Skip to main content

Advertisement

Log in

Response of Carbon and Nitrogen Metabolism and Secondary Metabolites to Drought Stress and Salt Stress in Plants

  • Review Article
  • Published:
Journal of Plant Biology Aims and scope Submit manuscript

Abstract

Carbon and nitrogen metabolism provide the main energy and basic nutrients for plants. However, environmental stress seriously affects carbon and nitrogen metabolism and thus hinders plant growth, especially drought stress and salt stress. Hence, numerous studies have been conducted to investigate the response of carbon and nitrogen metabolism to drought stress and salt stress by photosynthesis, sucrose and starch metabolism, nitrogen uptake and amino acids. Previous researchers also studied the response of secondary metabolism under both stresses on account of secondary metabolism may confer protection against environmental stresses. Our review highlights the diverse responses of carbon and nitrogen metabolism to drought stress and salt stress and the content changes of three secondary metabolites in plants under stresses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abdelrahman M, Jogaiah S, Burritt DJ, Tran LSP (2018) Legume genetic resources and transcriptome dynamics under abiotic stress conditions. Plant Cell Environ 41:1972–1983

    CAS  PubMed  Google Scholar 

  • Allakhverdiev SI, Murata N (2004) Environmental stress inhibits the synthesis denovo of proteins involved in the photodamage—repair cycle of photosystem II in Synechocystis sp. PCC 6803. Biochim Biophys Acta 1657:23–32

    Article  CAS  PubMed  Google Scholar 

  • Anjum F, Yaseen M, Rasul EA, Wahid, Anjum S (2003) Water stress in barley (Hordeum vulgare L.). II. Effect on chemical composition and chlorophyll contents. Pak J Agric Biol Sci 40:45–49

    Google Scholar 

  • Abouelsaad I, Weihrauch D, Renault S (2016) Effects of salt stress on the expression of key genes related to nitrogen assimilation and transport in the roots of the cultivated tomato and its wild salt-tolerant relative. Sci Hortic 211:70–78

    Article  CAS  Google Scholar 

  • Azhar N, Hussain B, Ashraf MY, Abbasi KY (2011) Water stress mediated changes in growth, physiology and secondary metabolites of desi ajwain (Trachyspermum ammi L.). Pak J Bot 43:15–19

    CAS  Google Scholar 

  • Ashraf MA, Iqbal M, Rasheed R, Hussain I, Riaz M, Arif MS (2018) Environmental stress and secondary metabolites in plants: an overview. Plant Metabolites & Regulation Under Environmental Stress. Academic Press DOI: https://doi.org/10.1016/B978-0-12-812689-9.00008-X

    Chapter  Google Scholar 

  • Baker NR (2010) A possible role for photosystem II in environmental perturbations of photosynthesis. Physiol Plant 81:563–570

    Article  Google Scholar 

  • Bota J, Medrano H, Flexas J (2004) Is photosynthesis limited by decreased Rubisco activity and RuBP content under progressive water stress? New Phytol 162:671–681

    Article  CAS  PubMed  Google Scholar 

  • Butt M, Ayyub CM, Amjad M, Ahmad R (2016) Proline application enhances growth of chilli by improving physiological and biochemical attributes under salt stress. Pak J Agric Biol Sci 53:43–49

    Google Scholar 

  • Bala S, Asthir B, Bains NS (2018) Heat and drought stress responses alter grain characteristics by impeding starch precursors of wheat. Indian J Exp Biol 56:565–572

    CAS  Google Scholar 

  • Bhagat KP, Kumar RA, Kumar PR, Kumar S, Bal SK, Agrawal PK (2014) Photosynthesis and Associated Aspects Under Abiotic Stresses Environment. Approaches to Plant Stress and their Management DOI: https://doi.org/10.1007/978-81-322-1620-9-10

  • Cha-Um S, Charoenpanich A, Roytrakul S, Kirdmanee C (2009) Sugar accumulation, photosynthesis and growth of two indica rice varieties in response to salt stress. Acta Physiol Plant 31:477–486

    Article  CAS  Google Scholar 

  • Chunqian H (2017) Effects of drought and high temperature on photosynthesis and chlorophyll fluorescence characteristics of rapeseed leaves. Chin J Oil Crop Sci 39:342–350 (in Chinese)

    Google Scholar 

  • Chatterjee P, Biswas S, Biswas AK (2017) Amelioration of salinity stress by NaCl pretreatment with reference to sugar metabolism in legumes Cajanas cajan L. and Vigna mungo L. Plant Sci Today 4:28–40

    Article  CAS  Google Scholar 

  • Cao X, Zhong C, Zhu C, Zhu L, Zhang J, Wu L (2018) Ammonium uptake and metabolism alleviate peg-induced water stress in rice seedlings. Plant Physiol Biochem 132:128–137

    Article  CAS  PubMed  Google Scholar 

  • Chakraborty M, Kuriata A, Henderson JN, Salvucci ME, Wachter R, Levitus M (2014) ATP-Mg2 + mediated assembly of Rubisco activase investigated using fluorescence correlation spectroscopy. Biophys J 106:40–40

    Article  Google Scholar 

  • Cuellar-Ortiz SM, De La Paz Arrieta-Montiel M, Acosta-Gallegos J, Covarrubias AA (2008) Relationship between carbohydrate partitioning and drought resistance in common bean. Plant Cell Environ 31:1399–1409

    Article  PubMed  CAS  Google Scholar 

  • Chidawanyika F (2015) Effects of drought on the production of electrophysiologically active biogenic volatiles important for cereal pest management. Univ Witwatersrand URI: http://hdl.handle.net/10539/18481

  • Ding L (2005) Effects of nitrogen deficiency on photosynthetic traits of maize hybrids released in different years. Ann Bot 96:925–930

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dong S, Zhang J, Beckles DM (2018) A pivotal role for starch in the reconfiguration of 14C-partitioning and allocation in Arabidopsis thaliana under short-term abiotic stress. Sci Rep DOI: https://doi.org/10.1038/s41598-018-27610-y

  • Dai J, Duan L, Dong H (2015) Comparative effect of nitrogen forms on nitrogen uptake and cotton growth under salinity stress. J Plant Nutr 38:1530–1543

    Article  CAS  Google Scholar 

  • Egea I, Albaladejo I, Meco V, Morales B, Sevilla A, Bolarin MC, Flores FB (2018) The drought-tolerant Solanum pennellii regulates leaf water loss and induces genes involved in amino acid and ethylene/jasmonate metabolism under dehydration. Sci Rep DOI: https://doi.org/10.1038/s41598-018-21187-2

  • El-Esawi MA, Elansary HO, El-Shanhorey NA, Abdel-Hamid AME, Ali HM, Elshikh MS (2017) Salicylic acid-regulated antioxidant mechanisms and gene expression enhance rosemary performance under saline conditions. Front Physiol DOI: https://doi.org/10.3389/fphys.2017.00716

  • Flexas J, Ribascarbó M, Bota J, Galmés J, Henkle M, Martínezcañellas S (2010) Decreased Rubisco activity during water stress is not induced by decreased relative water content but related to conditions of low stomatal conductance and chloroplast CO2 concentration. New Phytol 172:73–82

    Article  CAS  Google Scholar 

  • Feller U, Anders I, Mae T (2007) Rubiscolytics: fate of Rubisco after its enzymatic function in a cell is terminated. J Exp Bot 59:1615–1624

    Article  PubMed  CAS  Google Scholar 

  • Farhangi-Abriz S, Torabian S (2017) Biochar improved nodulation and nitrogen metabolism of soybean under salt stress. Symbiosis 74:1–9

    Google Scholar 

  • Fang X, Yang CQ, Wei YK, Ma QX, Yang L, Chen XY (2011) Genomics grand for diversified plant secondary metabolites. Plant Diversity Resour 33:53–64

    CAS  Google Scholar 

  • Farooq M, Gogoi N, Barthakur S, Baroowa B, Bharadwaj N, Alghamdi SS, Siddique KHM (2017) Drought stress in grain legumes during reproduction and grain filling. J Agron Crop Sci 203:81–102

    Article  Google Scholar 

  • Farooq M, Wahid A, Kobayashi N, Fujita D, Basra SMA (2009) Plant drought stress: effects, mechanisms and management. Agron Sustainable Dev 29:153–188

    Article  Google Scholar 

  • Falchi R, Petrussa E, Zancani M, Casolo V, Beraldo P, Nardini A, Braidot E (2019) Summer drought stress: differential effects on cane anatomy and non-structural carbohydrate content in overwintering Cabernet Sauvignon and Syrah vines. BIO Web of Conferences DOI: https://doi.org/10.1051/bioconf/20191303007

    Article  Google Scholar 

  • García-Pacios J, Garcés P, Del Río D, Maestú F (2015) Bioactive compounds in potatoes: accumulation under drought stress conditions. Funct Foods Health Dis 5:108–116

    Article  Google Scholar 

  • Grotewold E (2006) The genetics and biochemistry of floral pigments. Annu Rev Plant Biol 57:761–780

    Article  CAS  PubMed  Google Scholar 

  • Huang CJ, Wei G, Jie YC, Xu JJ, Zhao SY, Wang LC (2015) Responses of gas exchange, chlorophyll synthesis and ros-scavenging systems to salinity stress in two ramie (Boehmeria nivea L.) cultivars. Photosynthetica 53:455–463

    Article  CAS  Google Scholar 

  • He Y, Yu C, Zhou L, Chen Y, Liu A, Jin J, Hong J, Qi Y, and Jiang D (2014) Rubisco decrease is involved in chloroplast protrusion and Rubisco-containing body formation in soybean (Glycine max) under salt stress, Plant Physiol Biochem 4:118–124

    Article  CAS  Google Scholar 

  • Huan W, Zongze Y, Yanan Y, Siyu C, Zhang H, Yong W (2017) Drought enhances nitrogen uptake and assimilation in maize roots. Agron J 109:39–46

    Article  CAS  Google Scholar 

  • Huang L, Li M, Yun S, Sun T, Li C, Ma F (2018) Ammonium uptake increases in response to peg-induced drought stress in Malus hupehensis rehd. Environ Exp Bot 151:32–12

    Article  CAS  Google Scholar 

  • Hoseinlou SH, Ebadi A, Ghaffari M, Mostafaei E (2013) Nitrogen use efficiency under water deficit condition in spring barley. Int J Agron Plant Prod 4:3681–3687

    Google Scholar 

  • Haghighi Z, Modarresi M, Mollayi S (2012) Enhancement of compatible solute and secondary metabolites production in Plantago ovata Forsk. by salinity stress. J Med Plants Res 6:3495–3500

    CAS  Google Scholar 

  • He Y, Chen Y, Yu CL, Lu KX, Jiang QS, Fu JL (2016) Photosynthesis and yield traits in different soybean lines in response to salt stress. Photosynthetica 54:630–635

    Article  CAS  Google Scholar 

  • Hara S, Tahvanainen T, Hashidoko Y, Gilkes RJ, Prakongkep N (2010) Investigation of nitrogen-fixing potential in soil bacterial microbiota from Lapland boreal forest limit. World Congress of Soil Science: Soil Solutions for A Changing World DOI: https://doi.org/10.1071/FP16135

  • Huang GT, Ma SL, Bai LP, Zhang L, Ma H, Jia P (2012) Signal transduction during cold, salt, and drought stresses in plants. Mol Biol Rep 39:969–987

    Article  PubMed  CAS  Google Scholar 

  • Jaleel CA, Manivannan P, Sankar B, Kishorekumar A, Sankari S, Panneerselvam R (2007) Paclobutrazol enhances photosynthesis and ajmalicine production in Catharanthus roseus. Process Biochem 42:1566–1570

    Article  CAS  Google Scholar 

  • Jiang C, Zu C, Lu D, Zheng Q, Shen J, Wang H (2017) Effect of exogenous selenium supply on photosynthesis, Na+ accumulation and antioxidative capacity of maize (Zea mays L.) under salinity stress. Sci Rep DOI: https://doi.org/10.1038/srep42039

  • Jie L, Guangliang Z, Tingxing HU, Hongling HU, Hong C, Qian W (2015) Effects of drought stress on growth and physiological parameters of machilus pingii seedlings. Chin J Appl Environ Biol 21:563–570 (in chinese)

    Google Scholar 

  • Khalil A (2017) Role of biotechnology in alkaloids production. DOI: https://doi.org/10.1007/978-3-319-51620-2-4

  • Kusano M, Fukushima A, Redestig H, Saito K (2011) Metabolomic approaches toward understanding nitrogen metabolism in plants. J Exp Bot 62:1439–1453

    Article  CAS  PubMed  Google Scholar 

  • Kanai M, Higuchi K, Hagihara T, Konishi T, Ishii T, Fujita N, Nakamura Y, Maeda Y, Yoshiba M, Tadano T (2007) Common reed produces starchgranules at the shoot base in response to salt stress. New Phytol 176:572–580

    Article  CAS  PubMed  Google Scholar 

  • Khalid M, Bilal M, Hassani D, Iqbal HMN, Wang H, Huang D (2017) Mitigation of salt stress in white clover (Trifolium repens) by azospirillum brasilense and its inoculation effect. Bot Stud DOI: https://doi.org/10.1186/s40529-016-0160-8

  • Liu C, Wang Y, Pan K, Zhu T, Li W, Zhang L (2014) Carbon and nitrogen metabolism in leaves and roots of dwarf bamboo (Fargesia denudatayi) subjected to drought for two consecutive years during sprouting period. J Plant Growth Regul 33:243–255

    Article  CAS  Google Scholar 

  • Liu YJ, Wang GL, Ma J, Xu ZS, Wang F, Xiong AS (2018) Transcript profiling of sucrose synthase genes involved in sucrose metabolism among four carrot (Daucus carota L.) cultivars reveals distinct patterns. BMC Plant Biol DOI: https://doi.org/10.1186/s12870-017-1221-1

  • Lin J, Li JP, Yuan F, Yang Z, Wang BS, Chen M (2018) Transcriptome profiling of genes involved in photosynthesis in Elaeagnus angustifolia. under salt stress. Photosynthetica 56:998–1009

    Article  CAS  Google Scholar 

  • Liao WB, Li YY, Lu C, Peng M (2017) Expression of sucrose metabolism and transport genes in cassava petiole abscission zones in response to water stress. Biol Plant 61:219–226

    Article  CAS  Google Scholar 

  • Liu BB, Li M, Li QM, Cui QQ, Zhang WD, Ai XZ (2018) Combined effects of elevated CO2, concentration and drought stress on photosynthetic performance and leaf structure of cucumber (Cucumis sativus L.) seedlings. Photosynthetica 56:942–952

    Article  CAS  Google Scholar 

  • Liu RQ, Xu XJ, Wang S, Shan CJ (2019) Lanthanum improves salt tolerance of maize seedlings. Photosynthetica 54:148–151

    Article  CAS  Google Scholar 

  • Lanna AC, Mitsuzono ST, Terra TGR, Vianello RP, De Figueiredo Carvalho MA (2016) Physiological characterization of common bean (Phaseolus vulgaris L.) 23genotypes, water stress induced with contrasting response towards drought. Aust J Crop Sci 10:1–6

    Google Scholar 

  • Lawlor DW (2002) Carbon and nitrogen assimilation in relation to yield: mechanisms are the key to understanding production systems. J Exp Bot 53:773–787

    Article  CAS  PubMed  Google Scholar 

  • Leuzinger S, Bigler C, Wolf A, Körner C (2009) Poor methodology for predicting large-scale tree die-off. Proc Natl Acad Sci USA DOI: https://doi.org/10.1073/pnas.0908053106

    Article  CAS  Google Scholar 

  • Lawson T, Blatt MR (2014) Stomatal size, speed, and responsiveness impact on photosynthesis and water use efficiency. Plant Physiol 164:1556–1570

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lonbani M, Arzani A (2011) Morpho-physiological traits associated with terminal drought-stress tolerance in triticale and wheat. Agron Res 9:315–329

    Google Scholar 

  • Liu L, Mo Y, Yang X, Li X, Wu M, Zhang X (2014) Reasonable drip irrigation frequency improving watermelon yield and quality under regulated deficit irrigation in plastic greenhouse. Trans Chin Soc Agric Eng 30:95–104 (in chinese)

    Google Scholar 

  • Luo HH, Zhang YL, Zhang WF (2016) Effect of water stress and rewatering on photosynthesis, root activity, and yield of cotton with drip irrigation under mulch. Photosynthetica 54:65–73

    Article  CAS  Google Scholar 

  • McDowell N, Sevanto S (2010) The mechanisms of carbon starvation: how, when, or does it even occur at all? New Phytol 186:264–266

    Article  PubMed  Google Scholar 

  • Mashilo J, Odindo AO, Shimelis HA, Musenge P, Tesfay SZ, Magwaza LS (2018) Photosynthetic response of bottle gourd [Lagenaria siceraria (Molina) Standl.] to drought stress: relationship between cucurbitacins accumulation and drought tolerance. Sci Hortic 231:133–143

    Article  CAS  Google Scholar 

  • Mittal S, Kumari N, Sharma V (2012) Differential response of salt stress on Brassica juncea: photosynthetic performance, pigment, proline, D1 and antioxidant enzymes. Plant Physiol Biochem 54:17–26

    Article  CAS  PubMed  Google Scholar 

  • M’barki, Naouraz, Chehab H, Aissaoui F, Dabbaghi O, Attia F, Mahjoub Z (2018) Effects of mycorrhizal fungi inoculation and soil amendment with hydrogel on leaf anatomy, growth and physiology performance of olive plantlets under two contrasting water regimes. Acta Physiol Plant DOI:https://doi.org/10.1007/s11738-018-2692-x

  • Yu MF (2017) Effect of drought stress at tillering stage on photosynthetic characteristics and yield formation of cold-region rice. J Nucl Agric Sci 31:1794–1802

    Google Scholar 

  • Meng S, Zhang C, Li S, Li Y, Zhao Z (2016) Nitrogen uptake and metabolism of populus simonii in response to peg-induced drought stress. Environ Exp Bot 123:78–87

    Article  CAS  Google Scholar 

  • Murata N, Takahashi S, Nishiyama Y, Allakhverdiev S (2007) Photoinhibition of photosystem II under environmental stress. Biochim Biophys Acta 1767:414–421

    Article  CAS  PubMed  Google Scholar 

  • Mohanty P, Allakhverdiev SI, Murata N (2007) Application of low temperature during photoinhibition allows characterization of individual steps in photodamage and repair of photosystem II. Photosynth Res 94:217–234

    Article  CAS  PubMed  Google Scholar 

  • Medrano H, Parry MAJ, Socias X, Lawlor DW (2010) Long term water stress inactivates Rubisco in subterranean clover. Ann Appl Biol 131:491–501

    Article  Google Scholar 

  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681

    Article  CAS  PubMed  Google Scholar 

  • Martínez-Ballesta Mcarmen, Moreno-Fernández Diego A, Castejón Diego, Cristina, O, Morandini, PA, Micaela C (2015) The impact of the absence of aliphatic glucosinolates on water transport under salt stress in Arabidopsis thaliana. Front Recent Dev Plant Sci DOI: https://doi.org/10.3389/fpls.2015.00524

  • Mckiernan AB, Potts BM, Hovenden MJ, Brodribb TJ, Davies NW, Rodemann T (2017) A water availability gradient reveals the deficit level required to affect traits in potted juvenile eucalyptus globulus. Ann Bot 119:1043–1052

    CAS  PubMed  PubMed Central  Google Scholar 

  • Morais MBD, Neto AGB, Willadino L, Cláudia Ulisses, Tercílio Calsa Junior (2018) Salt stress induces increase in starch accumulation in duckweed (lemna aequinoctialis, lemnaceae): biochemical and physiological aspects. J Plant Growth Regul DOI: https://doi.org/10.1007/s00344-018-9882-z

    Article  CAS  Google Scholar 

  • Manaa A, Ahmed HB, Valot B, Bouchet JP, Aschismiti S, Causse M, (2011) Salt and genotype impact on plant physiology and root proteome variations in tomato. J Exp Bot 62:2797–2813

    Article  CAS  PubMed  Google Scholar 

  • Naya L, Ladrera R, Ramos J, González EM, Arrese-Igor C, Minchin, FR (2007) The response of carbon metabolism and antioxidant defenses of alfalfa nodules to drought stress and to the subsequent recovery of plants. Plant Physiol 144:1104–1114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nishiyama Y, Yamamoto H, Allakhverdiev SI, Inaba M, Yokota A, Murata N (2001) Oxidative stress inhibits the repair of photodamage to the photosynthetic machinery. EMBO J 20:5587–5594

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nemati F, Ghanati F, Ahmadi Gavlighi H, Sharifi M (2018) Comparison of sucrose metabolism in wheat seedlings during drought stress and subsequent recovery. Biol Plant 62:595–599

    Article  CAS  Google Scholar 

  • Nunes-Nesi A, Fernie AR, Stitt M (2010) Metabolic and signaling aspects underpinning the regulation of plant carbon nitrogen interactions. Mol Plant 3:973–996

    Article  CAS  PubMed  Google Scholar 

  • Nathawat NS, Kuhad MS, Goswami CL, Patel AL, Kumar R (2005) Nitrogen-metabolizing enzymes: effect of nitrogen sources and saline irrigation. J Plant Nutr 28:1089–1101

    Article  CAS  Google Scholar 

  • Nogués I, Medori M, Calfapietra C (2015) Limitations of monoterpene emissions and their antioxidant role in cistus sp. under mild and severe treatments of drought and warming. Environ Exp Bot 119:76–86

    Article  CAS  Google Scholar 

  • Nowak M, Kleinwaechter M, Manderscheid R, Weigel HJ, Selmar D (2010) Drought stress increases the accumulation of monoterpenes in sage (Salvia officinalis), an effect that is compensated by elevated carbon dioxide concentration. J Appl Bot Food Qual 83:133–136

    CAS  Google Scholar 

  • Navarro JM, Flores P, Garrido C, Martinez V (2006) Changes in the contents of antioxidant compounds in pepper fruits at different ripening stages, as affected by salinity. Food Chem 96:66–73

    Article  CAS  Google Scholar 

  • Osbourn AE, Qi X, Townsend B, Qin B (2003) Dissecting plant secondary metabolism — constitutive chemical defences in cereals. New Phytol 159:101–108

    Article  CAS  PubMed  Google Scholar 

  • Otori K, Tanabe N, Maruyama T, Sato S, Yanagisawa S, Tamoi M (2017) Enhanced photosynthetic capacity increases nitrogen metabolism through the coordinated regulation of carbon and nitrogen assimilation in Arabidopsis thaliana. J Plant Res 130:909–927

    Article  CAS  PubMed  Google Scholar 

  • Percey WJ, Mcminn A, Bose J, Breadmore MC, Guijt RM, Shabala S (2016) Salinity effects on chloroplast PSII performance in glycophytes and halophytes. Funct Plant Biol 43:1003–1015

    Article  CAS  PubMed  Google Scholar 

  • Pagliarani C, Casolo V, Ashofteh Beiragi M, Cavalletto S, Siciliano I, Schubert A, Lodovica Gullino M, Maciej A, Zwieniecki & Secchi F (2019) Priming xylem for stress recovery depends on coordinated activity of sugar metabolic pathways and changes in xylem sap pH. Plant Cell Environ 42:1775–1787

    Article  CAS  PubMed  Google Scholar 

  • Pang J, Turner NC, Khan T, Du YL, Xiong JL, Colmer TD (2017) Response of chickpea (Cicer arietinum L.) to terminal drought: leaf stomatal conductance, pod abscisic acid concentration, and seed set. J Exp Bot 68:1973–1985

    CAS  PubMed  Google Scholar 

  • Piasecka A, Sawikowska A, Anetta K, Ogrodowicz P, Krzysztof M, Krystkowiak K (2017) Drought-related secondary metabolites of barley (Hordeum vulgare L.) leaves and their metabolomic quantitative trait loci. Plant J 89:898–913

    Article  CAS  PubMed  Google Scholar 

  • Peng J, Liu J, Zhang L, Luo J, Dong H, Ma Y, Meng Y (2016) Effects of soil salinity on sucrose metabolism in cotton leaves. PloS one DOI: https://doi.org/10.1371/journal.pone.0156241

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pereira DT, Simioni C, Ouriques LC, Ramlov F, Maraschin M, Steiner N (2018) Comparative study of the effects of salinity and uv radiation on metabolism and morphology of the red macroalga acanthophora spicifera (Rhodophyta, ceramiales). Photosynthetica 56:799–810

    Article  CAS  Google Scholar 

  • Richardson A, Wojciechowski T, Schreiber L, Veselov D (2006) The short-termgrowth response to salt of the developing barley leaf. J Exp Bot 57:1079–1095

    Article  PubMed  Google Scholar 

  • Razavizadeh R, Komatsu S (2018) Changes in essential oil and physiological parameters of callus and seedlings of Carum copticum L. under in vitro drought stress. J Food Meas Charact 12:1581–1592

    Article  Google Scholar 

  • Rühmann S, Leser C, Bannert M, Treutter D (2010) Relationship between growth, secondary metabolism, and resistance of apple. Plant Biol 4:137–143

    Article  Google Scholar 

  • Sala A, Piper F, Hoch G 2010 Physiological mechanisms of drought induced tree mortality are far from being resolved. New Phytol 186:274–281

    Article  PubMed  Google Scholar 

  • Sturm A, Tang GQ (1999) The sucrose-cleaving enzymes of plants are crucial for development, growth and carbon partitioning. Trends Plant Sci 4:401–407

    Article  CAS  PubMed  Google Scholar 

  • Shao QS, Shu S, Du J, Xing WW, Guo SR, Sun J (2015) Effects of nacl stress on nitrogen metabolism of cucumber seedlings. Russ J Plant Physiol 62:595–603

    Article  CAS  Google Scholar 

  • Szopkó D, Molnár I, Kruppa K, Háló B, Vojtkó A, Molnár-Láng M (2017). Photosynthetic responses of a wheat (Asakaze)-barley (Manas) 7h addition line to salt stress. Photosynthetica 55:317–328.

    Article  CAS  Google Scholar 

  • Shahzad R, Khan AL, Bilal S, Waqas M, Kang SM, Lee IJ (2017) Inoculation of abscisic acid-producing endophytic bacteria enhances salinity stress tolerance in Oryza sativa, L. Environ Exp Bot 136:68–77

    Article  CAS  Google Scholar 

  • Sarker U, Oba S (2018) Drought stress enhances nutritional and bioactive compounds, phenolic acids and antioxidant capacity of amaranthus leafy vegetable. BMC Plant Biol DOI: https://doi.org/10.1186/s12870-018-1484-1

  • Saglam A, Terzi R, Demiralay M (2014) Effect of polyethylene glycol induced drought stress on photosynthesis in two chickpea genotypes with different drought tolerance. Acta Biol Hung 65:178–188

    Article  CAS  PubMed  Google Scholar 

  • Shi LP, Jing JI, Wang G, Jin C, Xie C, Du XL (2016) The expression and analysis of terpene synthesis related genes in maize under the condition of salt stress. China Biotechnol 36:31–37

    Google Scholar 

  • Ahl Said-Al H, Omer E (2011) Medicinal and aromatic plants production under salt stress. A review. Herba Polonica 57:72–87

    Google Scholar 

  • Taleisnik E, Rodriguez AA, Bustos D, Erdei L, Ortega L, Senn ME, 2009. Leaf expansion in grasses under salt stress. J Plant Physiol 166:1123–1140

    Article  CAS  PubMed  Google Scholar 

  • Thalmann M, Pazmino D, Seung D, Horrer D, Nigro A, Meier T, Kölling K, Pfeifhofer WH, Zeeman SC, Santelia D. 2016. Regulation of leaf starch degradation by abscisic acid is important for osmotic stress tolerance in plants. J Exp Bot 28:1860–1878

    CAS  Google Scholar 

  • Tamburino R, Vitale M, Ruggiero A, Sassi M, Sannino L, Arena S (2017) Chloroplast proteome response to drought stress and recovery in tomato (Solanum lycopersicum L.). BMC Plant Biol DOI: https://doi.org/10.1186/s12870-017-0971-0

  • Torabi F, Majd A, Enteshari S (2015. The effect of silicon on alleviation of salt stress in borage (Borago officinalis L.). Soil Sci Plant Nutr 61:1–11

    Article  CAS  Google Scholar 

  • Taylor, AA, De-Felice J, Havill DC (2010) Nitrogen metabolism in Poterium sanguisorba during water stress. New Phytol 90:19–25

    Article  Google Scholar 

  • Verma N, Shukla S (2015) Impact of various factors responsible for fluctuation in plant secondary metabolites. J Appl Res Med Aroma DOI: https://doi.org/10.1016/j.jarmap.2015.09.002

    Article  Google Scholar 

  • Wang H, Yang Z, Yu Y, Chen S, Zhang H, Yong W (2016) Drought enhances nitrogen uptake and assimilation in maize roots. Agron J DOI: https://doi.org/10.2134/agronj2016.01.0030

    Article  CAS  Google Scholar 

  • Wang H, Tang X, Wang H, Shao HB (2015) Proline accumulation and metabolism-related genes expression profiles in Kosteletzkya virginica seedlings under salt stress. Front Plant Sci DOI: https://doi.org/10.3389/fpls.2015.00792

  • Wang H, Zhang M, Guo R Shi D, Liu B, Lin X (2012) Effects of salt stress on ion balance and nitrogen metabolism of old and young leaves in rice (Oryza sativa L.). BMC Plant Biol 12:194–194

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang X, Wang W, Huang J, Peng S, Xiong D (2017) Diffusional conductance to CO2 is the key limitation to photosynthesis in salt-stressed leaves of rice (Oryza sativa L.). Physol Plantarum 163:45–48

    Article  CAS  Google Scholar 

  • Wu KC, Wei LP, Huang CM, Wei YW, Cao HQ, Xu L (2018) Transcriptome reveals differentially expressed genes in Saccharum spontaneum L. leaf under drought stress. Sugar Tech DOI: https://doi.org/10.1007/s12355-018-0608-0

    Article  CAS  Google Scholar 

  • Wang Q, Eneji AE, Kong X, Wang K, Dong H (2015) Salt stress effects on secondary metabolites of cotton in relation to gene expression responsible for aphid development. Plos One DOI: https://doi.org/10.1371/journal.pone.0129541

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wungrampha S, Joshi R, Singla-Pareek SL, Pareek A (2018) Photosynthesis and salinity: are these mutually exclusive? Photosynthetica 56:366–381

    Article  CAS  Google Scholar 

  • Wang H, Yang Z, Yu Y, Chen S, Zhang H, Yong W (2016) Drought enhances nitrogen uptake and assimilation in maize roots. Agron J DOI:https://doi.org/10.2134/agronj2016.01.0030

    Article  CAS  Google Scholar 

  • Wu X, Yuan J, Luo A, Chen Y, Fan Y (2016) Drought stress and re-watering increase secondary metabolites and enzyme activity in Dendrobium moniliforme. Ind Crop Prod 94:385–393

    Article  CAS  Google Scholar 

  • Yue C, Xianzhi S, Chengshu Z, Sheng Z, Jinghui Y (2018) Grafting onto artemisia annua improves drought tolerance in chrysanthemum by enhancing photosynthetic capacity. Hortic Plant J 4:33–41

    Article  Google Scholar 

  • Yuan Y, Min Z, Sheng S, Du N, He L, Yuan L (2015) Effects of exogenous putrescine on leaf anatomy and carbohydrate metabolism in cucumber (Cucumis sativus L.) under salt stress. J Plant Growth Regul 34:451–464

    Article  CAS  Google Scholar 

  • Yang M, Geng M, Shen P, Chen X, Li Y, Wen X (2019) Effect of post-silking drought stress on the expression profiles of genes involved in carbon and nitrogen metabolism during leaf senescence in maize (Zea mays L.). Plant Physiol Biochem 135:304–309

    Article  CAS  PubMed  Google Scholar 

  • Yamada M, Morishita H, Urano K, Shiozaki N, Yamaguchi-Shinozaki K, Shinozaki K (2005) Effects of free proline accumulation in petunias under drought stress. J Exp Bot 56:1975–1981

    Article  CAS  PubMed  Google Scholar 

  • Yahyazadeh M, Meinen R, HNsch R, Abouzeid S, Selmar D (2018) Impact of drought and salt stress on the biosynthesis of alkaloids in Chelidonium majus L. Phytochemistry 152:204–212

    Article  CAS  PubMed  Google Scholar 

  • Zlatev Z, Lidon FC (2012) An overview on drought induced changes in plant growth, water relations and photosynthesis. Emir J Food Agr 24:520–524

    Google Scholar 

  • Zhou R, Kong L, Wu Z, Rosenqvist E, Wang Y, Zhao L (2018) Physiological response of tomatoes at drought, heat and their combination followed by recovery. Physiol Plantarum 164:144–154

    Article  CAS  Google Scholar 

  • Zeeman SC, Kossmann J, Smith AM (2010) Starch: its metabolism, evolution, and biotechnological modifification in plants. Annu Rev Plant Biol 61:209–234

    Article  CAS  PubMed  Google Scholar 

  • Zanella M, Borghi GL, Pirone C, Thalmann M, Pazmino D, Costa A (2016) β-amylase 1 (bam1) degrades transitory starch to sustain proline biosynthesis during drought stress. J Exp Bot 67:1819–1826

    Article  CAS  PubMed  Google Scholar 

  • Zahoor R Dong H, Abid M, Zhao W, Wang Y Zhou Z (2017) Potassium fertilizer improves drought stress alleviation potential in cotton by enhancing photosynthesis and carbohydrate metabolism. Environ Exp Bot 137:73–83

    Article  CAS  Google Scholar 

  • Zhang R, Sun Y, Liu Z, Jin W, Sun Y (2017) Effects of melatonin on seedling growth, mineral nutrition, and nitrogen metabolism in cucumber under nitrate stress. J Pineal Res DOI: https://doi.org/10.1111/jpi.12403

    Article  CAS  Google Scholar 

  • Zaghdoud C, Carvajal M, Ferchichi A, Del CMM (2016) Water balance and N-metabolism in broccoli (Brassica oleracea L.var. Italica) plants depending on nitrogen source under salt stress and elevated CO2. Sci Total Environ 571:763–771

    Article  CAS  PubMed  Google Scholar 

  • Zhang L, Wang Q, Guo Q, Chang Q, Zhu Z, Liu L, Xu H (2012) Growth, physiological characteristics and total flavonoid content of Glechoma longituba in response to water stress. J Int Med Res 6:1015–1024

    CAS  Google Scholar 

  • Zhao G, Yu H, Xing S, Li S, Shi Q, Wang C (2015) Salinity stress increases secondary metabolites and enzyme activity in safflower. Ind Crop Prod 64:175–181

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the financial support provided by the project of the National Natural Science Foundation of China (31860343 and 31460330) and the Key National Research and Development Programs (2017YFC1700706).

Author information

Authors and Affiliations

Authors

Contributions

GC Cui wrote the manuscript; Y Zhang made the figure; WJ Zhang made the table; DY Lang modified the language; XJ Zhang collected the literatures; ZX Li modified the details; XH Zhang provided the ideas. All the authors agreed on the content of the paper and post no conflicting interest.

Corresponding author

Correspondence to Xinhui Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cui, G., Zhang, Y., Zhang, W. et al. Response of Carbon and Nitrogen Metabolism and Secondary Metabolites to Drought Stress and Salt Stress in Plants. J. Plant Biol. 62, 387–399 (2019). https://doi.org/10.1007/s12374-019-0257-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12374-019-0257-1

Keywords

Navigation