Skip to main content

Advertisement

Log in

On the Roles of Calcineurin in Fungal Growth and Pathogenesis

  • Published:
Current Fungal Infection Reports Aims and scope Submit manuscript

Abstract

Calcineurin is a calcium-activated phosphatase that controls morphogenesis and stress responses in eukaryotes. Fungal pathogens have adopted the calcineurin pathway to survive and effectively propagate within the host. The difficulty in treating fungal infections stems from similarities between pathogen and host eukaryotic cells. Using calcineurin inhibitors such as cyclosporin A or tacrolimus (FK506) in combination with antifungal drugs, including azoles or echinocandins, renders these drugs fungicidal, even towards drug-resistant species or strains, making calcineurin a promising drug target. This article summarizes the current understanding of the calcineurin pathway and its roles in governing the growth and virulence of pathogenic fungi, and compares and contrasts the roles of calcineurin in fungal pathogens that infect humans (Candida albicans and Cryptococcus neoformans) or plants (Magnaporthe oryzae and Ustilago maydis). Further investigation of calcineurin biology will advance opportunities to develop novel antifungal therapeutic approaches and provide insight into the evolution of virulence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Klee CB, Crouch TH, Krinks MH: Calcineurin: a calcium- and calmodulin-binding protein of the nervous system. Proc Natl Acad Sci USA 1979, 76:6270–6273.

    Article  CAS  PubMed  Google Scholar 

  2. •• Steinbach WJ, Reedy JL, Cramer RA Jr, et al.: Harnessing calcineurin as a novel anti-infective agent against invasive fungal infections. Nat Rev Microbiol 2007, 5:418–430. This article reviews the roles of calcineurin pathways in the growth and virulence of three major human fungal pathogens, C. albicans, C. neoformans, and A. fumigatus.

    Article  CAS  PubMed  Google Scholar 

  3. Crabtree GR, Schreiber SL: SnapShot: Ca2+-calcineurin-NFAT signaling. Cell 2009, 138:210.

    Article  CAS  PubMed  Google Scholar 

  4. • Baek KH, Zaslavsky A, Lynch RC, et al.: Down’s syndrome suppression of tumour growth and the role of the calcineurin inhibitor DSCR1. Nature 2009, 459:1126–1130. This article reports the discovery that an increased level of a CNI, Dscr1 (Down syndrome candidate region-1), in Down syndrome tissues markedly diminishes angiogenesis and constrains tumor formation.

    Article  CAS  PubMed  Google Scholar 

  5. Aramburu J, Heitman J, Crabtree GR: Calcineurin: a central controller of signalling in eukaryotes. EMBO Rep 2004, 5:343–348.

    Article  CAS  PubMed  Google Scholar 

  6. Luan S: The CBL-CIPK network in plant calcium signaling. Trends Plant Sci 2009, 14:37–42.

    Article  CAS  PubMed  Google Scholar 

  7. Kumar R, Musiyenko A, Barik S: Plasmodium falciparum calcineurin and its association with heat shock protein 90: mechanisms for the antimalarial activity of cyclosporin A and synergism with geldanamycin. Mol Biochem Parasitol 2005, 141:29–37.

    Article  CAS  PubMed  Google Scholar 

  8. Liu M, Du P, Heinrich G, et al.: Cch1 mediates calcium entry in Cryptococcus neoformans and is essential in low-calcium environments. Eukaryot Cell 2006, 5:1788–1796.

    Article  CAS  PubMed  Google Scholar 

  9. • Reedy JL, Filler SG, Heitman J: Elucidating the Candida albicans calcineurin signaling cascade controlling stress response and virulence. Fungal Genet Biol 2009, 47:107–116. C. albicans calcineurin pathway components (Rcn1, Cch1, and Mid1) mediate aspects of calcineurin function, identifying them as elements of the calcineurin pathways.

    Article  PubMed  Google Scholar 

  10. Stie J, Fox D: Calcineurin regulation in fungi and beyond. Eukaryot Cell 2008, 7:177–186.

    Article  CAS  PubMed  Google Scholar 

  11. Yokoyama H, Mizunuma M, Okamoto M, et al.: Involvement of calcineurin-dependent degradation of Yap1p in Ca2+-induced G2 cell-cycle regulation in Saccharomyces cerevisiae. EMBO Rep 2006, 7:519–524.

    CAS  PubMed  Google Scholar 

  12. Heath VL, Shaw SL, Roy S, et al.: Hph1p and Hph2p, novel components of calcineurin-mediated stress responses in Saccharomyces cerevisiae. Eukaryot Cell 2004, 3:695–704.

    Article  CAS  PubMed  Google Scholar 

  13. Bultynck G, Heath VL, Majeed AP, et al.: Slm1 and slm2 are novel substrates of the calcineurin phosphatase required for heat stress-induced endocytosis of the yeast uracil permease. Mol Cell Biol 2006, 26:4729–4745.

    Article  CAS  PubMed  Google Scholar 

  14. Pozos TC, Sekler I, Cyert MS: The product of HUM1, a novel yeast gene, is required for vacuolar Ca2+/H+ exchange and is related to mammalian Na+/Ca2+ exchangers. Mol Cell Biol 1996, 16:3730–3741.

    CAS  PubMed  Google Scholar 

  15. Cybulski N, Hall MN: TOR complex 2: a signaling pathway of its own. Trends Biochem Sci 2009, 34:620–627.

    Article  CAS  PubMed  Google Scholar 

  16. Daquinag A, Fadri M, Jung SY, et al.: The yeast PH domain proteins Slm1 and Slm2 are targets of sphingolipid signaling during the response to heat stress. Mol Cell Biol 2007, 27:633–650.

    Article  CAS  PubMed  Google Scholar 

  17. Fadri M, Daquinag A, Wang S, et al.: The pleckstrin homology domain proteins Slm1 and Slm2 are required for actin cytoskeleton organization in yeast and bind phosphatidylinositol-4,5-bisphosphate and TORC2. Mol Biol Cell 2005, 16:1883–1900.

    Article  CAS  PubMed  Google Scholar 

  18. Mulet JM, Martin DE, Loewith R, et al.: Mutual antagonism of target of rapamycin and calcineurin signaling. J Biol Chem 2006, 281:33000–33007.

    Article  CAS  PubMed  Google Scholar 

  19. Casamayor A, Torrance PD, Kobayashi T, et al.: Functional counterparts of mammalian protein kinases PDK1 and SGK in budding yeast. Curr Biol 1999, 9:186–197.

    Article  CAS  PubMed  Google Scholar 

  20. Birchwood CJ, Saba JD, Dickson RC, et al.: Calcium influx and signaling in yeast stimulated by intracellular sphingosine 1-phosphate accumulation. J Biol Chem 2001, 276:11712–11718.

    Article  CAS  PubMed  Google Scholar 

  21. Zhao C, Jung US, Garrett-Engele P, et al.: Temperature-induced expression of yeast FKS2 is under the dual control of protein kinase C and calcineurin. Mol Cell Biol 1998, 18:1013–1022.

    CAS  PubMed  Google Scholar 

  22. Audhya A, Loewith R, Parsons AB, et al.: Genome-wide lethality screen identifies new PI4,5P2 effectors that regulate the actin cytoskeleton. EMBO J 2004, 23:3747–3757.

    Article  CAS  PubMed  Google Scholar 

  23. Aramburu J, Rao A, Klee CB: Calcineurin: from structure to function. Curr Top Cell Regul 2000, 36:237–295.

    Article  CAS  PubMed  Google Scholar 

  24. Boustany LM, Cyert MS: Calcineurin-dependent regulation of Crz1p nuclear export requires Msn5p and a conserved calcineurin docking site. Genes Dev 2002, 16:608–619.

    Article  CAS  PubMed  Google Scholar 

  25. • Egan JD, Garcia-Pedrajas MD, Andrews DL, et al.: Calcineurin is an antagonist to PKA protein phosphorylation required for postmating filamentation and virulence, while PP2A is required for viability in Ustilago maydis. Mol Plant Microbe Interact 2009, 22:1293–1301. This study reports that calcineurin (Ucn1) antagonizes PKA action, and deletion of the UCN1 gene causes dramatic multiple-budding phenotypes and attenuated virulence.

    Article  CAS  PubMed  Google Scholar 

  26. Kraus PR, Fox DS, Cox GM, et al.: The Cryptococcus neoformans MAP kinase Mpk1 regulates cell integrity in response to antifungal drugs and loss of calcineurin function. Mol Microbiol 2003, 48:1377–1387.

    Article  CAS  PubMed  Google Scholar 

  27. Cyert MS, Kunisawa R, Kaim D, et al.: Yeast has homologs (CNA1 and CNA2 gene products) of mammalian calcineurin, a calmodulin-regulated phosphoprotein phosphatase. Proc Natl Acad Sci U S A 1991, 88:7376–7380.

    Article  CAS  PubMed  Google Scholar 

  28. Liu Y, Ishii S, Tokai M, et al.: The Saccharomyces cerevisiae genes (CMP1 and CMP2) encoding calmodulin-binding proteins homologous to the catalytic subunit of mammalian protein phosphatase 2B. Mol Gen Genet 1991, 227:52–59.

    Article  CAS  PubMed  Google Scholar 

  29. Ye RR, Bretscher A: Identification and molecular characterization of the calmodulin-binding subunit gene (CMP1) of protein phosphatase 2B from Saccharomyces cerevisiae. An alpha-factor inducible gene. Eur J Biochem 1992, 204:713–723.

    Article  CAS  PubMed  Google Scholar 

  30. Matheos DP, Kingsbury TJ, Ahsan US, et al.: Tcn1p/Crz1p, a calcineurin-dependent transcription factor that differentially regulates gene expression in Saccharomyces cerevisiae. Genes Dev 1997, 11:3445–3458.

    Article  CAS  PubMed  Google Scholar 

  31. Arron JR, Winslow MM, Polleri A, et al.: NFAT dysregulation by increased dosage of DSCR1 and DYRK1A on chromosome 21. Nature 2006, 441:595–600.

    Article  CAS  PubMed  Google Scholar 

  32. Beals CR, Sheridan CM, Turck CW, et al.: Nuclear export of NF-ATc enhanced by glycogen synthase kinase-3. Science 1997, 275:1930–1934.

    Article  CAS  PubMed  Google Scholar 

  33. Hilioti Z, Gallagher DA, Low-Nam ST, et al.: GSK-3 kinases enhance calcineurin signaling by phosphorylation of RCNs. Genes Dev 2004, 18:35–47.

    Article  CAS  PubMed  Google Scholar 

  34. Kozubowski L, Lee SC, Heitman J: Signalling pathways in the pathogenesis of Cryptococcus. Cell Microbiol 2009, 11:370–380.

    Article  CAS  PubMed  Google Scholar 

  35. Braun BR, Johnson AD: Control of filament formation in Candida albicans by the transcriptional repressor TUP1. Science 1997, 277:105–109.

    Article  CAS  PubMed  Google Scholar 

  36. Lo HJ, Kohler JR, DiDomenico B, et al.: Nonfilamentous C. albicans mutants are avirulent. Cell 1997, 90:939–949.

    Article  CAS  PubMed  Google Scholar 

  37. Kwon-Chung KJ, Polacheck I, Popkin TJ: Melanin-lacking mutants of Cryptococcus neoformans and their virulence for mice. J Bacteriol 1982, 150:1414–1421.

    CAS  PubMed  Google Scholar 

  38. Cruz MC, Del Poeta M, Wang P, et al.: Immunosuppressive and nonimmunosuppressive cyclosporine analogs are toxic to the opportunistic fungal pathogen Cryptococcus neoformans via cyclophilin-dependent inhibition of calcineurin. Antimicrob Agents Chemother 2000, 44:143–149.

    Article  CAS  PubMed  Google Scholar 

  39. Odom A, Del Poeta M, Perfect J, et al.: The immunosuppressant FK506 and its nonimmunosuppressive analog L-685,818 are toxic to Cryptococcus neoformans by inhibition of a common target protein. Antimicrob Agents Chemother 1997, 41:156–161.

    CAS  PubMed  Google Scholar 

  40. •• Singh SD, Robbins N, Zaas AK, et al.: Hsp90 governs echinocandin resistance in the pathogenic yeast Candida albicans via calcineurin. PLoS Pathog 2009, 5:e1000532. Hsp90 is found to physically interact with calcineurin and govern echinocandin resistance in C. albicans, and drug inhibitors of Hsp90 or calcineurin exhibit fungicidal activity in concert with echinocandins, providing a potential therapy for candidiasis.

    Article  PubMed  Google Scholar 

  41. Onyewu C, Heitman J: Unique applications of novel antifungal drug combinations. Anti-infective Agents Med Chem 2007, 6:3–15.

    CAS  Google Scholar 

  42. Morrell M, Fraser VJ, Kollef MH: Delaying the empiric treatment of candida bloodstream infection until positive blood culture results are obtained: a potential risk factor for hospital mortality. Antimicrob Agents Chemother 2005, 49:3640–3645.

    Article  CAS  PubMed  Google Scholar 

  43. • Lockhart SR, Ahlquist AM, Iqbal N, et al.: Epidemiology and antifungal resistance results of current candidemia surveillance in Atlanta and Baltimore, US [abstract S3:2]. Presented at the 10th ASM Conference on Candida and Candidiasis. Miami, FL, USA; March 22–26, 2010. C. albicans (35%–39%), C. glabrata (27%), and C. parapsilosis (17%–18%) are reported as major Candida species of candidemia, contributing to a case-fatality rate of 30% in Atlanta and 26% in Baltimore, in the United States.

  44. Cruz MC, Goldstein AL, Blankenship JR, et al.: Calcineurin is essential for survival during membrane stress in Candida albicans. EMBO J 2002, 21:546–559.

    Article  CAS  PubMed  Google Scholar 

  45. Bader T, Bodendorfer B, Schroppel K, et al.: Calcineurin is essential for virulence in Candida albicans. Infect Immun 2003, 71:5344–5354.

    Article  CAS  PubMed  Google Scholar 

  46. Bader T, Schroppel K, Bentink S, et al.: Role of calcineurin in stress resistance, morphogenesis, and virulence of a Candida albicans wild-type strain. Infect Immun 2006, 74:4366–4369.

    Article  CAS  PubMed  Google Scholar 

  47. Blankenship JR, Heitman J: Calcineurin is required for Candida albicans to survive calcium stress in serum. Infect Immun 2005, 73:5767–5774.

    Article  CAS  PubMed  Google Scholar 

  48. Blankenship JR, Wormley FL, Boyce MK, et al.: Calcineurin is essential for Candida albicans survival in serum and virulence. Eukaryot Cell 2003, 2:422–430.

    Article  CAS  PubMed  Google Scholar 

  49. Sanglard D, Ischer F, Marchetti O, et al.: Calcineurin A of Candida albicans: involvement in antifungal tolerance, cell morphogenesis and virulence. Mol Microbiol 2003, 48:959–976.

    Article  CAS  PubMed  Google Scholar 

  50. Onyewu C, Afshari NA, Heitman J: Calcineurin promotes infection of the cornea by Candida albicans and can be targeted to enhance fluconazole therapy. Antimicrob Agents Chemother 2006, 50:3963–3965.

    Article  CAS  PubMed  Google Scholar 

  51. Onyewu C, Wormley FL Jr, Perfect JR, et al.: The calcineurin target, Crz1, functions in azole tolerance but is not required for virulence of Candida albicans. Infect Immun 2004, 72:7330–7333.

    Article  CAS  PubMed  Google Scholar 

  52. Karababa M, Valentino E, Pardini G, et al.: CRZ1, a target of the calcineurin pathway in Candida albicans. Mol Microbiol 2006, 59:1429–1451.

    Article  CAS  PubMed  Google Scholar 

  53. Kullas AL, Martin SJ, Davis D: Adaptation to environmental pH: integrating the Rim101 and calcineurin signal transduction pathways. Mol Microbiol 2007, 66:858–871.

    Article  CAS  PubMed  Google Scholar 

  54. •• Brand A, Shanks S, Duncan VM, et al.: Hyphal orientation of Candida albicans is regulated by a calcium-dependent mechanism. Curr Biol 2007, 17:347–352. This article shows that C. albicans deploys calcium-dependent and Crz1-dependent mechanisms to control contact and voltage responses of hyphal orientation.

    Article  CAS  PubMed  Google Scholar 

  55. Brand A, Gow NA: Mechanisms of hypha orientation of fungi. Curr Opin Microbiol 2009, 12:350–357.

    Article  CAS  PubMed  Google Scholar 

  56. Brand A, Lee K, Veses V, et al.: Calcium homeostasis is required for contact-dependent helical and sinusoidal tip growth in Candida albicans hyphae. Mol Microbiol 2009, 71:1155–1164.

    Article  CAS  PubMed  Google Scholar 

  57. Casadevall A, Perfect JR: Cryptococcus neoformans. Washington, DC: ASM; 1998.

    Google Scholar 

  58. Byrnes EJ, Li W, Lewit Y, et al.: Emergence and pathogenicity of highly virulent Cryptococcus gattii genotypes in the northwest United States. PLoS Pathog 2010, 6:e1000850.

    Article  PubMed  Google Scholar 

  59. Fan W, Idnurm A, Breger J, et al.: Eca1, a sarcoplasmic/endoplasmic reticulum Ca2+-ATPase, is involved in stress tolerance and virulence in Cryptococcus neoformans. Infect Immun 2007, 75:3394–3405.

    Article  CAS  PubMed  Google Scholar 

  60. Odom A, Muir S, Lim E, et al.: Calcineurin is required for virulence of Cryptococcus neoformans. EMBO J 1997, 16:2576–2589.

    Article  CAS  PubMed  Google Scholar 

  61. Fox DS, Cruz MC, Sia RA, et al.: Calcineurin regulatory subunit is essential for virulence and mediates interactions with FKBP12-FK506 in Cryptococcus neoformans. Mol Microbiol 2001, 39:835–849.

    Article  CAS  PubMed  Google Scholar 

  62. Kraus PR, Nichols CB, Heitman J: Calcium- and calcineurin-independent roles for calmodulin in Cryptococcus neoformans morphogenesis and high-temperature growth. Eukaryot Cell 2005, 4:1079–1087.

    Article  CAS  PubMed  Google Scholar 

  63. Garrett-Engele P, Moilanen B, Cyert MS: Calcineurin, the Ca2+/calmodulin-dependent protein phosphatase, is essential in yeast mutants with cell integrity defects and in mutants that lack a functional vacuolar H+-ATPase. Mol Cell Biol 1995, 15:4103–4114.

    CAS  PubMed  Google Scholar 

  64. Hemenway CS, Dolinski K, Cardenas ME, et al.: vph6 mutants of Saccharomyces cerevisiae require calcineurin for growth and are defective in vacuolar H(+)-ATPase assembly. Genetics 1995, 141:833–844.

    CAS  PubMed  Google Scholar 

  65. Mendoza I, Rubio F, Rodriguez-Navarro A, et al.: The protein phosphatase calcineurin is essential for NaCl tolerance of Saccharomyces cerevisiae. J Biol Chem 1994, 269:8792–8796.

    CAS  PubMed  Google Scholar 

  66. Fox DS, Cox GM, Heitman J: Phospholipid-binding protein Cts1 controls septation and functions coordinately with calcineurin in Cryptococcus neoformans. Eukaryot Cell 2003, 2:1025–1035.

    Article  CAS  PubMed  Google Scholar 

  67. Cruz MC, Fox DS, Heitman J: Calcineurin is required for hyphal elongation during mating and haploid fruiting in Cryptococcus neoformans. EMBO J 2001, 20:1020–1032.

    Article  CAS  PubMed  Google Scholar 

  68. Gorlach J, Fox DS, Cutler NS, et al.: Identification and characterization of a highly conserved calcineurin binding protein, CBP1/calcipressin, in Cryptococcus neoformans. EMBO J 2000, 19:3618–3629.

    Article  CAS  PubMed  Google Scholar 

  69. Fox DS, Heitman J: Calcineurin-binding protein Cbp1 directs the specificity of calcineurin-dependent hyphal elongation during mating in Cryptococcus neoformans. Eukaryot Cell 2005, 4:1526–1538.

    Article  CAS  PubMed  Google Scholar 

  70. • Wilson RA, Talbot NJ: Under pressure: investigating the biology of plant infection by Magnaporthe oryzae. Nat Rev Microbiol 2009, 7:185–195. This article reviews genetic control of appressorium formation during infection by the rice blast pathogen M. oryzae and documents that calcium channels are pivotal for invasive growth.

    Article  CAS  PubMed  Google Scholar 

  71. Viaud MC, Balhadere PV, Talbot NJ: A Magnaporthe grisea cyclophilin acts as a virulence determinant during plant infection. Plant Cell 2002, 14:917–930.

    Article  CAS  PubMed  Google Scholar 

  72. Lee SC, Lee YH: Calcium/calmodulin-dependent signaling for appressorium formation in the plant pathogenic fungus Magnaporthe grisea. Mol Cells 1998, 8:698–704.

    CAS  PubMed  Google Scholar 

  73. Liu ZM, Kolattukudy PE: Early expression of the calmodulin gene, which precedes appressorium formation in Magnaporthe grisea, is inhibited by self-inhibitors and requires surface attachment. J Bacteriol 1999, 181:3571–3577.

    CAS  PubMed  Google Scholar 

  74. Choi JH, Kim Y, Lee YH: Functional analysis of MCNA, a gene encoding a catalytic subunit of calcineurin, in the rice blast fungus Magnaporthe oryzae. J Microbiol Biotechnol 2009, 19:11–16.

    CAS  PubMed  Google Scholar 

  75. • Choi J, Kim Y, Kim S, et al.: MoCRZ1, a gene encoding a calcineurin-responsive transcription factor, regulates fungal growth and pathogenicity of Magnaporthe oryzae. Fungal Genet Biol 2009, 46:243–254. This article demonstrates that Crz1 is a calcium-dependent downstream target of calcineurin that regulates transcription of cell-wall biosynthetic and ion machinery genes to evoke pathogenicity.

    Article  CAS  PubMed  Google Scholar 

  76. Brefort T, Doehlemann G, Mendoza-Mendoza A, et al.: Ustilago maydis as a pathogen. Annu Rev Phytopathol 2009, 47:423–445.

    Article  CAS  PubMed  Google Scholar 

  77. Gold S, Duncan G, Barrett K, et al.: cAMP regulates morphogenesis in the fungal pathogen Ustilago maydis. Genes Dev 1994, 8:2805–2816.

    Article  CAS  PubMed  Google Scholar 

  78. Chen YL, Montedonico AE, Kauffman S, et al.: Phosphatidylserine synthase and phosphatidylserine decarboxylase are essential for cell wall integrity and virulence in Candida albicans. Mol Microbiol 2010, 75:1112–1132.

    Article  CAS  PubMed  Google Scholar 

  79. • Campos CB, Di Benedette JP, Morais FV, et al.: Evidence for the role of calcineurin in morphogenesis and calcium homeostasis during mycelium-to-yeast dimorphism of Paracoccidioides brasiliensis. Eukaryot Cell 2008, 7:1856–1864. This article reports that in P. brasiliensis, a rare but fatal human fungal pathogen, calcineurin is required for the hyphae-to-yeast transition and promotes transcription of the CCH1 gene (encoding a P-type ATPase calcium channel).

    Article  CAS  PubMed  Google Scholar 

  80. • Dannaoui E, Schwarz P, Lortholary O: In vitro interactions between antifungals and immunosuppressive drugs against zygomycetes. Antimicrob Agents Chemother 2009, 53:3549–3551. Amphotericin B combined with cyclosporin A is found to exhibit synergistic fungicidal activity against Rhizopus oryzae, suggesting a potential therapy for mucormycosis.

    Article  CAS  PubMed  Google Scholar 

  81. Santos M, de Larrinoa IF: Functional characterization of the Candida albicans CRZ1 gene encoding a calcineurin-regulated transcription factor. Curr Genet 2005, 48:88–100.

    Article  CAS  PubMed  Google Scholar 

  82. Miyazaki T, Yamauchi S, Inamine T, et al.: Roles of calcineurin and Crz1 in antifungal susceptibility and virulence of Candida glabrata. Antimicrob Agents Chemother 2010, 54:1639–1643.

    Article  CAS  PubMed  Google Scholar 

  83. Cruz MC, Sia RA, Olson M, et al.: Comparison of the roles of calcineurin in physiology and virulence in serotype D and serotype A strains of Cryptococcus neoformans. Infect Immun 2000, 68:982–985.

    Article  CAS  PubMed  Google Scholar 

  84. Idnurm A, Walton FJ, Floyd A, et al.: Identification of ENA1 as a virulence gene of the human pathogenic fungus Cryptococcus neoformans through signature-tagged insertional mutagenesis. Eukaryot Cell 2009, 8:315–326.

    Article  CAS  PubMed  Google Scholar 

  85. da Silva Ferreira ME, Heinekamp T, Hartl A, et al.: Functional characterization of the Aspergillus fumigatus calcineurin. Fungal Genet Biol 2007, 44:219–230.

    Article  PubMed  Google Scholar 

  86. Steinbach WJ, Cramer RA Jr, Perfect BZ, et al.: Calcineurin controls growth, morphology, and pathogenicity in Aspergillus fumigatus. Eukaryot Cell 2006, 5:1091–1103.

    Article  CAS  PubMed  Google Scholar 

  87. Cramer RA Jr, Perfect BZ, Pinchai N, et al.: Calcineurin target CrzA regulates conidial germination, hyphal growth, and pathogenesis of Aspergillus fumigatus. Eukaryot Cell 2008, 7:1085–1097.

    Article  CAS  PubMed  Google Scholar 

  88. Soriani FM, Malavazi I, da Silva Ferreira ME, et al.: Functional characterization of the Aspergillus fumigatus CRZ1 homologue, CrzA. Mol Microbiol 2008, 67:1274–1291.

    Article  CAS  PubMed  Google Scholar 

  89. Pinchai N, Perfect BZ, Juvvadi PR, et al.: Aspergillus fumigatus calcipressin CbpA is involved in hyphal growth and calcium homeostasis. Eukaryot Cell 2009, 8:511–519.

    Article  CAS  PubMed  Google Scholar 

  90. Pinchai N, Juvvadi PR, Fortwendel JR, et al.: The Aspergillus fumigatus P-type Golgi Ca2+/Mn2+-ATPase PmrA is involved in cation homeostasis and cell wall integrity but not essential for pathogenesis. Eukaryot Cell 2010, 9:472–476.

    Article  CAS  PubMed  Google Scholar 

  91. Harel A, Bercovich S, Yarden O: Calcineurin is required for sclerotial development and pathogenicity of Sclerotinia sclerotiorum in an oxalic acid–independent manner. Mol Plant Microbe Interact 2006, 19:682–693.

    Article  CAS  PubMed  Google Scholar 

  92. Schumacher J, de Larrinoa IF, Tudzynski B: Calcineurin-responsive zinc finger transcription factor CRZ1 of Botrytis cinerea is required for growth, development, and full virulence on bean plants. Eukaryot Cell 2008, 7:584–601.

    Article  CAS  PubMed  Google Scholar 

  93. Zhang H, Zhao Q, Liu K, et al.: MgCRZ1, a transcription factor of Magnaporthe grisea, controls growth, development and is involved in full virulence. FEMS Microbiol Lett 2009, 293:160–169.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Soo Chan Lee and Cecelia Shertz for discussions and comments. We apologize to authors whose studies are not cited here owing to space limitations. Our research is supported by NIH/NIAID R01 grants AI042159 and AI50438.

Disclosure

No potential conflicts of interest relevant to this article were reported.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph Heitman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, YL., Kozubowski, L., Cardenas, M.E. et al. On the Roles of Calcineurin in Fungal Growth and Pathogenesis. Curr Fungal Infect Rep 4, 244–255 (2010). https://doi.org/10.1007/s12281-010-0027-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12281-010-0027-5

Keywords

Navigation