–720

    Google Scholar 

  • Mondal TK, Bhattacharya A, Sharma M & Ahuja PS (2001d) Induction of in vivo somatic embryogenesis in tea (Camellia sinensis) cotyledons. Curr. Sci. 81(3): 101–104

    Google Scholar 

  • Mondal TK & Chand PK (2002) Detection of genetic instability among the miocropropagated tea (Camellia sinensis) plants. In Vitro Cell Dev Biol Plant. 37: 1–5

    Google Scholar 

  • Mondal TK, Bhattacharya A, Sood A & Ahuja PS (2002a) Propagation of tea (Camellia sinensis (L.) O Kuntze) by shoot proliferation of alginate-encapsulated axillary buds stored at 4 °C. Curr. Sci. 83(8): 941–944

    Google Scholar 

  • Mondal TK, Bhattachrya A, Sood A & Ahuja PS (2002b) Factors affecting germination and conversion frequency of somatic embryos of tea. J. Plant Physiol. 159(12): 1317–1321

    Google Scholar 

  • Mondal TK & Parathi R (2003) Micrografting-A technique to shorten the hardening time of in vitro raised tea plants. Sri Lanka J Tea Sci. (Communicated)

  • Moore PP, Robbins JA & Sjulin TM (1991) Field performance of ‘Olympus’ strawberry subclones. Hort. Sci. 26: 192–194

    Google Scholar 

  • Murali KS, Pandidurai V, Manivel L & Rajkumar R (1996) Clonal variation in multiplication of tea through tissue culture. J. Plant Crops. 24: 517–522

    Google Scholar 

  • Murashige T & Skoog F (1962) A revised medium for rapid growth and bioassay with tobacco tissue cultures. Physiol Plant. 15: 473–497

    Google Scholar 

  • Nadamitsu S, Andoh Y, Kondo K & Segawa M (1986) Interspecific hybrids between Camellia vietnamensis and C. chrysantha by cotyledon culture. Jpn. J. Breed. 36: 309–313

    Google Scholar 

  • Nakamura Y (1983) Isolation of protoplasts from tea plant. Tea Res. J. 58: 36–37

    Google Scholar 

  • Nakamura Y (1985) Effect of origin of explants on differentiation of root and its varietal difference in tissue culture of tea plant. Tea Res. J. 62: 1–8

    Google Scholar 

  • Nakamura Y (1987a) Shoot tip culture of tea cultivar Yabukita. Tea Res. J. 65: 1–7

    Google Scholar 

  • Nakamura Y (1987b) In vitro rapid plantlet culture from axillary buds of tea plant (C. sinensis (L.) O. Kuntze). Bull. Shizuoka Tea Expt. Station. 13: 23–27

    Google Scholar 

  • Nakamura Y (1988a) Efficient differentiation of adventitious embryos from cotyledon culture of Camellia sinensis and other Camellia species. Tea Res. J. 67: 1–12

    Google Scholar 

  • Nakamura Y (1988b) Effects of the kinds of auxins on callus induction and root differentiation from stem segment culture of Camellia sinensis (L.) O. Kuntze. Tea. Res. J. 68: 1–7

    Google Scholar 

  • Nakamura Y (1989) Differentiation of adventitious buds and its varietal difference in stem segment culture of Camellia sinensis (L.) O. Kuntze. Tea Res. J. 70: 41–49

    Google Scholar 

  • Nakamura Y (1990) Effect of sugar on formation of adventitious buds and growth of axillary buds in tissue culture of tea. Bull. Shizuoka Tea Expt. Station. 15: 1–5

    Google Scholar 

  • Nelson N, Melson H & Schatz G (1980) Biosynthesis and assembly of the protein-translocating adenosine triphosphete complex from chloroplasts. Natl. Acad. Sci. 77: 1361–1364

    Google Scholar 

  • Nitsch JP & Nitsch C (1969) Haploid plants from pollen grains. Science. 163: 185

    Google Scholar 

  • Ogutuga DBA & Northcote DH (1970) Caffeine formation in tea callus tissue. J. Expt. Bot. 21: 258–273

    Google Scholar 

  • Okano N & Fuchinone Y (1970) Production of haploid plants by anther culture of tea in vitro. Jpn. J. Breed. 20: 63–64

    Google Scholar 

  • Olmstead RG & Palmer JD (1994) Choloroplast DNA and systematic – a review of methods and data analysis. Am. J. Bot. 81: 1205–1224

    Google Scholar 

  • Orihara Y & Furuya T (1990) Production of theanine and other (-glutamine derivatives by Camellia sinensis cultured cells. Plant Cell Rep. 9: 1215–1224

    Google Scholar 

  • Owuor PO (1989) Differentiation of teas by the variations of linalools and geraniols contents. Bull. Chem. Soc Ethip. 3: 31–35

    Google Scholar 

  • Owuor PO, Reeves SG & Wanyoko JK (1986) Co-relation of flavins content and valuation of Kenyan black teas. J. Sci. Food Agric. 37: 507–513

    Google Scholar 

  • Palni LMS, Bag N, Nadeem M, Tamata S, Vyas P, Bisht MS, Purohit VK, Kumar A, Nandi SK, Pandey A & Purohit AN (1998) Micropropagation: Conservation through tissue culture of selected Himalayan Plants. In: Research for Mountain Development: Some initiatives and accomplishments (pp. 431–452). Gyanodaya Prakashan, Nainital, India

    Google Scholar 

  • Pandey A, Palni LMS & Bag N (2000) Biological hardening of tissue culture raised tea plants through rhizosphere bacteria. Biotech. Lett. 22: 1087–1091

    Google Scholar 

  • Pandidurai V, Murali KS, Manivel L & Rajkumar R (1996) Factors affecting in vitro shoot multiplication and root regeneration in tea. J. Plant Crops. 24: 603–609

    Google Scholar 

  • Paratasilpin T (1990) Comparative studies on somatic embryogenesis in Camellia sinensis var. sinensis and C. sinensis var. assamica (Mast.) Pierre. J. Sci. Soc. Thailand. 16: 23–41

    Google Scholar 

  • Paul S, Wachira FN, Powell W & Waugh R (1997) Diversity and genetic differentiation among population of Indian and Kenyan tea (Camellia sinensis (L.) O. Kuntze) revealed by AFLP markers. Theor. Appl. Genet. 94: 255–263

    Google Scholar 

  • Pedroso MC & Pais MS (1993) Direct embryo formation in leaves of C. japonica L. Plant Cell Rep. 12: 639–643

    Google Scholar 

  • Pedroso MC & Pais MS (1994) Induction of microspore embryogenesis in Camellia japonica cv. Elegans. Plant Cell Tiss. Org. Cult. 37: 129–136

    Google Scholar 

  • Phukan MK & Mitra GC (1984) Regeneration of tea shoots from nodal explants in tissue culture. Curr. Sci. 53: 874–876

    Google Scholar 

  • Phukan MK & Mitra GC (1990) Nutrient requirements for growth and multiplication of tea plants in vitro. Bangladesh J. Bot. 19: 65–71

    Google Scholar 

  • Plata E & Vieitez AM (1990) In vitro regeneration of Camellia reticulata by somatic embryogenesis. J. Hort. Sci. 65: 707–714

    Google Scholar 

  • Plata E, Ballester A & Vieitez AM (1991) An anatomical study of secondary embryogenesis in Camellia reticulata. In vitro Cell Dev. Biol. 27: 183–189

    Google Scholar 

  • Ponsamuel J, Samson NP, Ganeshan PS, Satyaprakash V & Abrahan GC (1996) Somatic embryogenesis and plant regeneration from the immature cotyledonary tissues of cultivated tea (Camellia sinensis (L.) O. Kuntze). Plant Cell Rep. 16: 210–214

    Google Scholar 

  • Prakash O, Sood A, Sharma m & Ahuja PS (1999) Grafting micropropagated tea (Camellia sinensis (L.) O. Kuntze) shoots on tea seedling-a new approach to tea propagation. Plant Cell Rep. 18: 137–142

    Google Scholar 

  • Prince LM & Parks CR (1997) Evolutionary relationships in the tea subfamily Theoideae based on DNA sequence Data. Int Camellia J. 29: 135–144

    Google Scholar 

  • Prince LM & Parks CR (2000) Estimation on Relationships of Theoideae (Theaceae) inferred from DNA Data. Int Camellia J. 32: 79–84

    Google Scholar 

  • Purakayastha A & Das SC (1994) Isolation of tea protoplast and there culture. In: Proceedings of 32nd Tocklai Conference. Tea Research Association. Tocklai Experimental Station, Jorhat. India (pp. 34–35)

    Google Scholar 

  • Raina SK & Iyer RD (1992) Multicell pollen proembryoid and callus formation in tea. J. Plant. Crops. 9: 100–104

    Google Scholar 

  • Rajkumar R & Ayyappan P (1992a) Micropropagation of Camellia sinensis (L.) O kuntze. J. Plant Crops 20: 252–256

    Google Scholar 

  • Rajkumar R & Ayyappan P (1992b) Somatic embryogenesis from cotyledonary explants of Camellia sinensis (L.) O. Kuntze. The Planters Chronic May. 227–229

  • Rajasekaran P (1997) Development of molecular markers using AFLP in tea. In: Varghese JP (ed) Molecular Approaches to Crop Improvement. Proceedings of National Seminar on Molecular approaches to Crop Improvement 29–31st (pp. 54–58). Dec. Kottayam, Kerala, India

  • Rajasekaran P & Mohankumar P (1992) Rapid micropropagation of tea (Camellia spp). J. Plant Crops. 20: 248–251

    Google Scholar 

  • Rajkumar R, Balasusaravanam S, Jayakumar D, Haridas V & Marimuthu S (2001) Physiological and biochemical feathers of field grown somaclonal variants of Tea. UPASI Tea Research Foundation Bulletin No. 54, 73–81

  • Rani V, Ajay P & Raina SN (1995) Random amplified polymorphic DNA (RAPD) markers for genetic analysis in micropropagated plants of Populus deltoides Marsh. Plant Cell Rep. 14: 459–462

    Google Scholar 

  • Redenbaugh K, Fujii JA & Slade D (1991) Synthetic seed technology. In: Vasil KI (ed) Scale-up and Automation in Plant Propagation. Cell Culture and Somatic Cell Genetics of Plants, Vol. 8(pp. 35–74). Academic Press Inc., New York

    Google Scholar 

  • Roberts DR, Sutton BCS & Flinn BS (1990) Synchronous and high frequency germination of interior spruce somatic embryo following partial drying at high relative humidity. Can. J. Bot. 68: 1086–1093

    Google Scholar 

  • Roberts EAH, Wight W & Wood DJ (1958) Paper chromatography as an aid to the identification of Thea camellias. New Phytol. 57: 211–225

    Google Scholar 

  • Saha SK & Bhattacharya NM (1992) Stimulating effect of elevated temperatures on callus production of meristemoids from pollen culture of tea (Camellia sinensis (L.) O. Kuntze). Indian J. Exp. Biol. 30: 83–86

    Google Scholar 

  • Samartin A (1991) Potential for large scale in vitro propagation of Camellia sasanqua Thunb. J. Hort. Science. 67: 211–217

    Google Scholar 

  • Samartin A, Vieitez AM & Vieitez E (1984) In vitro propagation of Camellia japonica seedlings. Hort. Science. 19 225–226

    Google Scholar 

  • Samartin A, Vieitez AM & Vieitez E (1986) Rooting of tissue cultured camellias. J. Hort. Sci. 61: 113–120

    Google Scholar 

  • Sandal I, Bhattacharya A & Ahuja PS (2001) An efficient liquid culture system for tea shoot proliferation. Plant Cell Tiss. Org. Cult. 65: 75–80

    Google Scholar 

  • Sanderson GW (1964) The chemical composition of fresh tea flush as affected by clone and climate. Tea Quarterly 35: 101–109

    Google Scholar 

  • San-Jose MC & Vieitez AM (1990) In vitro regeneration of Camellia reticulata cultivar ‘Captain Rawes’ from adult material. Sci. Hort. 43: 155–162

    Google Scholar 

  • San-Jose MC & Vieitez AM (1992) Adventitious shoot regeneration from in vitro leaves of adult Camellia reticulata. J. Hort. Sci. 67: 677–683

    Google Scholar 

  • San-Jose MC, Vidal N & Vieitez AM (1991) Improved efficiency of in vitro propagation of Camellia reticulata cv. captain leaves. J. Hort. Sci. 66: 755–762

    Google Scholar 

  • Sarathchandra TM, Upali PD & Wijeweardena RGA (1988) Studies on the tissue culture of tea (Camellia sinensis (L.) O. Kuntze) 4. Somatic embryogenesis in stem and leaf callus cultures. Sri Lank. J. Tea Sci. 52: 50–54

    Google Scholar 

  • Sarwar M (1985) Callus formation from explanted organs of tea (Camellia sinensis L.). J. Tea Sci. 54: 18–22

    Google Scholar 

  • Savoliainen V, Manen JF, Douzery E & Spichigen R (1994) Molecular phylogeny of families related to Celastrales based on rbcL 5′ flanking sequences. Mol Phylo. Evol. 3: 27–37

    Google Scholar 

  • Scowcroft WR (1984) Genetic variability in tissue culture: Impact on germplasm conservation and utilization. Report on the IBPGR, Rome (p. 152)

  • Sealy JR (1958) A revision of the genus Camellia. R. Hortic Soc. London

  • Sen P, Bora U, Roy BK & Deka PC (2000) Isozyme characterization in Camellia spp. Crop Res. 19(3) 519–524

    Google Scholar 

  • Seurei P (1996) Tea improvement in Kenya: A review. Tea. 17: 76–81

    Google Scholar 

  • Sharma M, Sood A, Nagar PK, Prakash O & Ahuja PS (1999) Direct rooting and hardening of tea microshoots in the field. Plant Cell Tiss. Org. Cult. 58: 111–118

    Google Scholar 

  • Sharma VS & Venkataramani KS (1974) The tea complex.I. Taxonomy of tea clones. Proc. Ind. Aca. Sci. 53: 178–187

    Google Scholar 

  • Shibata M & Kuranuki Y (1993) Improvement of medium components for in vitro cuttings of tea plant. 1. Effects of concentration of some components of MS medium and comparison between MS medium and woody plant medium. J. Tea Sci. 77: 39–45

    Google Scholar 

  • Shimokado TT, Murata & Miyaji Y (1986) Formation of embryoid by anther culture of tea. Jpn. J. Breed. 36: 282–283

    Google Scholar 

  • Singh A, Sharma J, Rexer K-H & Varma A (2000) Plant productivity determinants beyond minerals, water and light: Piriformospora indica-A revolutionary plant growth promoting fungus. Curr. Sci. 79(11): 1548–1554

    Google Scholar 

  • Singh HP & Ravindranath SD (1994) Occurrence and distribution of PPO Activity in floral organs of some standard and local cultivars of tea. J. Sci. Food. Agric. 64: 117–120

    Google Scholar 

  • Singh ID (1980) Non conventional approaches to the breeding of tea in north-east India. Two and a Bud. 27: 3–6

    Google Scholar 

  • Singh ID (1999) Plant Improvement, In: Jain NK (ed) Global Advances in Tea (pp. 427–448). Aravali Book International (P) Ltd., India

    Google Scholar 

  • Singh M, Bandana & Ahuja PS (1999) Isolation and PCR ampli-fication of genomic DNA from market samples of dry tea. Plant Mol. Biol. Rep. 17: 171–178

    Google Scholar 

  • Siswanto SD & Chaidamsari T (1999) Transient GUS expression and callus development of cocoa, coffee and tea following Agrobacterium-mediated transformation. 5th Asian S & T Week, Hanoi, Vietnam, 12–15 Oct, 62(2) 8–16

    Google Scholar 

  • Smith MK (1998) A review of factors influencing the genetic stability of micropropagated banana fruits. Aust. J. Expt. Agric. 43: 219–223

    Google Scholar 

  • Smith RH & Hood EE (1995) Agrobacterium tumefaciens transformation of monocots. Crop Sci. 35: 301–309

    Google Scholar 

  • Soltis DE, Soltis PS, Nickrent DL, Johnson LA, Hahn WJ, Hoot SB, Sakamoto JA, Kuzoff RK, Kron KA, Chase MW, Swensen SM, Zimmer EA, Chaw SM, Gillespie LJ & Systma KJ (1995) Phylogenic relationships among angiosperm inferred from 18s rDNA. EMBL Accession No. U42815

  • Sood A, Palni LMS, Sharma M, Rao DV, Chand G & Jain NK (1993) Micropropagation of tea using cotyledon culture and encapsulated somatic embryos. J. Plant. Crops 21: 295–300.

    Google Scholar 

  • Spedding DJ & Wilson AT (1964) Caffeine metabolism. Nature. 204: 73

    Google Scholar 

  • Spoth HJ, Yoshikawa N & Parks CR (1999) Middle Mist Red: Evidence for the genetic identity of old cultivars. Int. Camellia J. 22–26

  • Staub JE, Kuhns LJ, May B & Grun P (1982) Stability of potato tuber isozymes under different storage regimes. J. Am. Soc. Hort. Sci. 107: 405–408

    Google Scholar 

  • Taberlet P, Gielly L, Pauton G & Bouvet J (1991) Universal primers for amplification of three non-coding regions of choloroplast DNA. Plant Mol. Biol. 17: 1105–1109

    Google Scholar 

  • Tahardi JS & Shu W (1992) Commercialization of clonal micropropagation of superior tea genotypes using tissue culture technology USAID/CDR Network meeting on tea crop biotech Costa Rica Takeda Y (1994) Differences in caffeine and tannin contents between tea cultivars and application to tea breeding. Jap Agric Res. Quart. 28: 117–123

    Google Scholar 

  • Takeo T (1981) Variations in amounts of linalool and geraniol produced in tea shoots by mechanical injury. Phytochemistry 30: 2149–2151

    Google Scholar 

  • Takeo T (1983) Effects of clonal specificity of the monoterpene alcohol composition of tea shoots on black tea aroma profile. Japan. Agric. Res. Duart. 17: 120–124

    Google Scholar 

  • Takeuchi A & Matsumoto S (1999) Submitted to EMBL. Accession No. AB018686

  • Takeuchi A, Matsumoto S & Hayatsu M (1994a) Amplification of (-tubulin cDNA from Camellia sinensis by PCR. Bull. Nat. Res. Inst. Veg. Orna. 7: 13–20

    Google Scholar 

  • Takeuchi A, Matsumoto S & Hayatsu M (1994b) Chalcone synthase from Camellia sinensis: Isolation of the cDNAs and the organspecific and sugar responsive expression of the genes. Plant Cell Physiol. 35(7): 1011–1018

    Google Scholar 

  • Tanaka JI & Yamaguchi S (1996) Use of RAPD markers for the identification of parentage of tea cultivars. Bull. Nat. Res. Inst. Veg. Orna. Plant Tea 9: 31–36

    Google Scholar 

  • Tanaka JI, Sawai Y & Yamaguchi S (1995) Genetic analysis of RAPD markers in tea. J. Jpn. Breed. 45(2): 198–199

    Google Scholar 

  • Tanaka J, Yamaguchi N & Nakamura Y (2001) Pollen parent of tea cultivar ‘sayamakaori’ with insect and cold resistance may not exist. Breeding Reser. 3: 43–48

    Google Scholar 

  • Tanksley SD, Yong ND, Paterson AH & Bonierbals MW (1989) RFLP mapping in plant breeding: new tools for an old science. Biotechnology 7: 257–264

    Google Scholar 

  • Thakor BH (1997) A re-examination of the phylogenetic relationships within the genus Camellia. Int Camellia J. 29: 130–134

    Google Scholar 

  • Tian-Ling (1982) Regeneration of plantlets in cultures of immature cotyledons and young embryos of Camellia oleifera Abel. Acta. Biol. Exp. Sin. 15: 393–403

  • Tomimoto Y, Yamaguchi S, Ogi Y, Nagatomi S, Ikehashi H & Kowyama Y (1996) Polymorphism of PR-1-like protein detected in pistil of Camellia. Breeding Sci. 46: 293

    Google Scholar 

  • Torres KC & Carlisi JA (1986) Shoot and root organogenesis of Camellia sasanqua. Plant Cell Rep. 5: 381–384

    Google Scholar 

  • Tosca A, Pondofi R & Vasconi S (1996) Organogenesis in Camellia x williamsii: cytokinin requirement and susceptibility to antibiotics. Plant Cell. Rep. 15: 541–544

    Google Scholar 

  • Tremblay MM & Trembly FM (1995) Maturation of black spruce somatic embryos: sucrose hydrolysis and resulting osmotic pressure of the medium. Plant Cell Tiss. Org. Cult. 42: 39–46

    Google Scholar 

  • Tsumura Y, Ohba K & Strauss SH (1996) Diversity and inheritance of Inter-simple sequence repeat polymorphism in douglus fir (Pseudotsuga menziessi) and sugi (Cryptomeria japonica). Theor Appl. Genet. 92: 40–45

    Google Scholar 

  • Tulecke W (1987) Somatic embryogenesis in woody perennials. In: Bonga JM & Durzan DJ (eds) Cell and Tissue Culture in Forestry, Vol. 2 (pp. 61–69). Martinus Nijhoff Publishers, Dordrecht, The Netherlands

    Google Scholar 

  • Ueno S, Tomaru N, Yoshimaru H, Manabe T & Yamamoto S (2000) Genetic structure of Camellia japonica L. in an old-growth evergreen forest, Tsushima, Japan. Mol. Eco. 9: 647–656

    Google Scholar 

  • Ueno S, Yoshimaru H, Tomaru N & Yamamoto S (1999) Development and characterization of microsatellite markers in Camellia japonica L. Mole. Eco. 8: 335–336

    Google Scholar 

  • Vieitez AM(1994) Somatic embryogenesis in Camellia spp. In: Jain S, Gupta P & Newton R (eds) Somatic Embryogenesis in Woody Plants (pp. 235–276) Kluwer Academic Publishers, Dordrecht, The Netherlands

  • Vieitez AM & Barciela J (1990) Somatic embryogenesis and plant regeneration from embryonic tissues of Camellia japonica L. Plant Cell Tiss. Org. Cult. 21: 267–274

    Google Scholar 

  • Vieitez AM, Barciela J & Ballester A (1989a) Propagation of Camellia japonica cv. Alba Plena by tissue culture. J. Hort. Sci. 64: 177–182

    Google Scholar 

  • Vieitez AM, San-Jose MC & Ballester A (1989b) Progress towards clonal propagation of Camellia japonica cv. Alba Plena by tissue culture techniques. J. Hort. Sci. 64: 605–610

    Google Scholar 

  • Vieitez AM, San-Jose MC, Vieitez J & Ballester A (1991) Somatic embryogenesis from Roots of Camellia japonica plantlets cultured in vitro. J. Am. Soc. Hort. Sci. 116: 753–757

    Google Scholar 

  • Vieitez AM, Vieitez ML, Ballester A & Vieitez E (1992) Micropropagation of Camellia spp. In: Bajaj YPS (ed) Biotechnology in Agriculture and Forestry, Vol. 19. High Tech and Micropropagation III. (pp. 361–387). Springer-Verlag, Berlin Heidelberg

    Google Scholar 

  • Visser T (1969) Tea Camellia sinensis (L.) O. Kuntze. In: Ferwerdu EP & Wit F (eds) Outlines of Perennial Crop Breeding in the Tropics (pp. 459–493). Veenaran and Zonen, Wageningen, The Netherlands

    Google Scholar 

  • Vos P, Hogers R, Bleeker M, Reijans M, Van de lee T, Hornes M, Freijters A, Pot J, Peleman J, Kuiper M & Zabeau M (1995) AFLP: A new techniques for DNA fingerprinting. Nucleic Acids Res. 23: 4407–4414

    Google Scholar 

  • Vuylsteke D, Swennen R, Wilson GF & Langhe ED (1988) Phenotypic variation among in vitro propagated plantain (Muse sp. Cultivar ‘AAB’) Sci. Hort. 36: 79–80

    Google Scholar 

  • Wachira F & Ogado J (1995) In vitro regeneration of Camellia sinensis (L.) O. Kuntze by somatic embryo. Plant Cell Rep. 14: 463–466

    Google Scholar 

  • Wachira FN (1990) Desirable tea plants: an overview of a search for markers. Tea 11: 42–48

    Google Scholar 

  • Wachira FN, Powell W & Waugh R (1997) An assessment of genetic diversity among Camellia sinensis L. (cultivated tea) and its wild relatives based on randomly amplified polymorphic DNA and organelle specific STS. Heredity 78(6): 603–611

    Google Scholar 

  • Wachira FN, Waugh R, Hackett CA & Powell W (1995) Detection of genetic diversity in tea (Camellia sinensis) using. RAPD markers. Genome 38: 201–210

    Google Scholar 

  • Waugh R, Vande Ven WTG, Phillips MS & Powell W (1990) Chloroplasts DNA diversity in the genus Rubus (Rosaceae) revealed by southern hybridization. Plant Syst. Evol. 172: 65–75

    Google Scholar 

  • Wealth of India (1950) A directory of Indian raw materials and industrial products. Vol. II. S.S. Bhatnagar. Chairman, Editorial Committee (pp. 26–51). Council of Scientific and Industrial Res., New Delhi, India

    Google Scholar 

  • Webster FB, Roberts DR, Mclnnis SM & Sutton BCS (1990) Propagation of interior spruce by somatic embryogenesis. Can. J. For. Res. 20: 1757–1762

    Google Scholar 

  • Wendel JF & Parks CR (1982) Genetic control of isozyme variation in Camellia japonica L. J. Heredity 73: 197–204

    Google Scholar 

  • Wendel JF & Parks CR (1983) Cultivar identification in Camellia japonica L. using allozyme polymorphisms. J. Am. Soc. Hort. Sci. 108: 290–295

    Google Scholar 

  • Wendel JF & Parks CR (1984) Distorted segregation and linkage of alcohol dehydrogenase genes in Camellia japonica L. (Theaceae). Biochem. Genetics 22(7/8): 739–748

    Google Scholar 

  • Wendel JF & Parks CR (1985) Genetic diversity and population structure in Camellia japonica L. (Theaceae). Am. J. Bot. 72(1): 52–65

    Google Scholar 

  • Wickremaratne MR (1981) Variation in some leaf in tea (Camellia sinensis L.) and their use in the identification of clones. Tea. Q. 50: 183–189

    Google Scholar 

  • Wight W (1958) The agrotype concept in tea taxonomy. Nature 181: 893–895

    Google Scholar 

  • Wight W (1959) Nomenclature and classification of tea plant. Nature 183: 1726–1728

    Google Scholar 

  • Wight W (1962) Tea classification revised. Curr Sci. 31: 298–299

    Google Scholar 

  • Wight W & Barua DN (1954) Morphological basis of quality in tea. Nature 173: 630–631

    Google Scholar 

  • Wight W & Barua PK (1939) The tea plant in industry: Some general principles. Trop. Agric. 93: 1–10

    Google Scholar 

  • Williams JGK, Kubelik AR, Livak KJ, Rafaliski JA & Tingey SV (1990) DNA polymorphism amplified by arbitory primers are useful as genetic markers. Nucleic Acids Res. 18: 6531–6535

    Google Scholar 

  • Wood DJ & Barua DN (1958) Species hybrids of tea. Nature. 181: 1674–1675

    Google Scholar 

  • Wright LP, Apostolides Z & Louw AI (1996) DNA fingerprinting of tea clones. In: Whittle AM & Khumalo FRB (eds). Proc. of the 1st Regional Tea Research seminar. (pp. 44–50). Blantyre, Malawi 22–23rd March. 1995

  • Wu CT, Huang TK, Chen GR & Chen SY (1981) A review on the tissue culture of tea plants and on the utilization of callus derived plantlets In: Rao AN (ed) Tissue Culture of Economically Important Plants (pp. 104–106). Proc. Costed. Symp Singapore

  • Wu KS & Tanksley SD (1993) Abundance, polymorphism and genetic mapping of microsatellite in rice. Mol. Genet. 241: 225–235

    Google Scholar 

  • Xu H, Ton Q & Zhuang W(1987) Studies on genetic tendency of tea plant hybrid generation using isozyme technique. In: Proc. Inter. Tea. Quality and Health Symp (pp. 21–25)

  • Yamaguchi S, Kunitake T & Hisatomi S (1987) Interspecific hybrid between Camellia japonica cv. choclidori and C. chrysantha produced by embryo culture. Jpn. J. Breed. 37: 203–206

    Google Scholar 

  • Yan MQ & Ping C (1983) Studies on development of embryoids from the culture cotyledons of Thea sinensis L. Sci. Silv. Sin. 19: 25–29

    Google Scholar 

  • Yang Y & Sun T (1994) Study on the esterase isoenzyme in tea mutagenic breeding. China Tea. 16: 4–9

    Google Scholar 

  • Zaprometov MN & Zagoskina MV (1979) One more evidence for chloroplast involvement in the biosynthesis of phenolic compounds. Plant Physiol. (Russian). 34: 165–172

    Google Scholar 

  • Zaprometov MN & Zagoskina MV (1987) Regulation of phenolic compounds formation in cultured cells of tea plant (Camellia sinensis). In: Proc Inter. Tea Quality. Human Health Symp. China. (pp. 62–65)

  • Zehra M, Banerjee S, Mathur AK & Kukreja AK (1996) Induction of hairy roots in tea (Camellia sinensis (L.) using Agrobacterium rhizogenes. Curr Sci. 70: 84–86

    Google Scholar 

  • Zhan Z Ke N & Chen B (1987) The cytology of tea clonal cultivars fujian shuixian and their infertile mechanism. Proc. of Inter. Tea quality. Human Health Symp. China. (p. 46)

  • Zhuang C & Liang H (1985a) In vitro embryoid formation of Camellia reticulata L. Acta Biol. Exp. Sin. 18: 275–281

    Google Scholar 

  • Zhuang C & Liang H (1985b) Somatic embryogenesis and plantlet formation in cotyledon culture of Camellia chrysantha. Acta Bot. Yunn. 7: 446–450

    Google Scholar 

  • Zhuang C, Duan J & Zhou J (1988) Somatic embryogenesis and plantlets regeneration of Camellia sasanqua. Acta Bot. Yunn. 10: 241–244

    Google Scholar 

  • Zietkiewicz E, Rafalski A & Labuda D (1994) Genome fingerprinting by simple-sequence repeat (SSR) anchored polymerase chain reaction amplification. Genomics 20: 176–183

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tapan K. Mondal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mondal, T.K., Bhattacharya, A., Laxmikumaran, M. et al. Recent Advances of Tea (Camellia Sinensis) Biotechnology. Plant Cell, Tissue and Organ Culture 76, 195–254 (2004). https://doi.org/10.1023/B:TICU.0000009254.87882.71

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:TICU.0000009254.87882.71

Navigation