Skip to main content

Advertisement

Log in

Gliotoxin in Aspergillus fumigatus: an example that mycotoxins are potential virulence factors

  • Review
  • Published:
Mycotoxin Research Aims and scope Submit manuscript

Abstract

Moulds produce several different mycotoxins that may improve their chance of survival in particular environments. For example, Aspergillus fumigatus, an important human pathogen, produces several mycotoxins including gliotoxin. This secondary metabolite, a small lipid soluble dipeptide, exerts toxic effects on phagocytic cells and T-lymphocytes at low concentrations in vitro. A. fumigatus also produces high levels of gliotoxin in vivo, and this suggests that host defense mechanisms might be impaired by this metabolite during host infection. In the past few years, the genes responsible for the production of gliotoxin in A. fumigatus have been identified and more recently gliotoxin-minus mutants have been used in animal experiments to ascertain the biological role of this product. Mycotoxins have also been shown to act as virulence factors in some fungal infections of insects and plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Amitani R, Taylor G, Elezis EN, Llewellyn-Jones C, Mitchell J, Kuze F, Cole PJ, Wilson R (1995) Purification and characterization of factors produced by Aspergillus fumigatus which affect human ciliated respiratory epithelium. Infect Immun 63:3266–3271

    CAS  PubMed  Google Scholar 

  • Atroshi F, Rizzo A, Westermarck T, Ali-Vehmas T (2002) Antioxidant nutrients and mycotoxins. Toxicology 180:151–167

    Article  CAS  PubMed  Google Scholar 

  • Ayyadurai N, Kirubakaran SI, Srisha S, Sakthivel N (2005) Biological and molecular variability of Sarocladium oryzae, the sheath rot pathogen of rice (Oryza sativa L.). Curr Microbiol 50:319–323

    Article  CAS  PubMed  Google Scholar 

  • Baldi A, Losio MN, Cheli F, Rebucci F, Sangalli L, Fusi E, Bertasi B, Pavoni E, Carli S, Politis I (2004) Evaluation of the protective effects of alpha-tocopherol and retinol against ochratoxin A cytotoxicity. Br J Nutrit 91:507–512

    Article  CAS  Google Scholar 

  • Bauer J, Gareis M, Bott A, Gedek B (1989) Isolation of a mycotoxin (gliotoxin) from a bovine udder infected with Aspergillus fumigatus. J Med Vet Mycol 27:45–50

    Article  CAS  PubMed  Google Scholar 

  • Bennett JW, Klich M (2003) Mycotoxins. Clin Microbiol Rev 16:497–516

    Article  CAS  PubMed  Google Scholar 

  • Blaha L, Sabater S, Babica P, Vilalta E, Marsalek B (2004) Geosmin occurrence in riverine cyanobacterial mats: is it causing a significant health hazard? Water Sci Technol 49:307–312

    CAS  PubMed  Google Scholar 

  • Bok JW, Balajee SA, Marr AK, Andes D, Nielsen KF, Frisvad JC, Keller NP (2005) LaeA, a regulator of morphogenetic fungal virulence factors. Eukaryotic Cell 4:1574–1582

    Article  CAS  PubMed  Google Scholar 

  • Bok JW, Chung D, Balajee SA, Marr KA, Andes D, Nielsen KF, Frisvad JC, Kirby KA, Keller NP (2006) GliZ, a transcriptional regulator of gliotoxin biosynthesis, contributes to Aspergillus fumigatus virulence. Infect Immun 74:6761–6768

    Article  CAS  PubMed  Google Scholar 

  • Casadevall A, Perfect J (1998) Cryptococcus neoformans. ASM Press, Washington

    Google Scholar 

  • Chen CH, Wang MH, Wang JH, Hung CH, Hu TH, Lee SC, Tung HD, Lee CM, Changchien CS, Chen PF, Hsu MC, Lu SN (2007) Aflatoxin exposure and hepatitis C virus in advanced liver disease in a hepatitis C virus endemic area in Taiwan. Am J Trop Med Hyg 77:747–752

    CAS  PubMed  Google Scholar 

  • Cheng YH, Shen TF, Pang VF, Chen BJ (2001) Effects of aflatoxin and carotenoids on growth performance and immune response in male ducklings. Comp Biochem Physiol C Toxicol Pharmacol 128:19–26

    Article  CAS  PubMed  Google Scholar 

  • Choquer M, Fournier E, Kunz C, Levis C, Pradier JM, Simon A, Viaud M (2007) Botrytis cinerea virulence factors: new insights into a necrotrophic and polyphagous pathogen. FEMS Microbiol Lett 277:1–10

    Article  CAS  PubMed  Google Scholar 

  • Comera C, Andre K, Laffitte J, Collet X, Galtier P, Maridonneau-Parini I (2007) Gliotoxin from Aspergillus fumigatus affects phagocytosis and the organization of the actin cytoskeleton by distinct signalling pathways in human neutrophils. Microb Infect 9:47–54

    Article  CAS  Google Scholar 

  • Cramer RA, Gamcsik MP, Brooking RM, Najvar LK, Kirkpatrick WR, Patterson TF, Balibar CJ, Graybill JR, Perfect JR, Abraham SN, Steinbach WJ (2006) Disruption of a nonribosomal peptide synthetase in Aspergillus fumigatus eliminates gliotoxin production. Eukaryotic Cell 5:972–980

    Article  CAS  PubMed  Google Scholar 

  • Creppy EE, Moukha S, Bacha H, Carratu M (2005) How much should we involve genetic and environmental factors in the risk assessment of mycotoxins in humans? Int J Environ Res Public Health 2:186–193

    Article  CAS  PubMed  Google Scholar 

  • Davey G, Smith JM, Kalmakoff J (1973) Purification and properties of a toxin isolated from Mortierella wolfii. Infect Immun 8:882–886

    CAS  PubMed  Google Scholar 

  • Davey G, Simpson LO, Kalmakoff J (1975) Localisation and pathology of Mortierella wolfii toxin in mice. J Pathol 117:33–37

    Article  CAS  PubMed  Google Scholar 

  • Dayan FE, Ferreira D, Wang YH, Khan IA, McInroy JA, Pan Z (2008) A pathogenic fungi diphenyl ether phytotoxin targets plant enoyl (acyl carrier protein) reductase. Plant Physiol 147:1062–1071

    Article  CAS  PubMed  Google Scholar 

  • Domijan AM, Peraica M, Vrdoljak AL, Radic B, Zlender V, Fuchs R (2007) The involvement of oxidative stress in ochratoxin A and fumonisin B1 toxicity in rats. Mol Nutrit Food Res 51:1147–1151

    Article  CAS  Google Scholar 

  • European Commission (2006) Commission Regulation (EC) No 401/2006 of 23 February 2006, laying down the methods of sampling and analysis for the official control of the levels of mycotoxins in foodstuffs. European Commission, Brussels, pp 12–34

  • European Commission (2007) Commission Regulation (EC) No 1126/2007 of 28 September 2007 amending Regulation (EC) No 1881/2006, setting maximum levels for certain contaminants in foodstuffs as regards Fusarium toxins in maize and maize products. European Commission, Brussels, pp 14–17

  • Fischer G, Thißen R, Schmitz C, Dott W (2006) Relevance of microfungi and their secondary metabolites (mycotoxins) for indoor hygiene. Proc Healthy Build 1:189–194

    Google Scholar 

  • Fitzpatrick LR, Wang J, Le T (2000) In vitro and in vivo effects of gliotoxin, a fungal metabolite: efficacy against dextran sodium sulfate-induced colitis in rats. Dig Dis Sci 45:2327–2336

    Article  CAS  PubMed  Google Scholar 

  • Frisvad J, Thrane U, Samson R (2007) Mycotoxin producers. In: Dijksterhuis J, Samson R, (eds) Food mycology. CRC Press, Boca Raton, pp 135–159

  • Gardiner DM, Howlett BJ (2005) Bioinformatic and expression analysis of the putative gliotoxin biosynthetic gene cluster of Aspergillus fumigatus. FEMS Microbiol Lett 248:241–248

    Article  CAS  PubMed  Google Scholar 

  • Gardiner DM, Waring P, Howlett BJ (2005) The epipolythiodioxopiperazine (ETP) class of fungal toxins: distribution, mode of action, functions and biosynthesis. Microbiology 151:1021–1032

    Article  CAS  PubMed  Google Scholar 

  • Ghannoum MA (2000) Potential role of phospholipases in virulence and fungal pathogenesis. Clin Microbiol Rev 13:122–143

    Article  CAS  PubMed  Google Scholar 

  • Haynes K (2001) Virulence in Candida species. Trends Microbiol 9:591–596

    Article  CAS  PubMed  Google Scholar 

  • Hof H (2008) Mycotoxins: pathogenicity factors or virulence factors? Mycoses 51:93–94

    Article  PubMed  Google Scholar 

  • Hoyer LL (2001) The ALS gene family of Candida albicans. Trends Microbiol 9:176–180

    Article  CAS  PubMed  Google Scholar 

  • Hube B (2004) From commensal to pathogen: stage- and tissue-specific gene expression of Candida albicans. Curr Opin Microbiol 7:336–341

    Article  CAS  PubMed  Google Scholar 

  • Hube B, Naglik J (2001) Candida albicans proteinases: resolving the mystery of a gene family. Microbiology 147:1997–2005

    CAS  PubMed  Google Scholar 

  • Hube B, Naglik J (2002) Extracellular hydrolases. In: Calderone RA (ed) Candida and candidiasis. ASM Press, Washington, pp 107–122

    Google Scholar 

  • Iwata K (1977) Toxins produced by Candida albicans. Contr Microbiol Immunol 4:77–85

    CAS  Google Scholar 

  • Jain N, Guerrero A, Fries BC (2006) Phenotypic switching and its implications for the pathogenesis of Cryptococcus neoformans. FEMS Yeast Res 6:480–488

    Article  CAS  PubMed  Google Scholar 

  • Kamdem LK, Meineke I, Godtel-Armbrust U, Brockmoller J, Wojnowski L (2006) Dominant contribution of P450 3A4 to the hepatic carcinogenic activation of aflatoxin B1. Chem Res Toxicol 19:577–586

    Article  CAS  PubMed  Google Scholar 

  • Kretschmar M, Felk A, Staib P, Schaller M, Hess D, Callapina M, Morschhauser J, Schafer W, Korting HC, Hof H, Hube B, Nichterlein T (2002) Individual acid aspartic proteinases (Saps) 1–6 of Candida albicans are not essential for invasion and colonization of the gastrointestinal tract in mice. Microb Pathog 32:61–70

    Article  CAS  PubMed  Google Scholar 

  • Kupfahl C, Heinekamp T, Geginat G, Ruppert T, Hartl A, Hof H, Brakhage AA (2006a) Deletion of the gliP gene of Aspergillus fumigatus results in loss of gliotoxin production but has no effect on virulence of the fungus in a low-dose mouse infection model. Mol Microbiol 62:292–302

    Article  CAS  PubMed  Google Scholar 

  • Kupfahl C, Geginat G, Hof H (2006b) Gliotoxin-mediated suppression of innate and adaptive immune functions directed against Listeria monocytogenes. Med Mycol 44:591–599

    Article  CAS  PubMed  Google Scholar 

  • Kupfahl C, Michalka A, Lass-Flörl C, Fischer G, Haase G, Ruppert T, Geginat G, Hof H (2008) Gliotoxin production by clinical and environmental Aspergillus fumigatus strains. Int J Med Microbiol 298:319–327

    Article  CAS  PubMed  Google Scholar 

  • Larsen TO, Smedsgaard J, Nielsen KF, Hansen MA, Samson RA, Frisvad JC (2007) Production of mycotoxins by Aspergillus lentulus and other medically important and closely related species in section Fumigati. Med Mycol 45:225–232

    Article  CAS  PubMed  Google Scholar 

  • Latgé J-P (1999) Aspergillus fumigatus and aspergillosis. Clin Microbiol Rev 12:310–350

    PubMed  Google Scholar 

  • Lewis RE, Wiederhold NP, Chi J, Han XY, Komanduri KV, Kontoyiannis DP, Prince RA (2005) Detection of gliotoxin in experimental and human aspergillosis. Infect Immun 73:635–637

    Article  CAS  PubMed  Google Scholar 

  • Lingappa BT, Prasad M, Lingappa Y, Hunt DF, Biemann K (1969) Phenethyl alcohol and tryptophol: autoantibiotics produced by the fungus Candida albicans. Science 163:192–194

    Article  CAS  PubMed  Google Scholar 

  • Magan N, Aldred D (2007) Post-harvest control strategies: minimizing mycotoxins in the food chain. Int J Food Microbiol 119:131–139

    Article  CAS  PubMed  Google Scholar 

  • Mirbod F, Schaller RA, Cole GT (2002) Purification and characterization of urease isolated from the pathogenic fungus Coccidioides immitis. Med Mycol 40:35–44

    Article  CAS  PubMed  Google Scholar 

  • Naiker S, Odhav B (2004) Mycotic keratitis: profile of Fusarium species and their mycotoxins. Mycoses 47:50–56

    Article  CAS  PubMed  Google Scholar 

  • Nierman WC, Pain A, Anderson MJ, Wortman JR, Kim HS et al (2005) Genomic sequence of the pathogenic and allergenic filamentous fungus Aspergillus fumigatus. Nature 438:1151–1156

    Article  CAS  PubMed  Google Scholar 

  • Nishida S, Yoshida LS, Shimoyama T, Nunoi H, Kobayashi T, Tsunawaki S (2005) Fungal metabolite gliotoxin targets flavocytochrome b558 in the activation of the human neutrophil NADPH oxidase. Infect Immun 73:235–244

    Article  CAS  PubMed  Google Scholar 

  • Orciuolo E, Stanzani M, Canestraro M, Galimberti S, Carulli G, Lewis R, Petrini M, Komanduri KV (2007) Effects of Aspergillus fumigatus gliotoxin and methylprednisolone on human neutrophils: implications for the pathogenesis of invasive aspergillosis. J Leukoc Biol 82:839–848

    Article  CAS  PubMed  Google Scholar 

  • Partida-Martinez LP, de Loos CF, Ishida K, Ishida M, Roth M, Buder K, Hertweck C (2007) Rhizonin, the first mycotoxin isolated from the zygomycota, is not a fungal metabolite but is produced by bacterial endosymbionts. Appl Environ Microbiol 73:793–797

    Article  CAS  PubMed  Google Scholar 

  • Perrin RM, Fedorova ND, Bok JW, Cramer RA, Wortman JR, Kim HS, Nierman WC, Keller NP (2007) Transcriptional regulation of chemical diversity in Aspergillus fumigatus by LaeA. PLoS Pathog 3:e50

    Article  PubMed  Google Scholar 

  • Rementeria A, Lopez-Molina N, Ludwig A, Vivanco AB, Bikandi J, Ponton J, Garaizar J (2005) Genes and molecules involved in Aspergillus fumigatus virulence. Rev Iberoam Micol 22:1–23

    Article  PubMed  Google Scholar 

  • Schmitt MJ, Breinig F (2006) Yeast viral killer toxins: lethality and self-protection. Nat Rev Microbiol 4:212–221

    Article  CAS  PubMed  Google Scholar 

  • Siewers V, Viaud M, Jimenez-Teja D, Collado IG, Gronover CS, Pradier JM, Tudzynski B, Tudzynski P (2005) Functional analysis of the cytochrome P450 monooxygenase gene bcbot1 of Botrytis cinerea indicates that botrydial is a strain-specific virulence factor. Mol Plant Microbe Interact 18:602–612

    Article  CAS  PubMed  Google Scholar 

  • Sowjanya Sree K, Padmaja V, Murthy YL (2008) Insecticidal activity of destruxin, a mycotoxin from Metarhizium anisopliae (Hypocreales), against Spodoptera litura (Lepidoptera: Noctuidae) larval stages. Pest Manage Sci 64:119–125

    Article  CAS  Google Scholar 

  • Spikes S, Xu R, Nguyen CK, Chamilos G, Kontoyiannis DP, Jacobson RH, Ejzykowicz DE, Chiang LY, Filler SG, May GS (2008) Gliotoxin production in Aspergillus fumigatus contributes to host-specific differences in virulence. J Infect Dis 197:479–486

    Article  CAS  PubMed  Google Scholar 

  • Staib P, Kretschmar M, Nichterlein T, Hof H, Morschhäuser J (2002a) Transcriptional regulators Cph1p and Efg1p mediate activation of the Candida albicans virulence gene SAP5 during infection. Infect Immun 70:921–927

    Article  CAS  PubMed  Google Scholar 

  • Staib P, Kretschmar M, Nichterlein T, Hof H, Morschhauser J (2002b) Host versus in vitro signals and intrastrain allelic differences in the expression of a Candida albicans virulence gene. Mol Microbiol 44:1351–1366

    Article  CAS  PubMed  Google Scholar 

  • Stanzani M, Orciuolo E, Lewis R, Kontoyiannis DP, Martins SL, St John LS, Komanduri KV (2005) Aspergillus fumigatus suppresses the human cellular immune response via gliotoxin-mediated apoptosis of monocytes. Blood 105:2258–2265

    Article  CAS  PubMed  Google Scholar 

  • Sugui JA, Pardo J, Chang YC, Zarember KA, Nardone G, Galvez EM, Mullbacher A, Gallin JI, Simon MM, Kwon-Chung KJ (2007) Gliotoxin is a virulence factor of Aspergillus fumigatus: gliP deletion attenuates virulence in mice immunosuppressed with hydrocortisone. Eukaryotic Cell 6:1562–1569

    Article  CAS  PubMed  Google Scholar 

  • Tammer B, Lehmann I, Nieber K, Altenburger R (2007) Combined effects of mycotoxin mixtures on human T cell function. Toxicol Lett 170:124–133

    Article  CAS  PubMed  Google Scholar 

  • Theiss S, Kretschmar M, Nichterlein T, Hof H, Agabian N, Hacker J, Kohler GA (2002) Functional analysis of a vacuolar ABC transporter in wild-type Candida albicans reveals its involvement in virulence. Mol Microbiol 43:571–584

    Article  CAS  PubMed  Google Scholar 

  • Tsunawaki S, Yoshida LS, Nishida S, Kobayashi T, Shimoyama T (2004) Fungal metabolite gliotoxin inhibits assembly of the human respiratory burst NADPH oxidase. Infect Immun 72:3373–3382

    Article  CAS  PubMed  Google Scholar 

  • Walsh TJ, Anaissie EJ, Denning DW, Herbrecht R, Kontoyiannis DP, Marr KA, Morrison VA, Segal BH, Steinbach WJ, Stevens DA, van Burik JA, Wingard JR, Patterson TF, Infectious Diseases Society of America (2008) Treatment of aspergillosis: clinical practice guidelines of the Infectious Diseases Society of America. Clin Infect Dis 46:327–360

    Article  CAS  PubMed  Google Scholar 

  • Wangikar PB, Dwivedi P, Sinha N, Sharma AK, Telang AG (2005) Teratogenic effects in rabbits of simultaneous exposure to ochratoxin A and aflatoxin B1 with special reference to microscopic effects. Toxicology 215:37–47

    Article  CAS  PubMed  Google Scholar 

  • Ward TJ, Clear RM, Rooney AP, O'Donnell K, Gaba D, Patrick S, Starkey DE, Gilbert J, Geiser DM, Nowicki TW (2008) An adaptive evolutionary shift in Fusarium head blight pathogen populations is driving the rapid spread of more toxigenic Fusarium graminearum in North America. Fungal Genet Biol 45:473–484

    Article  PubMed  Google Scholar 

  • Watanabe A, Kamei K, Sekine T, Waku M, Nishimura K, Miyaji M, Tatsumi K, Kuriyama T (2004) Effect of aeration on gliotoxin production by Aspergillus fumigatus in its culture filtrate. Mycopathologia 157:245–254

    Article  CAS  PubMed  Google Scholar 

  • Wilson T, Rabie CJ, Fincham JE, Steyn PS, Schipper MA (1984) Toxicity of rhizonin A, isolated from Rhizopus microsporus, in laboratory animals. Food Chem Toxicol 22:275–281

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Herbert Hof.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hof, H., Kupfahl, C. Gliotoxin in Aspergillus fumigatus: an example that mycotoxins are potential virulence factors. Mycotox Res 25, 123–131 (2009). https://doi.org/10.1007/s12550-009-0020-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12550-009-0020-4

Keywords

Navigation