Skip to main content
Log in

Flower-predominant expression of a gene encoding a novel class I chitinase in rice (Oryza sativa L.)

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

A flower-predominant cDNA for a gene, termed OsChia1;175, was isolated from a cDNA library of rice pistils. Northern blot and RT-PCR analyses revealed that the OsChia1;175 gene is highly expressed in floral organs (pistils, stamens and lodicules at the heading stage) but not or at an extremely low level in vegetative organs. OsChia1;175 encodes a protein that consists of 340 amino acid residues, and the putative mature protein shows 52% to 63% amino acid identity to class I chitinases of rice or other plants. The phylogenetic tree shows that the OsChia1;175 protein is a new type of plant class I chitinase in rice. The expression of OsChia1;175 in vegetative organs is not induced by several chemicals, UV, and wounding. The soluble putative mature OsChia1;175 protein expressed in Escherichia coli exhibited chitinase activity in the assay with colloidal chitin as a substrate. Genomic Southern analysis revealed that the OsChia1;175 gene was organized as a low-copy gene family. The rice genomic library was screened and a genome clone corresponding to OsChia1;175 was isolated. The transcription start sites of the OsChia1;175 gene were mapped by primer extension analysis. The 1.2 kb putative promoter region of the OsChia1;175 gene was fused to the GUS (β-glucuronidase) gene, and this chimeric gene was introduced to rice by Agrobacterium-mediated transformation. The flower-predominant gene expression was identified also in the transgenic rice plants. The high promoter activity was detected in the stigmas, styles, stamens and lodicules in transgenic plants. The possible functions of OsChia1;175 are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Atkinson, A.H., Heath, R.L., Simpson, R.J., Clarke, A.E. and Anderson, M.A. 1993. Proteinase inhibitors in Nicotiana alata stigmas are derived from a precursor protein which is processed into five homologous inhibitors. Plant Cell 5: 203–213.

    Google Scholar 

  • Bause, E. 1983. Structural requirements of N-glycosylation of proteins. Studies with proline peptides as conformational probes. Biochem. J. 209: 331–336.

    Google Scholar 

  • Bradford, M.M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248–254.

    Google Scholar 

  • Broglie, K., Chet, I., Holliday, M., Cressman, R., Biddle, P., Knowlton, S., Mauvais, C.J. and Broglie, R. 1991. Transgenic plants with enhanced resistance to the fungal pathogen Rhizoctonia solani. Science 254: 1194–1197.

    Google Scholar 

  • Chen, C.G., Cornish, E.C. and Clarke, A.E. 1992. Specific expression of an extensin-like gene in the style of Nicotiana alata. Plant Cell 4: 1053–1062.

    Google Scholar 

  • Collinge, D.B., Kragh, K.M., Mikkelsen, J.D., Nielsen, K.K., Rasmussen, U. and Vad, K. 1993. Plant chitinases. Plant J. 3: 31–40.

    Google Scholar 

  • de Jong, A.J., Cordewener, J., Lo Schiavo, F., Terzi, M., Vandekerckhove, J., van Kammen, A. and de Vries, S.C. 1992. A carrot somatic embryo mutant is rescued by chitinase. Plant Cell 4: 425–433.

    Google Scholar 

  • de Jong, A.J., Heidstra, R., Spanik, H.P., Hartog, M.V., Meijer, E.A., Hendriks, T., Loschiavo, F., Terzi, M., Bisseling, T., van Kammen, A. and de Vries, S.C. 1993. Rhizobium lipooligosaccharides rescue a carrot somatic embryo mutant. Plant Cell 5: 615–620.

    Google Scholar 

  • Harikrishna, K., Jampates-Beale, R., Milligan, S.B. and Gasser, C.S. 1996. An endochitinase gene expressed at high levels in the stylar transmitting tissue of tomatoes. Plant Mol. Biol. 30: 899–911.

    Google Scholar 

  • Heidecker, G. and Messing, J. 1986. Structural analysis of plant genes. Annu. Rev. Plant Physiol. 37: 439–466.

    Google Scholar 

  • Hiei, Y., Ohta, S., Komari, T. and Kumashiro, T. 1994. Efficient transformation of rice (Oryza sativa L.) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA. Plant J. 6: 271–282.

    Google Scholar 

  • Hoshikawa, K. 1989. The growing rice plant. Nosan Gyoson Bunka Kyokai (Nobunkyo), Tokyo.

    Google Scholar 

  • Iseli, B., Boller, T. and Neuhaus, J.M. 1993. The N-terminal cysteine-rich domain of tobacco class I chitinase is essential for chitin binding but not for catalytic or antifungal activity. Plant Physiol. 103: 221–226.

    Google Scholar 

  • Jefferson, R.A., Kavanagh, T.A. and Bevan, M.W. 1987. GUS fusions: B-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J. 6: 3901–3907.

    Google Scholar 

  • Joshi, C.P. 1987. An inspection of the domain between putative TATA box and translation start site in 79 plant genes. Nucl. Acids Res. 15: 6643–6653.

    Google Scholar 

  • Karunanandaa, B., Singh, A. and Kao, T.H. 1994. Characterization of a predominantly pistil-expressed gene encoding a γ-thioninlike protein of Petunia inflata. Plant Mol. Biol. 26: 459–464.

    Google Scholar 

  • Komari, T., Saito, Y., Nakakido, F. and Kumashiro, T. 1989. Efficient selection of somatic hybrids in Nicotiana tabacum L. using a combination of drug-resistance markers introduced by transformation. Theor. Appl. Genet. 77: 547–552.

    Google Scholar 

  • Komari, T., Hiei, Y., Saito, Y., Murai, N. and Kumashiro, T. 1996. Vectors carrying two separate T-DNAs for co-transformation of higher plants mediated by Agrobacterium tumefaciens and segregation of transformants free from selection markers. Plant J. 10: 165–174.

    Google Scholar 

  • Lamb, C.J., Zhu, Q., Yamamoto, R.T., Beeche, A., Nelson, A.J. and Lawton, M.A. 1991. Defense gene regulation. In: Rice Genetics II, International Rice Research Institute, Manila, Philippines, pp. 529–537.

    Google Scholar 

  • Legrand, M., Kauffmann, S., Geoffroy, P. and Fritig, B. 1987. Biological function of pathogenesis-related proteins: four tobacco pathogenesis-related proteins are chitinases. Proc. Natl. Acad. Sci. USA 84: 6750–6754.

    Google Scholar 

  • Leung, D.W.M. 1992. Involvement of plant chitinase in sexual reproduction of higher plants. Phytochemistry 31: 1899–1900.

    Google Scholar 

  • Lin, W., Anuratha, C.S., Datta, K., Potrykus, I., Muthukrishnan, S. and Datta, SK. 1995. Genetic engineering of rice for resistance to sheath blight. Bio/technology 13: 686–691.

    Google Scholar 

  • Lotan, T., Ori, N. and Fluhr, R. 1989. Pathogenesis-related proteins are developmentally regulated in tobacco flowers. Plant Cell 1: 881–887.

    Google Scholar 

  • Mariani, C., De Beuckeleer, M., Truettner, J., Leemans, J. and Goldberg, R.B. 1990. Induction of male sterility in plants by a chimaeric ribonuclease gene. Nature 347: 737–741.

    Google Scholar 

  • Mariani, C., Gossele, V., De Beuckeleer, M., De Block, M., Goldberg, R.B., De Greef, W. and Leemans, J. 1992. A chimaeric ribonuclease-inhibitor gene restores fertility to male sterile plants. Nature 357: 384–387.

    Google Scholar 

  • McElroy, D., Rothenberg, M., Reece, K.S. and Wu, R. 1990a. Characterization of the rice (Oryza sativa) actin gene family. Plant Mol. Biol. 15: 257–268.

    Google Scholar 

  • McElroy, D., Rothenberg, M. and Wu, R. 1990b. Structural characterization of a rice actin gene. Plant Mol. Biol. 14: 163–171.

    Google Scholar 

  • McKnight, S.L. 1982. Functional relationships between transcriptional control signals of the thymidine kinase gene of herpes simplex virus. Cell 31: 355–365.

    Google Scholar 

  • Memelink, J., Hoge, J.H.C. and Schilperoort, R.A. 1987. Cytokinin stress changes the developmental regulation of several defenserelated genes in tobacco. EMBO J. 6: 3579–3583.

    Google Scholar 

  • Memelink, J., Linthorst, J.M.H., Schilperoort, R.A. and Hoge, J.H.C. 1990. Tobacco genes encoding acidic and basic isoforms of pathogenesis-related proteins display different expression patterns. Plant Mol. Biol. 14: 119–126.

    Google Scholar 

  • Neale, A.D., Wahleithner, J.A., Lund, M., Bonnett, H.T., Kelly, A., Meeks-Wagner, D.R., Peacock, W.J. and Dennis, E.S. 1990. Chitinase, β-1,3-glucanase, osmotin, and extensin are expressed in tobacco explants during flower formation. Plant Cell 2: 673–684.

    Google Scholar 

  • Neuhaus, J.M., Fritig, B., Linthorst, H.J.M., Meins, F. Jr., Mikkelsen, J.D. and Ryals, J. 1996. A revised nomenclature for chitinase genes. Plant Mol. Biol. Rep. 14: 102–104.

    Google Scholar 

  • Nishizawa, Y. and Hibi, T. 1991. Rice chitinase gene: cDNA cloning and stress-induced expression. Plant Sci. 76: 211–218.

    Google Scholar 

  • Nishizawa, Y., Kishimoto, N., Saito, A. and Hibi, T. 1993. Sequence variation, differential expression and chromosomal location of rice chitinase genes. Mol. Gen. Genet. 241: 1–10.

    Google Scholar 

  • Ori, N., Sessa, G., Lotan, T., Himmelhoch, S. and Fluhr, R. 1990. A major stylar matrix polypeptide (sp41) is a member of the pathogenesis-related proteins superclass. EMBO J. 9: 3429–3436.

    Google Scholar 

  • Raikhel, N.V., Lee, H.I. and Broekaert, W.F. 1993. Structure and function of chitin-binding proteins. Annu. Rev. Plant Physiol. Plant Mol. Biol. 44: 591–615.

    Google Scholar 

  • Samac, D.A. and Shah, D.M. 1991. Developmental and pathogeninduced activation of the Arabidopsis acidic chitinase promoter. Plant Cell 3: 1063–1072.

    Google Scholar 

  • Sambrook, J., Fritsch, E.F. and Maniatis, T. 1989. Molecular Cloning: A Laboratory Manual, 2nd ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.

    Google Scholar 

  • Sanger, F., Nicklen, S. and Coulson, A.R. 1977. DNA sequencing with chain-terminating inhibitors. Proc. Natl. Acad. Sci. USA 74: 5463–5467.

    Google Scholar 

  • Schein, C.H. and Noteborn, M.H.M. 1988. Formation of soluble recombinant proteins in Escherichia coli is favored by lower growth temperature. Bio/technology 6: 291–294.

    Google Scholar 

  • Schlumbaum, A., Mauch, F., Vögeli, U. and Boller, T. 1986. Plant chitinases are potent inhibitors of fungal growth. Nature 324: 365–367.

    Google Scholar 

  • Sela-Buurlage, M.B., Ponstein, A.S., Bres-Vloemans, S.A., Melchers, L.S., van den Elzen, P.J.M. and Cornelissen, B.J.C. 1993. Only specific tobacco (Nicotiana tabacum) chitinases and β-1,3-glucanases exhibit antifungal activity. Plant Physiol. 101: 857–863.

    Google Scholar 

  • Shimahara, K. and Takiguchi, Y. 1988. Biomass, part B. Meth. Enzymol. 161: 417–423.

    Google Scholar 

  • van Eldik, G.J., Wingens, M., Ruiter, R.K., van Herpen, M.M., Schrauwen, J.A. and Wullems, G.J. 1996. Molecular analysis of a pistil-specific gene expressed in the stigma and cortex of Solanum tuberosum. Plant Mol. Biol. 30: 171–176.

    Google Scholar 

  • Verburg, J.G., Smith, C.E., Lisek, C.A. and Huynh, Q.K. 1992. Identification of an essential tyrosine residue in the catalytic site of a chitinase isolated from Zea mays that is selectively modified during inactivation with 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide. J. Biol. Chem. 267: 3886–3893.

    Google Scholar 

  • Watanabe, A. and Price, C.A. 1982. Translation of mRNAs for subunits of chloroplast coupling factor 1 in spinach. Proc. Natl. Acad. Sci. USA 79: 6304–6308.

    Google Scholar 

  • Wemmer, T., Kaufmann, H., Kirch, H.H., Schneider, K., Lottspeich, F. and Thompson, R.D. 1994. The most abundant soluble basic protein of the stylar transmitting tract in potato (Solanum tuberosum L.) is an endochitinase. Planta 194: 264–273.

    Google Scholar 

  • Xu, Y., Zhu, Q., Panbangred, W., Shirasu, K. and Lamb, C. 1996. Regulation, expression and function of a new basic chitinase gene in rice (Oryza sativa L.). Plant Mol. Biol. 30: 387–401.

    Google Scholar 

  • Yanai, K., Takaya, N., Kojima, N., Horiuchi, H., Ohta, A. and Takagi, M. 1992. Purification of two chitinases from Rhizopus oligosporus and isolation and sequencing of the encoding genes.J. Bact. 174: 7398–7406.

    Google Scholar 

  • Zhu, Q. and Lamb, C.J. 1991. Isolation and characterization of a rice gene encoding a basic chitinase. Mol. Gen. Genet. 226: 289–296.

    Google Scholar 

  • Zhu, Q., Maher, E.A., Masoud, S., Dixon, R.A. and Lamb, C.J. 1994. Enhanced protection against fungal attack by constitutive co-expression of chitinase and glucanase genes in transgenic tobacco. Bio/technology 12: 807–812.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Takakura, Y., Ito, T., Saito, H. et al. Flower-predominant expression of a gene encoding a novel class I chitinase in rice (Oryza sativa L.). Plant Mol Biol 42, 883–897 (2000). https://doi.org/10.1023/A:1006401816145

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1006401816145

Navigation