Skip to main content

Advertisement

Log in

Swine polioencephalomyelitis in Brazil: identification of Teschovirus A, Sapelovirus A, and Enterovirus G in a farm from Southern Brazil

  • Veterinary Microbiology - Short Communication
  • Published:
Brazilian Journal of Microbiology Aims and scope Submit manuscript

Abstract

Porcine encephalomyelitis can be associated with many etiologies, including viral agents, such as Porcine teschovirus (PTV), Porcine sapelovirus (PSV), and Porcine astrovirus (PoAstV). In this study, we investigated the presence of these viruses in a neurological disease outbreak in a swine farm in Southern Brazil. The piglet production farm unity had 1200 weaning piglets, and 40 piglets with neurological signs such as motor incoordination, paresis, and paralysis of hind limbs, with an evolution time of approximately 4 days. Among these, 10 piglets were submitted to postmortem examination. Gross lesions were restricted to a mild enlargement of the nerve roots and ganglia of spinal cord segments. The microscopic lesions were characterized by nonsuppurative encephalomyelitis and ganglioneuritis with evident neuronal degeneration and necrosis. Samples of the central nervous system (CNS), cerebrospinal fluid, and feces were collected and submitted to molecular analysis. PTV was identified in all samples of the CNS, while eight of the piglets were also positive for PSV, and seven were positive for Porcine enterovirus (EV-G). PoAstV was identified in a pool of feces of healthy animals used as controls. This study demonstrates the occurrence of encephalomyelitis associated with PTV on a swine farm in Southern Brazil, as well as the presence of other viruses such as PSV, EV-G, and PoAstV in the swineherd. Sequences of the fragments that were previously amplified by PCR showed a high similarity to PTV 6. Herein, we describe the first case report of severe swine polioencephalomyelitis associated with PTV in South America.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

References

  1. Alexandersen S, Knowles NJ, Belsham GJ, Dekker A, Nfon C, Zhang Z, Koenen F (2019) Picornaviruses. In: Zimmermann JJ, Karriker LA, Ramirez A, Schwartz KJ, Stevenson GW, Zhang J (eds) Diseases of swine, 11th edn. Blackwell Publishing Press, Ames, pp 587–620

    Google Scholar 

  2. Arruda PHE, Arruda BL, Schwartz KJ, Vannucci F, Resende T, Rovira A, Sundberg P et al (2017) Detection of a novel sapelovirus in central nervous tissue of pigs with polioencephalomyelitis in the USA. Transbound Emerg Dis. https://doi.org/10.1111/tbed.12621

    Article  PubMed  Google Scholar 

  3. Arruda B, Arruda P, Hensch M, Chen Q, Zheng Y, Yang C (2017) Porcine astrovirus type 3 in central nervous system of swine with polioencephalomyelitis. Emerg Infec Dis. https://doi.org/10.3201/eid2312.170703

    Article  Google Scholar 

  4. Vreman S, Caliskan N, Harders F, Boonstra J, Peperkamp K, Ho CKY, Kuller W, Kortekaas J (2020) Two novel porcine teschovirus strains as the causative agents of encephalomyelitis in the Netherlands. BMC Vet Res. https://doi.org/10.1186/s12917-020-2275-0

    Article  PubMed  PubMed Central  Google Scholar 

  5. Cano-Gómez C, García-Casado MA, Soriguer R, Palero F, Jiménez-Clavero MA (2013) Teschoviruses and sapeloviruses in faecal samples from wild boar in Spain. Vet Microbiol. https://doi.org/10.1016/j.vetmic.2012.11.022

    Article  PubMed  Google Scholar 

  6. Krumbholz A, Dauber M, Henke A, Birch-Hirschfeld E, Knowles NJ, Stelzner A, Zell R (2002) Sequencing of porcine enterovirus groups II and III reveals unique features of both virus groups. J Virol. https://doi.org/10.1128/JVI.76.11.5813-5821.2002

    Article  PubMed  PubMed Central  Google Scholar 

  7. Donin DG, Leme RA, Alfieri AF, Alberton GC, Alfieri AA (2014) First report of Porcine teschovirus (PTV) Porcine sapelovirus (PSV) and Enterovirus G (EV-G) in pig herds of Brazil. Trop Anim Health Prod. https://doi.org/10.1007/s11250-013-0523-z

    Article  PubMed  Google Scholar 

  8. Leme RA, Silva DR, Lorenzetti E, Moraes DA, Alfieri AF, Alfieri AA (2019) Longitudinal survey of Teschovirus A, Sapelovirus A, and Enterovirus G fecal excretion in sickling and weaned pigs. Braz J Microbiol. https://doi.org/10.1007/s42770-018-0018-1

    Article  PubMed  PubMed Central  Google Scholar 

  9. Souza FG, Gularte JS, Demoliner M, Lima AF, Siebert JC, Rigotto C, Henzel A et al (2020) Teschovirus and other swine and human enteric viruses in Brazilian watersheds impacted by swine husbandry. Braz J Microbiol. https://doi.org/10.1007/s42770-019-00197-w

    Article  PubMed  PubMed Central  Google Scholar 

  10. La Rosa G, Muscillo M, Di Grazia A, Fontana S, Iaconelli M, Tollis M (2006) Validations of RT-PCR assays for molecular characterization of porcine teschoviruses and enteroviruses. J Vet Med B Infect Dis Vet Public Health. https://doi.org/10.1111/j.1439-0450.2006.00955.x

    Article  PubMed  Google Scholar 

  11. Deng MY, Millien M, Jacques-Simon R, Flanagan JK, Bracht AJ, Carrillo C, Barrette RW et al (2012) Diagnosis of Porcine teschovirus encephalomyelitis in the Republic of Haiti. J Vet Diag Invest. https://doi.org/10.1177/1040638712445769

    Article  Google Scholar 

  12. Krumbholz A, Wurm R, Scheck O, Birch-Hirschfeld E, Egerer R, Henke A, Wutzler P, Zell R (2003) Detection of porcine teschoviruses and enteroviruses by LightCycler real-time PCR. J Virol Methods. https://doi.org/10.1016/S0166-0934(03)00227-1

    Article  PubMed  Google Scholar 

  13. Donin DG, Leme RA, Alfieri AF, Alberton GC, Alfieri AA (2015) Molecular survey of porcine teschovirus, porcine sapelovirus, and enterovirus G in captive wild boars (Sus scrofa scrofa) of Paraná state. Brazil Pesq Vet Bras. https://doi.org/10.1590/S0100-736X2015000500003

    Article  Google Scholar 

  14. Chu DKW, Poon LLM, Guan Y, Peiris JSM (2008) Novel astroviruses in insectivorous bats. J Virol. https://doi.org/10.1128/JVI.00857-08

    Article  PubMed  PubMed Central  Google Scholar 

  15. Sanger F, Nicklen S, Coulson AR (1977) DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. https://doi.org/10.1073/pnas.74.12.5463

    Article  PubMed  PubMed Central  Google Scholar 

  16. Nei M, Kumar S (2000) Phylogenetic inference: maximum likelihood methods. In: Nei M, Kumar S (eds) Molecular evolution and phylogenetics, 1st edn. Oxford University Press, New York, pp 147–164

  17. Kumar S, Stecher G, Li M, Knyaz C, Tamura K (2018) MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol. https://doi.org/10.1093/molbev/msy096

    Article  PubMed  PubMed Central  Google Scholar 

  18. Bangari DS, Pogranichniy RM, Gillespie T, Stevenson GW (2010) Genotyping of Porcine teschovirus from nervous tissue of pigs with and without polioencephalomyelitis in Indiana. J Vet Diag Invest. https://doi.org/10.1177/104063871002200415

    Article  Google Scholar 

  19. Ventura A, Gonzalez W, Barrette R, Swenson S, Bracht A, Rowland J, Fabian A et al (2013) Virus and antibody diagnostics for swine samples of the Dominican Republic collected in regions near the border to Haiti. Hindawi Publishing Corporation. https://doi.org/10.5402/2013/425831

    Article  Google Scholar 

  20. Matias Ferreyra F, Arruda B, Stevenson G, Schwartz K, Madson D, Yoon KJ, Zhang J (2017) Development of polioencephalomyelitis in cesarean-derived colostrum-deprived pigs following experimental inoculation with either teschovirus A serotype 2 or serotype 11. Viruses. https://doi.org/10.3390/v9070179

    Article  PubMed  PubMed Central  Google Scholar 

  21. Pogranichniy RM, Janke BH, Gillespie TG, Yoon KJ (2003) A prolonged of polioencephalomyelitis due to infection with a group I porcine enterovirus. J Vet Diag Invest. https://doi.org/10.1177/104063870301500218

    Article  Google Scholar 

  22. Van Dung N, Anh PH, Van Cuong N, Hoa NT, Carrique-Mas J, Hien VB, Campbell J et al (2014) Prevalence, genetic diversity and recombination of species G enteroviruses infecting pigs in Vietnam. J Gen Virol. https://doi.org/10.1099/vir.0.061978-0

    Article  PubMed  PubMed Central  Google Scholar 

  23. De Benedictis P, Schultz-Cherry S, Burnham A, Cattoli G (2011) Astrovirus infections in humans and animals - molecular biology, genetic diversity, and interspecies transmissions. Infec Genet Evol. https://doi.org/10.1016/j.meegid.2011.07.024

    Article  Google Scholar 

  24. Ciacci-Zanella JR, Morés N, Barcellos DESN (2016) Principais ameaças sanitárias endêmicas da cadeia produtiva de suínos no Brasil. Pesq Agrop Bras. https://doi.org/10.1590/S0100-204X2016000500004

    Article  Google Scholar 

  25. Mósena ACS, Weber MN, da Cruz RAS, Cibulski SP, da Silva MS, Puhl DE, Hammerschmitt ME, Takeuti KL, Driemeier D, de Barcellos DESN, Canal CW (2017) Presence of atypical porcine pestivirus (APPV) in Brazilian pigs. Transbound Emerg Dis. https://doi.org/10.1111/tbed.12753

    Article  PubMed  Google Scholar 

  26. Fong TT, Lipp EK (2005) Enteric viruses of humans and animals in aquatic environments: health risks, detection, and potential water quality assessment tools. Microbiol Mol Biol Rev. https://doi.org/10.1128/MMBR.69.2.357-371.2005

    Article  PubMed  PubMed Central  Google Scholar 

  27. Kocwa-Haluch R (2001) Waterborne enteroviruses as a hazard for human health. Pol J Environ Stud 10:485–487

Download references

Funding

Pró-Reitoria de Pesquisa (Propesq/UFRGS), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Fundação de Amparo à Pesquisa do Estado do Rio Grande do Sul (FAPERGS), and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) supported this study.

Author information

Authors and Affiliations

Authors

Contributions

Márcia Elisa Hammerschmitt drafted the work and made substantial contributions to the interpretation of data. Paula Rodrigues de Almeida drafted the work and revised it critically for important intellectual content, made substantial contributions to the interpretation of data, and approved the version to be published. Bianca Santana de Cecco, Marina Paula Lorenzett, Claiton Ismael Schwertz, Raquel Aparecida Sales da Cruz, Rafaela Albuquerque Caprioli, Daniela Teresa Schuh, Meriane Demoliner, Ana Karolina Antunes Eisen, Fernando Rosado Spilki, Saulo Petinatti Pavarini, and David Driemeier made substantial contributions to the interpretation of data, revised it critically for important intellectual content, and approved the version to be published.

Corresponding author

Correspondence to Márcia Elisa Hammerschmitt.

Ethics declarations

Ethics approval

All cases described herein occurred spontaneously, with no experimentation, inoculation, or treatment of live animals. All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Responsible Editor: Giliane Souza Trindade.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hammerschmitt, M.E., de Almeida, P.R., de Cecco, B.S. et al. Swine polioencephalomyelitis in Brazil: identification of Teschovirus A, Sapelovirus A, and Enterovirus G in a farm from Southern Brazil. Braz J Microbiol 52, 1617–1622 (2021). https://doi.org/10.1007/s42770-021-00509-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42770-021-00509-z

Keywords

Navigation