Skip to main content

Advertisement

Log in

Cerebellar Cortex as a Therapeutic Target for Neurostimulation

  • Review
  • Published:
The Cerebellum Aims and scope Submit manuscript

Abstract

Non-invasive stimulation of the cerebellum is growingly applied both in the clinic and in research settings to modulate the activities of cerebello-cerebral loops. The anatomical location of the cerebellum, the high responsiveness of the cerebellar cortex to magnetic/electrical stimuli, and the implication of the cerebellum in numerous cerebello-cerebral networks make the cerebellum an ideal target for investigations and therapeutic purposes. In this mini-review, we discuss the potentials of cerebellar neuromodulation in major brain disorders in order to encourage large-scale sham-controlled research and explore this therapeutic aid further.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

Abbreviations

ADL:

Activities of daily living

ALFF:

Amplitude of low-frequency fluctuation

atDCS:

Anodal transcranial direct current stimulation

CA:

Cerebellar ataxia

CBI:

Cerebellum brain inhibition

CCAS:

Cerebellar cognitive affective scale

CF:

Climbing fiber

cTBS:

Continuous theta burst stimulation

ctDCS:

Cathodal transcranial direct current stimulation

DCN:

Deep cerebellar nuclei

DN:

Dentate nucleus

DSM-V:

Diagnostic and statistical manual of mental disorders-5th Ed

DTI:

Diffusion tensor imaging

EMG:

Electromyogram

ET:

Essential tremor

GABA:

Gamma aminobutyric acid

GN:

Golgi neuron

ICARS:

International cooperative ataxia rating scale

IN:

GABAergic interneuron

IO:

Inferior olive

iTBS:

Intermittent theta burst stimulation

L-DOPA:

L-3,4-di-hydroxy-phenylalanine

LTD:

Long-term depression

MF:

Mossy fibers

PC:

Purkinje cell

PD:

Parkinson’s disease

PN:

Pontine nucleus

RN:

Red nucleus

rTMS:

Repetitive transcranial magnetic stimulation

SARA:

Scale for the assessment and rating of ataxia

SSRI:

Selective serotonin reuptake inhibitors

tACS:

Transcranial alternating current stimulation

TBS:

Theta burst stimulation

tDCS:

Transcranial direct current stimulation

TMS:

Transcranial magnetic stimulation

UPDRS:

Unified Parkinson’s disease rating scale

References

  1. Guell X, Gabrieli JD, Schmahmann JD. Triple representation of language, working memory, social and emotion processing in the cerebellum: convergent evidence from task and seed-based resting-state fMRI analyses in a single large cohort. NeuroImage. 2018;172:437–49.

    PubMed  Google Scholar 

  2. Stoodley CJ, Schmahmann JD. Functional topography in the human cerebellum: a meta-analysis of neuroimaging studies. NeuroImage. 2009;44:489–501.

    PubMed  Google Scholar 

  3. Stoodley CJ, Valera EM, Schmahmann JD. Functional topography of the cerebellum for motor and cognitive tasks: an fMRI study. NeuroImage. 2012;59:1560–70.

    PubMed  Google Scholar 

  4. van Dun K, Bodranghien F, Manto M, Mariën P. Targeting the cerebellum by noninvasive neurostimulation: a review. Cerebellum. 2017;16:695–741.

    PubMed  Google Scholar 

  5. Brunoni AR, Nitsche MA, Bolognini N, Bikson M, Wagner T, Merabet L, et al. Clinical research with transcranial direct current stimulation (tDCS): challenges and future directions. Brain Stimul. 2012;5:175–95.

    PubMed  Google Scholar 

  6. Coffman BA, Clark VP, Parasuraman R. Battery powered thought: enhancement of attention, learning, and memory in healthy adults using transcranial direct current stimulation. NeuroImage. 2014;85:895–908.

    PubMed  Google Scholar 

  7. van Dun K, Bodranghien FCAA, Mariën P, Manto M. tDCS of the cerebellum: where do we stand in 2016? Technical issues and critical review of the literature. Front Hum Neurosci. 2016;10:199.

  8. van Dun K, Overwalle FV, Manto M, Marien P. Cognitive impact of cerebellar damage: is there a future for cognitive rehabilitation? CNS Neurol Disord Drug Targets. 2018;17:199–206.

    PubMed  Google Scholar 

  9. van Dun K, Manto M. Non-invasive cerebellar stimulation: moving towards clinical applications for cerebellar and extra-cerebellar disorders. Cerebellum. 2018;17:259–63.

    PubMed  Google Scholar 

  10. Parazzini M, Rossi E, Ferrucci R, Liorni I, Priori A, Ravazzani P. Modelling the electric field and the current density generated by cerebellar transcranial DC stimulation in humans. Clin Neurophysiol. 2014;125:577–84.

    PubMed  Google Scholar 

  11. Priori A, Ciocca M, Parazzini M, Vergari M, Ferrucci R. Transcranial cerebellar direct current stimulation and transcutaneous spinal cord direct current stimulation as innovative tools for neuroscientists: cerebellar and spinal tDCS. J Physiol. 2014;592:3345–69.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Rahman A, Toshev PK, Bikson M. Polarizing cerebellar neurons with transcranial direct current stimulation. Clin Neurophysiol. 2014;125:435–8.

    PubMed  Google Scholar 

  13. Rampersad SM, Janssen AM, Lucka F, Aydin U, Lanfer B, Lew S, et al. Simulating transcranial direct current stimulation with a detailed anisotropic human head model. IEEE Trans Neural Syst Rehabil Eng. 2014;22:441–52.

    PubMed  Google Scholar 

  14. Hardwick RM, Lesage E, Miall RC. Cerebellar transcranial magnetic stimulation: the role of coil geometry and tissue depth. Brain Stimul. 2014;7:643–9.

    PubMed  PubMed Central  Google Scholar 

  15. Sekino M, Hirata M, Sakihara K, Yorifuji S, Ueno S. Intensity and localization of Eddy currents in transcranial magnetic stimulation to the cerebellum. IEEE Trans Magn. 2006;42:3575–7.

    Google Scholar 

  16. Das S, Spoor M, Sibindi TM, Holland P, Schonewille M, de Zeeuw CI, et al. Impairment of long-term plasticity of cerebellar Purkinje cells eliminates the effect of anodal direct current stimulation on vestibulo-ocular reflex habituation. Front Neurosci. 2017;11:444.

  17. Oulad Ben Taib N, Manto M. Trains of epidural DC stimulation of the cerebellum tune corticomotor excitability. Neural Plast. 2013;2013:1–12.

    Google Scholar 

  18. Oulad Ben Taib N, Manto M. The in vivo reduction of afferent facilitation induced by low frequency electrical stimulation of the motor cortex is antagonized by cathodal direct current stimulation of the cerebellum. Cerebellum Ataxias. 2016;3:15.

    PubMed  PubMed Central  Google Scholar 

  19. Bodranghien F, Bastian A, Casali C, Hallett M, Louis ED, Manto M, et al. Consensus paper: revisiting the symptoms and signs of cerebellar syndrome. Cerebellum. 2016;15:369–91.

    PubMed  PubMed Central  Google Scholar 

  20. Phillips JR, Hewedi DH, Eissa AM, Moustafa AA. The cerebellum and psychiatric disorders. Front Public Health. 2015;3:66.

  21. Stoodley CJ. The cerebellum and neurodevelopmental disorders. Cerebellum. 2016;15:34–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Schmahmann JD, Sherman JC. The cerebellar cognitive-affective syndrome. Brain. 1998;121:561–79.

    PubMed  Google Scholar 

  23. Manto M, Marmolino D. Cerebellar ataxias. Curr Opin Neurol. 2009;22:419–29.

    PubMed  Google Scholar 

  24. Filip P, Lungu OV, Manto M-U, Bareš M. Linking essential tremor to the cerebellum: physiological evidence. Cerebellum. 2016;15:774–80.

    PubMed  Google Scholar 

  25. Gironell A, Kulisevsky J, Lorenzo J, Barbanoj M, Pascual-Sedano B, Otermin P. Transcranial magnetic stimulation of the cerebellum in essential tremor: a controlled study. Arch Neurol. 2002;59:413–7.

    PubMed  Google Scholar 

  26. Louis ED. Essential tremor and the cerebellum. Handb Clin Neurol. 2018;155:245–58.

    PubMed  Google Scholar 

  27. Lozeron P, Poujois A, Richard A, Masmoudi S, Meppiel E, Woimant F, et al. Contribution of TMS and rTMS in the understanding of the pathophysiology and in the treatment of dystonia. Front Neural Circuits. 2016;10:90.

  28. Nuzzo C, et al. Non-invasive cerebellar stimulation in cerebellar disorders. CNS Neurol Disord Drug Targets. 2018;17:193–8.

    PubMed  Google Scholar 

  29. Benussi A, Dell’Era V, Cotelli MS, Turla M, Casali C, Padovani A, et al. Long term clinical and neurophysiological effects of cerebellar transcranial direct current stimulation in patients with neurodegenerative ataxia. Brain Stimul. 2017;10:242–50.

    PubMed  Google Scholar 

  30. Benussi A, Koch G, Cotelli M, Padovani A, Borroni B. Cerebellar transcranial direct current stimulation in patients with ataxia: a double-blind, randomized, sham-controlled study. Mov Disord. 2015;30:1701–5.

    PubMed  Google Scholar 

  31. Bodranghien F, Oulad Ben Taib N, Van Maldergem L, Manto M. A postural tremor highly responsive to transcranial cerebello-cerebral DCS in ARCA3. Front Neurol. 2017;8:71.

  32. Grimaldi G, Manto M. Anodal transcranial direct current stimulation (tDCS) decreases the amplitudes of long-latency stretch reflexes in cerebellar ataxia. Ann Biomed Eng. 2013;41:2437–47.

    PubMed  Google Scholar 

  33. Grimaldi G, Oulad Ben Taib N, Manto M, Bodranghien F. Marked reduction of cerebellar deficits in upper limbs following transcranial cerebello-cerebral DC stimulation: tremor reduction and re-programming of the timing of antagonist commands. Front Syst Neurosci. 2014;8:9.

  34. Kim C, Choi HE, Jung H, Lee BJ, Lee KH, Lim YJ. Comparison of the effects of 1 Hz and 20 Hz rTMS on motor recovery in subacute stroke patients. Ann Rehabil Med. 2014;38:585–91.

    PubMed  PubMed Central  Google Scholar 

  35. Shiga Y, Tsuda T, Itoyama Y, Shimizu H, Miyazawa KI, Jin K, et al. Transcranial magnetic stimulation alleviates truncal ataxia in spinocerebellar degeneration. J Neurol Neurosurg Psychiatry. 2002;72:124–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Shimizu H, Tsuda T, Shiga Y, Miyazawa K, Onodera Y, Matsuzaki M, et al. Therapeutic efficacy of transcranial magnetic stimulation for hereditary spinocerebellar degeneration. Tohoku J Exp Med. 1999;189:203–11.

    CAS  PubMed  Google Scholar 

  37. Strupp M, Kalla R, Claassen J, Adrion C, Mansmann U, Klopstock T, et al. A randomized trial of 4-aminopyridine in EA2 and related familial episodic ataxias. Neurology. 2011;77:269–75.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Kalla R, Glasauer S, Buttner U, Brandt T, Strupp M. 4-Aminopyridine restores vertical and horizontal neural integrator function in downbeat nystagmus. Brain. 2007;130:2441–51.

    PubMed  Google Scholar 

  39. Ilg W, Brötz D, Burkard S, Giese MA, Schöls L, Synofzik M. Long-term effects of coordinative training in degenerative cerebellar disease. Mov Disord. 2010;25:2239–46.

    PubMed  Google Scholar 

  40. Gironell A, Martínez-Horta S, Aguilar S, Torres V, Pagonabarraga J, Pascual-Sedano B, et al. Transcranial direct current stimulation of the cerebellum in essential tremor: a controlled study. Brain Stimul. 2014;7:491–2.

    CAS  PubMed  Google Scholar 

  41. Helvaci Yilmaz N, Polat B, Hanoglu L. Transcranial direct current stimulation in the treatment of essential tremor: an open-label study. Neurologist. 2016;21:28–9.

    PubMed  Google Scholar 

  42. Popa T, Russo M, Vidailhet M, Roze E, Lehéricy S, Bonnet C, et al. Cerebellar rTMS stimulation may induce prolonged clinical benefits in essential tremor, and subjacent changes in functional connectivity: an open label trial. Brain Stimul. 2013;6:175–9.

    CAS  PubMed  Google Scholar 

  43. Shakkottai VG, Batla A, Bhatia K, Dauer WT, Dresel C, Niethammer M, et al. Current opinions and areas of consensus on the role of the cerebellum in dystonia. Cerebellum. 2017;16:577–94.

    PubMed  PubMed Central  Google Scholar 

  44. Sadnicka A, Hamada M, Bhatia KP, Rothwell JC, Edwards MJ. Cerebellar stimulation fails to modulate motor cortex plasticity in writing dystonia: cerebellar stimulation and writing dystonia. Mov Disord. 2014;29:1304–7.

    PubMed  Google Scholar 

  45. Bradnam LV, Graetz LJ, McDonnell MN, Ridding MC. Anodal transcranial direct current stimulation to the cerebellum improves handwriting and cyclic drawing kinematics in focal hand dystonia. Front Hum Neurosci. 2015;9:286.

  46. Ferrucci R, Bocci T, Cortese F, Ruggiero F, Priori A. Cerebellar transcranial direct current stimulation in neurological disease. Cerebellum Ataxias. 2016;3:16.

    PubMed  PubMed Central  Google Scholar 

  47. Rylander Ottosson D, Lane E. Striatal plasticity in L-DOPA- and graft-induced dyskinesia; the common link? Front Cell Neurosci. 2016;10:16.

  48. Ugawa Y, Uesaka Y, Terao Y, Hanajima R, Kanazawa I. Magnetic stimulation over the cerebellum in humans. Ann Neurol. 1995;37:703–13.

    CAS  PubMed  Google Scholar 

  49. Ferrucci R, Cortese F, Bianchi M, Pittera D, Turrone R, Bocci T, et al. Cerebellar and motor cortical transcranial stimulation decrease levodopa-induced dyskinesias in Parkinson’s disease. Cerebellum. 2016;15:43–7.

    CAS  PubMed  Google Scholar 

  50. Grimaldi G, Argyropoulos GP, Bastian A, Cortes M, Davis NJ, Edwards DJ, et al. Cerebellar transcranial direct current stimulation (ctDCS) a novel approach to understanding cerebellar function in health and disease. Neuroscientist. 2016;22:83–97.

    PubMed  PubMed Central  Google Scholar 

  51. Galea JM, Jayaram G, Ajagbe L, Celnik P. Modulation of cerebellar excitability by polarity-specific noninvasive direct current stimulation. J Neurosci. 2009;29:9115–22.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Doeltgen SH, Young J, Bradnam LV. Anodal direct current stimulation of the cerebellum reduces cerebellar brain inhibition but does not influence afferent input from the hand or face in healthy adults. Cerebellum. 2016;15:466–74.

    PubMed  Google Scholar 

  53. Mitoma H, Manto M, Hampe CS. Time is cerebellum. Cerebellum. 2018;17:387–91.

    PubMed  PubMed Central  Google Scholar 

  54. Hull CA, Chu Y, Thanawala M, Regehr WG. Hyperpolarization induces a long-term increase in the spontaneous firing rate of cerebellar Golgi cells. J Neurosci. 2013;33:5895–902.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Ishikawa T, Kakei S, Mitoma H. Overlooked Holmes’ clinical signs: reevaluation by recent physiological findings. Cerebellum Ataxias. 2015;2:13.

    PubMed  PubMed Central  Google Scholar 

  56. Ishikawa T, Tomatsu S, Tsunoda Y, Lee J, Hoffman DS, Kakei S. Releasing dentate nucleus cells from Purkinje cell inhibition generates output from the cerebrocerebellum. PLoS One. 2014;9:e108774.

    PubMed  PubMed Central  Google Scholar 

  57. Panyakaew P, Cho HJ, Srivanitchapoom P, Popa T, Wu T, Hallett M. Cerebellar brain inhibition in the target and surround muscles during voluntary tonic activation. Eur J Neurosci. 2016;43:1075–81.

    PubMed  PubMed Central  Google Scholar 

  58. Lamarre Y, Mercier L-A. Neurophysiological studies of harmaline-induced tremor in the cat. Can J Physiol Pharmacol. 1971;49:1049–58.

    CAS  PubMed  Google Scholar 

  59. Louis ED, Lenka A. The olivary hypothesis of essential tremor: time to lay this model to rest? Tremor Other Hyperkinet Mov (NY). 2017;7:473.

    Google Scholar 

  60. Shinoda Y, Futami T, Mitoma H, Yokota J. Morphology of single neurones in the cerebello-rubrospinal system. Behav Brain Res. 1988;28:59–64.

    CAS  PubMed  Google Scholar 

  61. Ito M. Cerebellar circuitry as a neuronal machine. Prog Neurobiol. 2006;78:272–303.

    PubMed  Google Scholar 

  62. Kawaguchi S, Hirano T. Signaling cascade regulating long-term potentiation of GABAA receptor responsiveness in cerebellar Purkinje neurons. J Neurosci. 2002;22:3969–76.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Siebner HR, Tormos JM, Baumann AOC, Auer C, Catala MD, Conrad B, et al. Low-frequency repetitive transcranial magnetic stimulation of the motor cortex in writer’s cramp. Neurology. 1999;52:529.

    CAS  PubMed  Google Scholar 

  64. American Psychiatric Association. Diagnostic and statistical manual of medical disorders (DSM-5). Virginia: American Psychiatric Association; 2013.

  65. Andreasen N, Pierson R. The role of the cerebellum in schizophrenia. Biol Psychiatry. 2008;64:81–8.

    PubMed  PubMed Central  Google Scholar 

  66. Martinez-Aran A, Vieta E. Cognition as a target in schizophrenia, bipolar disorder and depression. Eur Neuropsychopharmacol. 2015;25:151–7.

    CAS  PubMed  Google Scholar 

  67. Solé B, Jiménez E, Torrent C, Reinares M, Bonnin CM, Torres I, et al. Cognitive impairment in bipolar disorder: treatment and prevention strategies. Int J Neuropsychopharmacol. 2017;20:670–80.

    PubMed  PubMed Central  Google Scholar 

  68. Heath RG, Franklin D, Shraberg D. Gross pathology of the cerebellum in patients diagnosed and treated as functional psychiatric disorders. J Nerv Ment Dis. 1979;176:585–92.

    Google Scholar 

  69. Schmahmann JD, Weilburg JB, Sherman JC. The neuropsychiatry of the cerebellum - insights from the clinic. Cerebellum. 2007;6:254–67.

    PubMed  Google Scholar 

  70. Daskalakis ZJ, Christensen BK, Fitzgerald PB, Fountain SI, Chen R. Reduced cerebellar inhibition in schizophrenia: a preliminary study. Am J Psychiatry. 2005;162:1203–5.

    PubMed  Google Scholar 

  71. Andreasen N, Paradiso S, O’Leary DS. “Cognitive Dysmetria” as an integrative theory of schizophrenia: a dysfunction in cortical-subcortical-cerebellar circuitry? Schizophr Bull. 1998;24:203–18.

    CAS  PubMed  Google Scholar 

  72. Heath RG. Modulation of emotion with a brain pacemaker: treatment for intractable psychiatric illness. J Nerv Ment Dis. 1977;165:300–17.

    CAS  PubMed  Google Scholar 

  73. Demirtas-Tatlidede A, Freitas C, Cromer JR, Safar L, Ongur D, Stone WS, et al. Safety and proof of principle study of cerebellar vermal theta burst stimulation in refractory schizophrenia. Schizophr Res. 2010;124:91–100.

    PubMed  PubMed Central  Google Scholar 

  74. Parker K, et al. Delta-frequency stimulation of cerebellar projections can compensate for schizophrenia-related medial frontal dysfunction. Mol Psychiatry. 2017;22:647–55.

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Bersani FS, Minichino A, Bernabei L, Spagnoli F, Corrado A, Vergnani L, et al. Prefronto-cerebellar tDCS enhances neurocognition in euthymic bipolar patients. Findings from a placebo-controlled neuropsychological and psychophysiological investigation. J Affect Disord. 2017;209:262–9.

    PubMed  Google Scholar 

  76. Deckersbach T, Nierenberg AA, Kessler R, Lund HG, Ametrano RM, Sachs G, et al. RESEARCH: cognitive rehabilitation for bipolar disorder: an open trial for employed patients with residual depressive symptoms: cognitive rehabilitation for bipolar disorder. CNS Neurosci Ther. 2010;16:298–307.

    PubMed  PubMed Central  Google Scholar 

  77. Hodgkin D, Stewart MT, Merrick EL, Pogue YZ, Reilly-Harrington NA, Sylvia LG, et al. Prevalence and predictors of physician recommendations for medication adjustment in bipolar disorder treatment. J Affect Disord. 2018;238:666–73.

    PubMed  Google Scholar 

  78. Baldaçara L, Nery-Fernandes F, Rocha M, Quarantini LC, Rocha GGL, Guimarães JL, et al. Is cerebellar volume related to bipolar disorder? J Affect Disord. 2011;135:305–9.

    PubMed  Google Scholar 

  79. DelBello M. MRI analysis of the cerebellum in bipolar disorder a pilot study. Neuropsychopharmacology. 1999;21:63–8.

    CAS  PubMed  Google Scholar 

  80. Mills NP, DelBello MP, Adler CM, Strakowski SM. MRI analysis of cerebellar Vermal abnormalities in bipolar disorder. Am J Psychiatry. 2005;162:1530–3.

    PubMed  Google Scholar 

  81. Saxena K, Tannous J, Mwangi B, Kahlon R, Arvind RP, Zunta-Soares G, et al. 7.2 structural cerebellar abnormalities in youth with bipolar spectrum disorders and bipolar offspring. J Am Acad Child Adolesc Psychiatry. 2017;56:S311.

    Google Scholar 

  82. Ambrosi E, Chiapponi C, Sani G, Manfredi G, Piras F, Caltagirone C, et al. White matter microstructural characteristics in bipolar I and bipolar II disorder: a diffusion tensor imaging study. J Affect Disord. 2016;189:176–83.

    PubMed  Google Scholar 

  83. Ishida T, Donishi T, Iwatani J, Yamada S, Takahashi S, Ukai S, et al. Elucidating the aberrant brain regions in bipolar disorder using T1-weighted/T2-weighted magnetic resonance ratio images. Psychiatry Res Neuroimaging. 2017;263:76–84.

    PubMed  Google Scholar 

  84. Mahon K, Wu J, Malhotra AK, Burdick KE, DeRosse P, Ardekani BA, et al. A voxel-based diffusion tensor imaging study of white matter in bipolar disorder. Neuropsychopharmacology. 2009;34:1590–600.

    PubMed  Google Scholar 

  85. Bersani FS, Minichino A, Fattapposta F, Bernabei L, Spagnoli F, Mannarelli D, et al. Prefrontocerebellar transcranial direct current stimulation increases amplitude and decreases latency of P3b component in patients with euthymic bipolar disorder. Neuropsychiatr Dis Treat. 2015;11:2913–7. https://doi.org/10.2147/NDT.S91625.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Martin DM, Chan HN, Alonzo A, Green MJ, Mitchell PB, Loo CK. Transcranial direct current stimulation to enhance cognition in euthymic bipolar disorder. Bipolar Disord. 2015;17:849–58.

    PubMed  Google Scholar 

  87. Minichino A, Bersani FS, Bernabei L, Spagnoli F, Vergnani L, Corrado A, et al. Prefronto-cerebellar transcranial direct current stimulation improves visuospatial memory, executive functions, and neurological soft signs in patients with euthymic bipolar disorder. Neuropsychiatr Dis Treat. 2015;11:2265–70.

    PubMed  PubMed Central  Google Scholar 

  88. George MS, Wassermann EM, Williams WA, Steppel J, Pascual-Leone A, Basser P, et al. Changes in mood and hormone levels after rapid-rate transcranial magnetic stimulation (rTMS) of the prefrontal cortex. J Neuropsychiatry Clin Neurosci. 1996;8:172–80.

    CAS  PubMed  Google Scholar 

  89. Schutter DJ, van Honk J. The cerebellum in emotion regulation: a repetitive transcranial magnetic stimulation study. Cerebellum. 2009;8:28–34.

    PubMed  Google Scholar 

  90. Schutter DJ, van Honk J, d’Alfonso AA, Peper JS, Panksepp J. High frequency repetitive transcranial magnetic over the medial cerebellum induces a shift in the prefrontal electroencephalography gamma spectrum: a pilot study in humans. Neurosci Lett. 2003;336:73–6.

    CAS  PubMed  Google Scholar 

  91. Parikh SV, Quilty LC, Ravitz P, Rosenbluth M, Pavlova B, Grigoriadis S, et al. Canadian network for mood and anxiety treatments (CANMAT) 2016 clinical guidelines for the management of adults with major depressive disorder: section 2. Psychological treatments. Can J Psychiatr. 2016;61:524–39.

    Google Scholar 

  92. Kennedy SH, Lam RW, McIntyre RS, Tourjman SV, Bhat V, Blier P, et al. Canadian network for mood and anxiety treatments (CANMAT) 2016 clinical guidelines for the management of adults with major depressive disorder: section 3. Pharmacological Treatments. Can J Psychiatr. 2016;61:540–60.

    Google Scholar 

  93. Peng J, Liu J, Nie B, Li Y, Shan B, Wang G, et al. Cerebral and cerebellar gray matter reduction in first-episode patients with major depressive disorder: a voxel-based morphometry study. Eur J Radiol. 2011;80:395–9.

    PubMed  Google Scholar 

  94. Guo W, Liu F, Xue ZM, Yu Y, Ma CQ, Tan CL, et al. Abnormal neural activities in first-episode, treatment-naïve, short-illness-duration, and treatment-response patients with major depressive disorder: a resting-state fMRI study. J Affect Disord. 2011;135:326–31.

    PubMed  Google Scholar 

  95. Milev RV, Giacobbe P, Kennedy SH, Blumberger DM, Daskalakis ZJ, Downar J, et al. Canadian network for mood and anxiety treatments (CANMAT) 2016 clinical guidelines for the management of adults with major depressive disorder: section 4. Neurostimulation Treatments. Can J Psychiatr. 2016;61:561–75.

    Google Scholar 

  96. Ho K-A, Bai S, Martin D, Alonzo A, Dokos S, Puras P, et al. A pilot study of alternative transcranial direct current stimulation electrode montages for the treatment of major depression. J Affect Disord. 2014;167:251–8.

    PubMed  Google Scholar 

  97. Newstead S, Young H, Benton D, Jiga-Boy G, Andrade Sienz ML, Clement RM, et al. Acute and repetitive fronto-cerebellar tDCS stimulation improves mood in non-depressed participants. Exp Brain Res. 2018;236:83–97.

    PubMed  Google Scholar 

  98. Cuijpers P, Sijbrandij M, Koole S, Huibers M, Berking M, Andersson G. Psychological treatment of generalized anxiety disorder: a meta-analysis. Clin Psychol Rev. 2014;34:130–40.

    PubMed  Google Scholar 

  99. Bui E, Anderson E, Goetter EM, Campbell AA, Fischer LE, Barrett LF, et al. Heightened sensitivity to emotional expressions in generalised anxiety disorder, compared to social anxiety disorder, and controls. Cognit Emot. 2017;31:119–26.

    Google Scholar 

  100. Diwadkar VA, Re M, Cecchetto F, Garzitto M, Piccin S, Bonivento C, et al. Attempts at memory control induce dysfunctional brain activation profiles in generalized anxiety disorder: an exploratory fMRI study. Psychiatry Res Neuroimaging. 2017;266:42–52.

    PubMed  Google Scholar 

  101. Yao Z, Liao M, Hu T, Zhang Z, Zhao Y, Zheng F, et al. An effective method to identify adolescent generalized anxiety disorder by temporal features of dynamic functional connectivity. Front Hum Neurosci. 2017;11:492.

  102. Sakai Y, Kumano H, Nishikawa M, Sakano Y, Kaiya H, Imabayashi E, et al. Cerebral glucose metabolism associated with a fear network in panic disorder. NeuroReport. 2005;16:927–31.

    PubMed  Google Scholar 

  103. Dilkov D, Hawken ER, Kaludiev E, Milev R. Repetitive transcranial magnetic stimulation of the right dorsal lateral prefrontal cortex in the treatment of generalized anxiety disorder: a randomized, double-blind sham controlled clinical trial. Prog Neuro-Psychopharmacol Biol Psychiatry. 2017;78:61–5.

    Google Scholar 

  104. Shiozawa P, Leiva APG, Castro CDC, da Silva ME, Cordeiro Q, Fregni F, et al. Transcranial direct current stimulation for generalized anxiety disorder: a case study. Biol Psychiatry. 2014;75:e17–8.

    PubMed  Google Scholar 

  105. Heath RG, Dempesy CW, Fontana CJ, Myers WA. Cerebellar stimulation: effects on septal region, hippocampus, and anygdala of cats and rats. Biol Psychiatry. 1987;13:501–29.

    Google Scholar 

  106. Abramowitz JS, Taylor S, McKay D. Obsessive-compulsive disorder. The Lancet. 2009;374:9.

    Google Scholar 

  107. Baldwin DS, et al. Evidence-based pharmacological treatment of anxiety disorders, post-traumatic stress disorder and obsessive-compulsive disorder: a revision of the 2005 guidelines from the British Association for Psychopharmacology. J Psychopharmacol (Oxf). 2014;28:403–39.

    Google Scholar 

  108. Anticevic A, Hu S, Zhang S, Savic A, Billingslea E, Wasylink S, et al. Global resting-state functional magnetic resonance imaging analysis identifies frontal cortex, striatal, and cerebellar dysconnectivity in obsessive-compulsive disorder. Biol Psychiatry. 2014;75:595–605.

    PubMed  Google Scholar 

  109. Hou J, Wu W, Lin Y, Wang J, Zhou D, Guo J, et al. Localization of cerebral functional deficits in patients with obsessive–compulsive disorder: a resting-state fMRI study. J Affect Disord. 2012;138:313–21.

    PubMed  Google Scholar 

  110. Pujol J, Soriano-Mas C, Alonso P, Cardoner N, Menchón JM, Deus J, et al. Mapping structural brain alterations in obsessive-compulsive disorder. Arch Gen Psychiatry. 2004;61:720–30.

    PubMed  Google Scholar 

  111. Brunelin J, Mondino M, Bation R, Palm U, Saoud M, Poulet E. Transcranial direct current stimulation for obsessive-compulsive disorder: a systematic review. Brain Sci. 2018;8:37.

    PubMed Central  Google Scholar 

  112. Kohl S, Baldermann JC. Progress and challenges in deep brain stimulation for obsessive-compulsive disorder. Pharmacol Ther. 2018;186:168–75. https://doi.org/10.1016/j.pharmthera.2018.01.011.

    Article  CAS  PubMed  Google Scholar 

  113. Bation R, Poulet E, Haesebaert F, Saoud M, Brunelin J. Transcranial direct current stimulation in treatment-resistant obsessive–compulsive disorder: an open-label pilot study. Prog Neuro-Psychopharmacol Biol Psychiatry. 2016;65:153–7.

    Google Scholar 

Download references

Funding

KvD is a doctoral researcher involved in project G035714N granted by the Fund for Scientific Research Flanders (FWO). This research was also funded by a Strategic Research Program (SRP15) awarded by the Vrije Universiteit Brussel, Belgium.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kim van Dun.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethical Request

Ethical request is not applicable in this study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

van Dun, K., Mitoma, H. & Manto, M. Cerebellar Cortex as a Therapeutic Target for Neurostimulation. Cerebellum 17, 777–787 (2018). https://doi.org/10.1007/s12311-018-0976-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12311-018-0976-8

Keywords

Navigation