Skip to main content
Log in

Immunophenotyping of patients with oral squamous cell carcinoma in peripheral blood and associated tumor tissue

  • Original Article
  • Published:
Tumor Biology

Abstract

The immune system is important for elimination of cancer cells. Tumors including oral squamous cell carcinoma (OSCC) are capable of escaping detection by host immune cells through apoptotic depletion of tumor-infiltrating lymphocytes (TILs). Circulating peripheral blood lymphocytes (PBLs) and corresponding TILs of tumor specimen were evaluated before and after curative tumor resection (n = 30) compared with PBLs of controls (n = 87). PBLs were characterized for the total number of T cells (CD3+), T helper cells (Th, CD3+/CD4+), regulatory T cells (Treg, CD4+/CD25+/CD127low), cytotoxic T cells (Tc, CD3+/CD8+), activated T cells (CD3+/HLA-DR+), and natural killer (NK) cells (CD3/CD16+/CD56+). In tumor tissue, the prevalence of CD3+, CD4+, and CD8+ TILs was assessed using immunohistochemistry, whereas the incidence of apoptosis was assessed using terminal deoxynucleotidyl transferase deoxyuridinetriphosphate nick-end labeling (TUNEL) assay. In PBLs of pretreated OSCC patients, a highly significant decrease in total number of T cells (p = 0.0001), Th cells (p < 0.0001), Treg cells (p < 0.0001), Tc cells (p < 0.0001), and NK cells (p = 0.0037) were found compared with controls. Decreased PBLs of OSCC patients were correlated with decreased numbers of corresponding TILs, which were associated with increased detection of apoptosis in the tumor tissue. Compared with the controls, the total number of T cells remained unchanged after surgery but the total number of NK cells significantly increased. Standardized immunophenotyping of OSCC may help to identify patients likely to benefit from cancer immunotherapy strategies and/or chemoradiation. Finally, future attempts to enhance an effective tumor-reactive immune response by immunotherapy or vaccination should be made by promoting tumor-specific Th and/or Tc cell/NK cell responses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

PBLs:

Peripheral blood lymphocytes

TILs:

Tumor-infiltrating lymphocytes

OSCC:

Oral squamous cell carcinoma

Th:

T helper cells

Treg:

Regulatory T cells

Tc:

Cytotoxic T cells

NK:

Natural killer cells

IHC:

Immunohistochemistry

References

  1. Huang TY, Hsu LP, Wen YH, Huang TT, Chou YF, Lee CF, et al. Predictors of locoregional recurrence in early stage oral cavity cancer with free surgical margins. Oral Oncol. 2010;46(1):49–55. doi:10.1016/j.oraloncology.2009.10.011.

    Article  PubMed  Google Scholar 

  2. Badoual C, Sandoval F, Pere H, Hans S, Gey A, Merillon N, et al. Better understanding tumor-host interaction in head and neck cancer to improve the design and development of immunotherapeutic strategies. Head Neck. 2010;32(7):946–58. doi:10.1002/hed.21346.

    PubMed  Google Scholar 

  3. Zamarin D, Postow MA. Immune checkpoint modulation: rational design of combination strategies. Pharmacol Ther. 2015. doi:10.1016/j.pharmthera.2015.01.003.

    PubMed  Google Scholar 

  4. Duong CP, Yong CS, Kershaw MH, Slaney CY, Darcy PK. Cancer immunotherapy utilizing gene-modified T cells: from the bench to the clinic. Mol Immunol. 2015. doi:10.1016/j.molimm.2014.12.009.

    PubMed  Google Scholar 

  5. Chen DS, Mellman I. Oncology meets immunology: the cancer-immunity cycle. Immunity. 2013;39(1):1–10. doi:10.1016/j.immuni.2013.07.012.

    Article  CAS  PubMed  Google Scholar 

  6. Gildener-Leapman N, Ferris RL, Bauman JE. Promising systemic immunotherapies in head and neck squamous cell carcinoma. Oral Oncol. 2013;49(12):1089–96. doi:10.1016/j.oraloncology.2013.09.009.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Ferrone S, Whiteside TL. Tumor microenvironment and immune escape. Surg Oncol Clin N Am. 2007;16(4):755–74. doi:10.1016/j.soc.2007.08.004. viii.

    Article  PubMed  Google Scholar 

  8. Tanaka H, Yoshizawa H, Yamaguchi Y, Ito K, Kagamu H, Suzuki E, et al. Successful adoptive immunotherapy of murine poorly immunogenic tumor with specific effector cells generated from gene-modified tumor-primed lymph node cells. J Immunol. 1999;162(6):3574–82.

    CAS  PubMed  Google Scholar 

  9. Dobrzanski MJ. Expanding roles for CD4 T cells and their subpopulations in tumor immunity and therapy. Front Oncol. 2013;3:63. doi:10.3389/fonc.2013.00063.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Igney FH, Krammer PH. Immune escape of tumors: apoptosis resistance and tumor counterattack. J Leukoc Biol. 2002;71(6):907–20.

    CAS  PubMed  Google Scholar 

  11. Gastman BR, Atarshi Y, Reichert TE, Saito T, Balkir L, Rabinowich H, et al. Fas ligand is expressed on human squamous cell carcinomas of the head and neck, and it promotes apoptosis of T lymphocytes. Cancer Res. 1999;59(20):5356–64.

    CAS  PubMed  Google Scholar 

  12. Kassouf N, Thornhill MH. Oral cancer cell lines can use multiple ligands, including Fas-L, TRAIL and TNF-alpha, to induce apoptosis in Jurkat T cells: possible mechanisms for immune escape by head and neck cancers. Oral Oncol. 2008;44(7):672–82. doi:10.1016/j.oraloncology.2007.08.013.

    Article  CAS  PubMed  Google Scholar 

  13. Reichert TE, Strauss L, Wagner EM, Gooding W, Whiteside TL. Signaling abnormalities, apoptosis, and reduced proliferation of circulating and tumor-infiltrating lymphocytes in patients with oral carcinoma. Clin Cancer Res. 2002;8(10):3137–45.

    PubMed  Google Scholar 

  14. Kim JW, Wieckowski E, Taylor DD, Reichert TE, Watkins S, Whiteside TL. Fas ligand-positive membranous vesicles isolated from sera of patients with oral cancer induce apoptosis of activated T lymphocytes. Clin Cancer Res. 2005;11(3):1010–20.

    CAS  PubMed  Google Scholar 

  15. Hoffmann TK, Dworacki G, Tsukihiro T, Meidenbauer N, Gooding W, Johnson JT, et al. Spontaneous apoptosis of circulating T lymphocytes in patients with head and neck cancer and its clinical importance. Clin Cancer Res. 2002;8(8):2553–62.

    PubMed  Google Scholar 

  16. Wolf GT, Hudson JL, Peterson KA, Miller HL, McClatchey KD. Lymphocyte subpopulations infiltrating squamous carcinomas of the head and neck: correlations with extent of tumor and prognosis. Otolaryngol Head Neck Surg. 1986;95(2):142–52.

    Article  CAS  PubMed  Google Scholar 

  17. Wolf GT, Schmaltz S, Hudson J, Robson H, Stackhouse T, Peterson KA, et al. Alterations in T-lymphocyte subpopulations in patients with head and neck cancer. Correlations with prognosis. Arch Otolaryngol Head Neck Surg. 1987;113(11):1200–6.

    Article  CAS  PubMed  Google Scholar 

  18. Badoual C, Hans S, Rodriguez J, Peyrard S, Klein C, Agueznay Nel H, et al. Prognostic value of tumor-infiltrating CD4+ T-cell subpopulations in head and neck cancers. Clin Cancer Res. 2006;12(2):465–72. doi:10.1158/1078-0432.CCR-05-1886.

    Article  CAS  PubMed  Google Scholar 

  19. Balermpas P, Michel Y, Wagenblast J, Seitz O, Weiss C, Rodel F, et al. Tumour-infiltrating lymphocytes predict response to definitive chemoradiotherapy in head and neck cancer. Br J Cancer. 2014;110(2):501–9. doi:10.1038/bjc.2013.640.

    Article  CAS  PubMed  Google Scholar 

  20. Wolf GT, Chepeha DB, Bellile E, Nguyen A, Thomas D, McHugh J, et al. Tumor infiltrating lymphocytes (TIL) and prognosis in oral cavity squamous carcinoma: a preliminary study. Oral Oncol. 2015;51(1):90–5. doi:10.1016/j.oraloncology.2014.09.006.

    Article  CAS  PubMed  Google Scholar 

  21. Gaur P, Qadir GA, Upadhyay S, Singh AK, Shukla NK, Das SN. Skewed immunological balance between Th17 (CD4(+)IL17A (+)) and Treg (CD4 (+)CD25 (+)FOXP3 (+)) cells in human oral squamous cell carcinoma. Cell Oncol (Dordr). 2012;35(5):335–43. doi:10.1007/s13402-012-0093-5.

    Article  CAS  Google Scholar 

  22. Gasparoto TH, de Souza Malaspina TS, Benevides L, de Melo EJ, Costa Jr MR, Damante JH, et al. Patients with oral squamous cell carcinoma are characterized by increased frequency of suppressive regulatory T cells in the blood and tumor microenvironment. Journal of the Formosan immunol, immunother: CII. 2010;59(6):819–28. doi:10.1007/s00262-009-0803-7.

    Article  CAS  Google Scholar 

  23. Lim KP, Chun NA, Ismail SM, Abraham MT, Yusoff MN, Zain RB, et al. CD4 + CD25hiCD127low regulatory T cells are increased in oral squamous cell carcinoma patients. PLoS One. 2014;9(8):e103975. doi:10.1371/journal.pone.0103975.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Liu W, Putnam AL, Xu-Yu Z, Szot GL, Lee MR, Zhu S, et al. CD127 expression inversely correlates with FoxP3 and suppressive function of human CD4+ T reg cells. J Exp Med. 2006;203(7):1701–11. doi:10.1084/jem.20060772.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ziegler SF. FOXP3: of mice and men. Annu Rev Immunol. 2006;24:209–26. doi:10.1146/annurev.immunol.24.021605.090547.

    Article  CAS  PubMed  Google Scholar 

  26. Drennan S, Stafford ND, Greenman J, Green VL. Increased frequency and suppressive activity of CD127(low/-) regulatory T cells in the peripheral circulation of patients with head and neck squamous cell carcinoma are associated with advanced stage and nodal involvement. Immunology. 2013;140(3):335–43. doi:10.1111/imm.12144.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Rammensee HG, Weinschenk T, Gouttefangeas C, Stevanovic S. Towards patient-specific tumor antigen selection for vaccination. Immunol Rev. 2002;188:164–76.

    Article  CAS  PubMed  Google Scholar 

  28. Singh-Jasuja H, Emmerich NP, Rammensee HG. The Tubingen approach: identification, selection, and validation of tumor-associated HLA peptides for cancer therapy. Cancer immunology, immunotherapy : CII. 2004;53(3):187–95. doi:10.1007/s00262-003-0480-x.

    Article  CAS  PubMed  Google Scholar 

  29. Feyen O, Coy JF, Prasad V, Schierl R, Saenger J, Baum RP. EDIM-TKTL1 blood test: a noninvasive method to detect upregulated glucose metabolism in patients with malignancies. Future Oncol. 2012;8(10):1349–59. doi:10.2217/fon.12.98.

    Article  CAS  PubMed  Google Scholar 

  30. Grimm M, Cetindis M, Lehmann M, Biegner T, Munz A, Teriete P, et al. Association of cancer metabolism-related proteins with oral carcinogenesis—indications for chemoprevention and metabolic sensitizing of oral squamous cell carcinoma? J Transl Med. 2014;12:208. doi:10.1186/1479-5876-12-208.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Zweig MH, Campbell G. Receiver-operating characteristic (ROC) plots: a fundamental evaluation tool in clinical medicine. Clin Chem. 1993;39(4):561–77.

    CAS  PubMed  Google Scholar 

  32. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144(5):646–74. doi:10.1016/j.cell.2011.02.013.

    Article  CAS  PubMed  Google Scholar 

  33. Miyazaki A, Kobayashi J, Torigoe T, Hirohashi Y, Yamamoto T, Yamaguchi A, et al. Phase I clinical trial of survivin-derived peptide vaccine therapy for patients with advanced or recurrent oral cancer. Cancer Sci. 2011;102(2):324–9. doi:10.1111/j.1349-7006.2010.01789.x.

    Article  CAS  PubMed  Google Scholar 

  34. Devarapu SK, Sharma SC, Das SN. Triggering of T cell-mediated immune responses by allogenic tumor cell vaccine in patients with oral cancer. Immunopharmacol Immunotoxicol. 2006;28(3):387–95. doi:10.1080/08923970600927348.

    Article  CAS  PubMed  Google Scholar 

  35. Ostrand-Rosenberg S. CD4+ T lymphocytes: a critical component of antitumor immunity. Cancer Invest. 2005;23(5):413–9.

    CAS  PubMed  Google Scholar 

  36. Agarwal A, Mohanti BK, Das SN. Ex vivo triggering of T-cell-mediated immune responses by autologous tumor cell vaccine in oral cancer patients. Immunopharmacol Immunotoxicol. 2007;29(1):95–104. doi:10.1080/08923970701282742.

    Article  CAS  PubMed  Google Scholar 

  37. Timar J, Ladanyi A, Forster-Horvath C, Lukits J, Dome B, Remenar E, et al. Neoadjuvant immunotherapy of oral squamous cell carcinoma modulates intratumoral CD4/CD8 ratio and tumor microenvironment: a multicenter phase II clinical trial. J Clin Oncol. 2005;23(15):3421–32. doi:10.1200/JCO.2005.06.005.

    Article  CAS  PubMed  Google Scholar 

  38. Yeh CY, Lin CL, Chang MC, Chen HM, Kok SH, Chang SH, et al. Differences in oral habit and lymphocyte subpopulation affect malignant transformation of patients with oral precancer. J Formos Med Assoc=Taiwan yi zhi. 2015. doi:10.1016/j.jfma.2015.07.017.

    Google Scholar 

  39. Tabata T, Hazama S, Yoshino S, Oka M. Th2 subset dominance among peripheral blood T lymphocytes in patients with digestive cancers. Am J Surg. 1999;177(3):203–8.

    Article  CAS  PubMed  Google Scholar 

  40. Young M. Immunological phenotypes of premalignant oral lesions and the immune shifts with the development of head and neck cancer. Austin J Otolaryngol. 2014;1(2):7.

    Google Scholar 

  41. Ma Y, Zhang Z, Tang L, Xu YC, Xie ZM, Gu XF, et al. Cytokine-induced killer cells in the treatment of patients with solid carcinomas: a systematic review and pooled analysis. Cytotherapy. 2012;14(4):483–93. doi:10.3109/14653249.2011.649185.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank biovis’ Diagnostik MVZ especially Melanie Hügen and Martina Thümmler for the technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Grimm.

Ethics declarations

Authors’ contributions

MG and OF conceived the study, performed the coordination, and drafted the manuscript. OF performed flow cytometric analysis. TB and AM analyzed histopathological specimen and carried out immunohistochemistry studies. MG and PT carried out the data collection and performed the statistical analyses. SR performed surgical treatment, after care of the patients, and drafted the manuscript. All authors read and approved the final manuscript.

Conflicts of interest

None

Consent to participate

Written informed consent to participate was obtained prospectively from all patients (Ethics Committee Tübingen, Germany, approval number: 562-2013BO2).

Additional information

Martin Grimm and Oliver Feyen contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grimm, M., Feyen, O., Hofmann, H. et al. Immunophenotyping of patients with oral squamous cell carcinoma in peripheral blood and associated tumor tissue. Tumor Biol. 37, 3807–3816 (2016). https://doi.org/10.1007/s13277-015-4224-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-015-4224-2

Keywords

Navigation