Skip to main content
Log in

The activity of a small lytic peptide PTP-7 on Staphylococcus aureus biofilms

  • Articles
  • Published:
The Journal of Microbiology Aims and scope Submit manuscript

Abstract

One of the most important features of bacterial biofilms is their resistance to antibiotics and to the host immune system. In this study, we have found that a small lytic peptide, PTP-7, is very potent to Gram-positive bacteria and is able to kill antibiotic sensitive and resistant Staphylococcus aureus indiscriminately. Further studies have revealed that despite being a cationic peptide, the antibacterial activity of PTP-7 was not affected by the negatively charged extracellular polymeric substance (EPS) of biofilms. PTP-7 could diffuse into the deep layer of S. aureus biofilms to kill bacteria inside biofilms efficiently and effectively. Neither the high concentrations of metal ions nor the acidic pH in biofilms affected the activity of peptide PTP-7. It seems that the unique sequence/structure together with the resistant bacteria killing ability of peptide PTP-7 confers its anti-biofilm activity. This study sheds new light on the treatment of bacterial biofilms, especially various biofilm related infections.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Beckloff, N., D. Laube, T. Castro, D. Furgang, S. Park, D. Perlin, D. Clements, and et al. 2007. Activity of an antimicrobial peptide mimetic against planktonic and biofilm cultures of oral pathogens. Antimicrob. Agents Chemother. 51, 4125–4132.

    Article  PubMed  CAS  Google Scholar 

  • Chuard, C., M. Herrmann, F.A. Waldvogel, and P.D. Lew. 1991. Resistance of Staphylococcus aureus isolated from infected foreign body to killing by antimicrobials. J. Infect. Dis. 63, 1369–1373.

    Google Scholar 

  • Costerton, J.W., G. Cook, and R. Lamont. 1999. The community architecture of biofilms: dynamic structures and mechanisms, pp. 5–14. In H.N. Newman and M. Wilson (ed.) Dental plaque revisited. Cardiff: Bioline.

    Google Scholar 

  • Costerton, J.W., L. Montanaro, and C.R. Arciola. 2007. Bacterial communications in implant infections: a target for an intelligence war. Int. J. Artif. Organs. 30, 757–763.

    PubMed  CAS  Google Scholar 

  • Dunne, W.M., E.O. Mason, Jr., and S.L. Kaplan. 1993. Diffusion of rifampin and vancomycin through a Staphylococcus epidermidis biofilm. Antimicrob. Agents Chemother. 37, 2522–2526.

    PubMed  CAS  Google Scholar 

  • Jefferson, K.K., D.A. Goldmann, and G.B. Pier. 2005. Use of confocal microscopy to analyze the rate of vancomycin penetration through Staphylococcus aureus biofilms. Am. Soc. Microbiol. 49, 2467–2473.

    CAS  Google Scholar 

  • Lewis, K. 2008. Multidrug tolerance of biofilms and persister cells. Curr. Top. Microbiol. Immunol. 322, 107–131.

    Article  PubMed  CAS  Google Scholar 

  • Mack, D., K. Bartscht, S. Dobinsky, M.A. Horstkotte, K. Kiel, J.K.M. Knobloch, and P. Schäfer. 2003. Staphylococcal factors involved in adhesion and biofilm formation on biomaterials, pp. 307–333. In Y.H. An and R.J. Friedman (eds.), Handbook for studying bacterial adhesion: Principles, methods, and applications. Humana Press, Totowa, NJ, USA.

    Google Scholar 

  • Mack, D., P. Becker, I. Chatterjee, S. Dobinsky, J.K. Knobloch, G. Peters, H. Rohde, and M. Herrmann. 2004. Mechanisms of biofilm formation in Staphylococcus epidermidis and Staphylococcus aureus: functional molecules, regulatory circuits, and adaptive responses. Int. J. Med. Microbiol. 294, 203–212.

    Article  PubMed  CAS  Google Scholar 

  • Madhuri Shireen, T., S.K. Venugopal, D. Ghosh, R. Gadepalli, B. Dhawan, and K. Mukhopadhyay. 2009. In vitro antimicrobial activity of alpha-melanocyte stimulating hormone against major human pathogen Staphylococcus aureus. Peptides 30, 1627–1635.

    Article  Google Scholar 

  • Pascual, A. 2002. Pathogenesis of catheter-related infections: Lessons for new designs. Clin. Microbiol. Infect. 8, 256–264.

    Article  PubMed  CAS  Google Scholar 

  • Peeters, E., H.J. Nelis, and T. Coenye. 2008. Comparison of multiple methods for quantification of microbial biofilms grown in microtiter plates. J. Microbiol. Methods 72, 157–165.

    Article  PubMed  CAS  Google Scholar 

  • Sheng, Z. and P.S. Stewart. 2002. Penetration of rifampin through Staphylococcus epidermidis biofilms. Antimicrob. Agents Chemother. 110, 900–903.

    Google Scholar 

  • Tu, Z., A. Young, C. Murphy, and J.F. Liang. 2009. The pH sensitivity of histidine-containing lytic peptides. J. Pept. Sci. 15, 790–795.

    Article  PubMed  CAS  Google Scholar 

  • Vroom, J.M., K.J. De Grauw, H.C. Gerritsen, D.J. Bradshaw, P.D. Marsh, G.K. Watson, J.J. Birmingham, and C. Allison. 1999. Depth penetration and detection of pH gradients in biofilms by two-photon excitation microscopy. Appl. Environ. Microbiol. 65, 3502–3511.

    PubMed  CAS  Google Scholar 

  • Walters III, M.C., F. Roe, A. Bugnicourt, M.J. Franklin, and P.S. Stewart. 2003. Contributions of antibiotic penetration, oxygen limitation, and low metabolic activity to tolerance of Pseudomonas aeruginosa biofilms to ciprofloxacin and tobramycin. Antimicrob. Agents Chemother. 47, 317–323.

    Article  PubMed  CAS  Google Scholar 

  • Welin, J., J.C. Wilkins, B. Beighton, K. Wrzesinski, S.J. Fey, P. Mose-Larsen, I.R. Hamilton, and G. Svensafter. 2003. Effect of acid shock on protein expression by biofilm cells of Streptococcus mutans. FEMS Microbiol. Lett. 227, 287–293.

    Article  PubMed  CAS  Google Scholar 

  • Xiong, Y., K. Mukhopadhyay, and M.R. Yeaman. 2005. Adler-Moore J and Bayer AS., Functional interrelationships between cell membrane and cell wall in antimicrobial peptide-mediated killing of Staphylococcus aureus. Antimicrob. Agents Chemother. 49, 3114–3121.

    Article  PubMed  CAS  Google Scholar 

  • Zasloff, M. 2002. Antimicrobial peptides of multicellular organisms. Nature 415, 389–395.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun F. Liang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kharidia, R., Liang, J.F. The activity of a small lytic peptide PTP-7 on Staphylococcus aureus biofilms. J Microbiol. 49, 663–668 (2011). https://doi.org/10.1007/s12275-011-1013-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12275-011-1013-5

Keywords

Navigation