Skip to main content
Log in

Identification of a novel Streptomyces chattanoogensis L10 and enhancing its natamycin production by overexpressing positive regulator ScnRII

  • Articles
  • Published:
The Journal of Microbiology Aims and scope Submit manuscript

Abstract

A novel Streptomyces strain, L10, which is capable of producing natamycin, was isolated from a soil sample collected from Zhejiang province, China. On the basis of phylogenetic analysis of rpoB gene and 16S rDNA sequences, as well as phenotypic comparison, strain L10 (CGMCC 2644) is proposed to be a previously uncharacterized strain of S. chattanoogensis. By screening a cosmid library of strain L10 and primer walking, a partial sequence of scnRI and the entire sequence of scnRII were obtained, which are orthologues to the pathway-specific positive regulator genes of natamycin biosynthesis in S. natalensis. The engineered S. chattanoogensis Dl, generated by inserting an additional copy of scnRII into the chromosome of strain L10, increased its natamycin production by 3.3 fold in YSG medium and 4.6 fold in YEME medium without sucrose.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anton, N., M.V. Mendes, J.F. Martin, and J.F. Aparicio. 2004. Identification of PimR as a positive regulator of pimaricin biosynthesis in Streptomyces natalensis. J. Bacteriol. 186, 2567–2575.

    Article  PubMed  CAS  Google Scholar 

  • Anton, N., J. Santos-Aberturas, M.V. Mendes, S.M. Guerra, J.F. Martin, and J.F. Aparicio. 2007. PimM, a PAS domain positive regulator of pimaricin biosynthesis in Streptomyces natalensis. Microbiology 153, 3174–3183.

    Article  PubMed  CAS  Google Scholar 

  • Aparicio, J.F., R. Fouces, M.V. Mendes, N. Olivera, and J.F. Martin. 2000. A complex multienzyme system encoded by five polyketide synthase genes is involved in the biosynthesis of the 26-membered polyene macrolide pimaricin in Streptomyces natalensis. Chem. Biol. 7, 895–905.

    Article  PubMed  CAS  Google Scholar 

  • Bibb, M.J. 2005. Regulation of secondary metabolism in Streptomyces. Curr. Opin. Microl. 8, 208–215.

    Article  CAS  Google Scholar 

  • Chiang, S.J. 2004. Strain improvement for fermentation and biocatalysis processes by genetic engineering technology. J. Ind. Microbiol. Biotechnol. 31, 99–108.

    Article  PubMed  CAS  Google Scholar 

  • Clayton, R.A., G. Sutton, P.S. Hinkle, Jr., C. Bult, and C. Fields. 1995. Intraspecific variation in small-subunit rRNA sequences in GenBank: why single sequences may not adequately represent prokaryotic taxa. Int. J. Syst. Bacteriol. 45, 595–599.

    PubMed  CAS  Google Scholar 

  • el-Enshasy, H.A., M.A. Farid, and S.A. El-Sayed. 2000. Influence of inoculum type and cultivation conditions on natamycin production by Streptomyces natalensis. J. Basic Microbiol. 40, 333–342.

    Article  PubMed  CAS  Google Scholar 

  • Farid, M.A., H.A. El-Enshasy, A.I. El-Diwany, and S.A. El-Sayed. 2000. Optimization of the cultivation medium for natamycin production by Streptomyces natalensis. J. Basic Microbiol. 40, 157–166.

    Article  PubMed  CAS  Google Scholar 

  • Felsenstein, J. 1981. Evolutionary trees from DNA sequences: a maximum likelihood approach. J. Mol. Evol. 17, 368–376.

    Article  PubMed  CAS  Google Scholar 

  • Felsenstein, J. 1993. PHYLIP (phylogeny inference package), version 3.5c. Distributed by the author, Department of Genome Sciences, University of Washington, Seattle, USA.

    Google Scholar 

  • Ficth, W.M. and E. Margoliash. 1967. Construction of phylogenetic trees: a method based on mutation distances as estimated from cytochrome c sequences is of general applicability. Science 155, 279–284.

    Article  Google Scholar 

  • Flett, F., V. Mersinias, and C.P. Smith. 1997. High efficiency intergeneric conjugal transfer of plasmid DNA from Escherichia coli to methyl DNA-restricting streptomyces. FEMS Microbiol. Lett. 155, 223–229.

    Article  PubMed  CAS  Google Scholar 

  • Jukes, T.H. and C.R. Cantor. 1969. Evolution of protein molecules, p. 21–132. In H.N. Munro (ed.), Mammalian Protein Metabolism, Academic Press, New York, N.Y., USA.

    Google Scholar 

  • Karwowski, J.P., M. Jackson, R.J. Theriault, G.J. Barlow, L. Coen, D.M. Hensey, and P.E. Humphrey. 1992. Tirandalydigin, a novel tetramic acid of the tirandamycin-streptolydigin type. J. Antibiot. 45, 1125–1132.

    PubMed  CAS  Google Scholar 

  • Kieser, T., M.J. Bibb, M.J. Buttner, K.F. Chater, and D.A. Hopwood. 2000. Practical Streptomyces genetics, The John Innes Foundation, Norwich, UK.

    Google Scholar 

  • Kim, B.J., C.J. Kim, J. Chun, Y.H. Koh, S.H. Lee, J.W. Hyun, C.Y. Cha, and Y.H. Kook. 2004. Phylogenetic analysis of the genera Streptomyces and Kitasatospora based on partial RNA polymerase beta-subunit gene (rpoB) sequences. Int. J. Syst. Bacteriol. 54, 593–598.

    CAS  Google Scholar 

  • Li, H.D., Z.H. Jin, H.G. Zhang, and H. Jin. 2008. Protoplast formation.regeneration and UV mutagenesis of natamycin producing Streptomyces gilvosporeus. Ind. Microbiol. 38, 43–46.

    CAS  Google Scholar 

  • Li, R. and C.A. Townsend. 2006. Rational strain improvement for enhanced clavulanic acid production by genetic engineering of the glycolytic pathway in Streptomyces clavuligerus. Metab. Eng. 8, 240–252.

    Article  PubMed  CAS  Google Scholar 

  • Lin, H.C., S.C. Chang, N.L. Wang, and L.R Ceng. 1994. FL-120A-D′, new products related to kinamycin from Streptomyces chattanoogensis subsp. taitungensis subsp. nov. J. Antibiot. 47, 675–680.

    PubMed  CAS  Google Scholar 

  • Locci, R. 1989. Streptomyces and related genera, p. 2451–2508. In S.T. Williams, M.E. Sharpe, and J.G. Holt (eds.), Bergey’s manual of systematic bacteriology. 4th ed. The Williams & Wilkins Co., Baltimore, Maryland, USA.

    Google Scholar 

  • Saitou, N. and M. Nei. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4, 406–425.

    PubMed  CAS  Google Scholar 

  • Sambrook, J. and W. Russell. 2001. Molecular Cloning: A Laboratory Manual. 3rd. Cold Spring Harbor Laboratory Press Cold Spring Harbor, New York, N.Y., USA.

    Google Scholar 

  • Shirling, E.B. and D. Gottlieb. 1966. Methods for characterization of Streptomyces species. Int. J. Syst. Bacteriol. 16, 313–340.

    Google Scholar 

  • Shirling, E.B. and D. Gottlieb. 1972. Cooperative description of type strains of Streptomyces. Int. J. Syst. Bacteriol. 22, 265–394.

    Article  Google Scholar 

  • Stackebrandt, E., W. Liesack, and D. Witt. 1992. Ribosomal RNA and rDNA sequence analyses. Gene 115, 255–260.

    Article  PubMed  CAS  Google Scholar 

  • Stratigopoulos, G., N. Bate, and E. Cundliffe. 2004. Positive control of tylosin biosynthesis: pivotal role of TylR. Mol. Microbiol. 54, 1326–1334.

    Article  PubMed  CAS  Google Scholar 

  • te Welscher, Y.M., H.H. ten Napel, M.M. Balague, C.M. Souza, H. Riezman, B. de Kruijff, and E. Breukink. 2008. Natamycin blocks fungal growth by binding specifically to ergosterol without permeabilizing the membrane. J. Biol. Chem. 283, 6393–6401.

    Article  Google Scholar 

  • Woese, R.C. 1987. Bacterial evolution. Microbiol. Rev. 51, 221–271.

    PubMed  CAS  Google Scholar 

  • Zhang, R., A. Zeng, P. Fang, and Z. Qin. 2008. Characterization of replication and conjugation of Streptomyces circular plasmids pFP1 and pFP11 and their ability to propagate in linear mode with artificially attached telomeres. Appl. Environ. Microbiol. 74, 3368–3376.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong-Quan Li.

Additional information

This authors contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Du, YL., Chen, SF., Cheng, LY. et al. Identification of a novel Streptomyces chattanoogensis L10 and enhancing its natamycin production by overexpressing positive regulator ScnRII. J Microbiol. 47, 506–513 (2009). https://doi.org/10.1007/s12275-009-0014-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12275-009-0014-0

Keywords

Navigation