Skip to main content

Advertisement

Log in

A powerful approach to explore the potential of medicinal plants as a natural source of odor and antioxidant compounds

  • Original Article
  • Published:
Journal of Food Science and Technology Aims and scope Submit manuscript

Abstract

In this study an efficient and reliable method based on dynamic headspace solid-phase microextraction (HS-SPME) followed by gas chromatography–mass spectrometry (GC–qMS), was developed to establish the volatile metabolomic pattern of Thymus vulgaris L., Rosmarinus officinalis L. and Ruta chalepensis L. medicinal plants. The HS-SPME influencing parameters were investigated and the results indicated that the best extraction capability, was obtained using DVB/CAR/PDMS coating fiber at 40 °C for 45 min. Under optimal conditions, a total of 99 volatile metabolites were identified, including 53 terpenoids, 19 carbonyl compounds, 7 esters, 6 alcohols, among others. The main volatile metabolites identified in T. vulgaris include thymol (67 %), 3-octanone (9 %) and 1-octen-3-ol (7 %), while in R. officinalis the most dominant volatiles were eucalyptol (40 %), 2-decanone (20 %) and bornyl acetate (10 %). 2-Undecanone (53 %), (E)-2-octenal (28 %) and 2-nonanone (10 %) were the most relevant volatile metabolites identified in R. chalepensis. The results suggested that the HS-SPME/GC-qMS methodology is a powerful approach to establish the volatile metabolomic fingerprint of medicinal plants and providing a reliable tool for the complete characterization of these biologically active medicinal plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Aharoni A, Jongsma MA, Bouwmeester HJ (2005) Volatile science? Metabolic engineering of terpenoids in plants. Trends Plant Sci 10:594–602

    Article  CAS  Google Scholar 

  • Bajerová P, Eisner A, Ježová V, Adam M, Ventura K (2008) Comparison of supercritical fluid and soxhlet extractions for the isolation of nitro compounds from soils. J Sep Sci 31:1408–1414

    Article  CAS  Google Scholar 

  • Baranauskienė R, Venskutonis PR, Viškelis P, Dambrauskienė E (2003) Influence of nitrogen fertilizers on the yield and composition of thyme (Thymus vulgaris). J Agric Food Chem 51:7751–7758

    Article  CAS  Google Scholar 

  • Barnes J, Anderson LA, Phillipson JD (2007) Rosemary (Vol, 3rd edn. In: Herbal Medicines. Pharmaceutical Press, London

    Google Scholar 

  • Cao J, Qi M, Fang L, Zhou S, Fu R, Zhang P (2006) Solid-phase microextraction–gas chromatographic–mass spectrometric analysis of volatile compounds from Curcuma wenyujin Y.H. Chen et C. Ling. J Pharm Biomed Anal 40:552–558

    Article  CAS  Google Scholar 

  • Choi CW, Kim SC, Hwang SS, Choi BK, Ahn HJ, Lee MY, Park SH, Kim SK (2002) Antioxidant activity and free radical scavenging capacity between korean medicinal plants and flavonoids by assay-guided comparison. Plant Sci 163:1161–1168

    Article  CAS  Google Scholar 

  • Crocoll C, Asbach J, Novak J, Gershenzon J, Degenhardt J (2010) Terpene synthases of oregano (origanum vulgare L.) and their roles in the pathway and regulation of terpene biosynthesis. Plant Mol. Biol 73:587–603

    Article  CAS  Google Scholar 

  • Culleré L, Escudero A, Cacho J, Ferreira V (2004) Gas chromatography − olfactometry and chemical quantitative study of the aroma of six premium quality spanish aged red wines. J Agric Food Chem 52:1653–1660

    Article  CAS  Google Scholar 

  • Cvetković ŽS, Nikolić VD, Savić IM, Savić-Gajić IM, Nikolić LB (2015) Development and validation of an RP-HPLC method for quantification of trans-resveratrol in the plant extracts. Hemijska industrija4-4.

  • Dorman HJ, Deans SG (2000) Antimicrobial agents from plants: antibacterial activity of plant volatile oils. J Appl Microbiol 88:308–316

    Article  CAS  Google Scholar 

  • Galindo-Cuspinera V, Lubran MB, Rankin SA (2002) Comparison of volatile compounds in water- and oil-soluble annatto (Bixa Orellana L.) extracts. J Agric Food Chem 50:2010–2015

    Article  CAS  Google Scholar 

  • Gianelli MP, Flores M, Toldrá F (2002) Optimisation of solid phase microextraction (SPME) for the analysis of volatile compounds in dry-cured ham. J Sci Food Agric 82:1703–1709

    Article  CAS  Google Scholar 

  • Gonçalves S, Gomes D, Costa P, Romano A (2013) The phenolic content and antioxidant activity of infusions from mediterranean medicinal plants. Ind Crop Prod 43:465–471

    Article  CAS  Google Scholar 

  • Gouveia SC, Castilho PC (2013) Artemisia annua L.: essential oil and acetone extract composition and antioxidant capacity. Ind Crop Prod 45:170–181

    Article  CAS  Google Scholar 

  • Grigore A, Paraschiv I, Colceru-Mihul S, Bubueanu C, Draghici E, Ichim M (2010) Chemical composition and antioxidant activity of Thymus vulgaris L. volatile oil obtained by two different methods. Rom Biotech Lett 15:5436–5443

    CAS  Google Scholar 

  • Guedes de Pinho P, Gonçalves RF, Valentão P, Pereira DM, Seabra RM, Andrade PB, Sottomayor M (2009) Volatile composition of Catharanthus roseus (L.) G. don using solid-phase microextraction and gas chromatography/mass spectrometry. J Pharm Biomed Anal 49:674–685

    Article  CAS  Google Scholar 

  • Halvorsen BL, Holte K, Myhrstad MCW, Barikmo I, Hvattum E, Remberg SF, Wold A-B, Haffner K, Baugerød H, Andersen LF, Moskaug Ø, Jacobs DR, Blomhoff R (2002) A systematic screening of total antioxidants in dietary plants. J Nutr 132:461–471

    CAS  Google Scholar 

  • Ince AE, Sahin S, Sumnu G (2014) Comparison of microwave and ultrasound-assisted extraction techniques for leaching of phenolic compounds from nettle. J Food Sci Technol 51:2776–2782

    Article  CAS  Google Scholar 

  • Jiang Y, Wu N, Fu Y-J, Wang W, Luo M, Zhao C-J, Zu Y-G, Liu X-L (2011) Chemical composition and antimicrobial activity of the essential oil of rosemary. Environ Toxicol Phar 32:63–68

    Article  CAS  Google Scholar 

  • Katalinic V, Milos M, Kulisic T, Jukic M (2006) Screening of 70 medicinal plant extracts for antioxidant capacity and total phenols. Food Chem 94:550–557

    Article  CAS  Google Scholar 

  • Lim YY, Lim TT, Tee JJ (2007) Antioxidant properties of several tropical fruits: a comparative study. Food Chem 103:1003–1008

    Article  CAS  Google Scholar 

  • Lin C, Yu C, Wu S, Yih K (2009) DPPH free-radical scavenging activity, total phenolic contents and chemical composition analysis of forty-two kinds of essential oils. J Food Drug Anal 17:386–395

    CAS  Google Scholar 

  • Lord H, Pawliszyn J (2000) Microextraction of drugs. J Chromatogr A 902:17–63

    Article  CAS  Google Scholar 

  • Mejri J, Abderrabba M, Mejri M (2010) Chemical composition of the essential oil of Ruta chalepensis L: influence of drying, hydro-distillation duration and plant parts. Ind Crop Prod 32:671–673

    Article  CAS  Google Scholar 

  • Nagegowda DA (2010) Plant volatile terpenoid metabolism: biosynthetic genes, transcriptional regulation and subcellular compartmentation. FEBS Lett 584:2965–2973

    Article  CAS  Google Scholar 

  • Perestrelo R, Barros AS, Rocha SM, Câmara JS (2011) Optimisation of solid-phase microextraction combined with gas chromatography-mass spectrometry based methodology to establish the global volatile signature in pulp and skin of Vitis vinifera L. grape varieties. Talanta 85:1483–1493

    Article  CAS  Google Scholar 

  • Pontes M, Marques JC, Câmara JS (2009) Headspace solid-phase microextraction-gas chromatography-quadrupole mass spectrometric methodology for the establishment of the volatile composition of passiflora fruit species. Microchem J 93:1–11

    Article  CAS  Google Scholar 

  • Ruberto G, Baratta MT (2000) Antioxidant activity of selected essential oil components in two lipid model systems. Food Chem 69:167–174

    Article  CAS  Google Scholar 

  • Sourmaghi MHS, Kiaee G, Golfakhrabadi F, Jamalifar H, Khanavi M (2014) Comparison of essential oil composition and antimicrobial activity of Coriandrum sativum L. extracted by hydrodistillation and microwave-assisted hydrodistillation. J Food Sci Technol 1: 1–6.

  • VAN DEN Dool H, Dec. Kratz P (1963) A generalization of the retention index system including linear temperature programmed gas-liquid partition chromatography. J Chromatogr A 11: 463–471.

  • Vaya J, Belinky PA, Aviram M (1997) Antioxidant constituents from licorice roots: isolation, structure elucidation and antioxidative capacity toward LDL oxidation. Free Radic Biol Med 23:302–313

    Article  CAS  Google Scholar 

  • Vázquez-Araújo L, Rodríguez-Solana R, Cortés-Diéguez SM, Domínguez JM (2013) Use of hydrodistillation and headspace solid-phase microextraction to characterize the volatile composition of different hop cultivars. J Sci Food Agric 93:2568–2574

    Article  CAS  Google Scholar 

  • Venkatachallam SKT, Pattekhan H, Divakar S, Kadimi US (2010) Chemical composition of Nigella sativa L. seed extracts obtained by supercritical carbon dioxide. J Food Sci Technol 47:598–605

    Article  CAS  Google Scholar 

  • Yu G, Nguyen TTH, Guo Y, Schauvinhold I, Auldridge ME, Bhuiyan N, Ben-Israel I, Iijima Y, Fridman E, Noel JP, Pichersky E (2010) Enzymatic functions of wild tomato methylketone synthases 1 and 21,[W][OA]. Plant Physiol 154:67–77

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The support of Fundação para a Ciência e a Tecnologia (FCT) is acknowledged through the CQM pluriannual base funding/Strategic Plan: PEst-OE/QUI/UI0674/2014 and MS Portuguese Networks RNEM (REDE/1508/REM/2011).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José S. Câmara.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Perestrelo, R., Silva, C.L., Rodrigues, F. et al. A powerful approach to explore the potential of medicinal plants as a natural source of odor and antioxidant compounds. J Food Sci Technol 53, 132–144 (2016). https://doi.org/10.1007/s13197-015-2022-x

Download citation

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13197-015-2022-x

Keywords

Navigation