Skip to main content
Log in

Actin Aggregations Mark the Sites of Neurite Initiation

  • Original Article
  • Published:
Neuroscience Bulletin Aims and scope Submit manuscript

Abstract

A salient feature of neurons is their intrinsic ability to grow and extend neurites, even in the absence of external cues. Compared to the later stages of neuronal development, such as neuronal polarization and dendrite morphogenesis, the early steps of neuritogenesis remain relatively unexplored. Here we showed that redistribution of cortical actin into large aggregates preceded neuritogenesis and determined the site of neurite initiation. Enhancing actin polymerization by jasplakinolide treatment effectively blocked actin redistribution and neurite initiation, while treatment with the actin depolymerizing agents latrunculin A or cytochalasin D accelerated neurite formation. Together, these results demonstrate a critical role of actin dynamics and reorganization in neurite initiation. Further experiments showed that microtubule dynamics and protein synthesis are not required for neurite initiation, but are required for later neurite stabilization. The redistribution of actin during early neuronal development was also observed in the cerebral cortex and hippocampus in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Dotti CG, Sullivan CA, Banker GA. The establishment of polarity by hippocampal neurons in culture. J Neurosci 1988, 8: 1454–1468.

    CAS  PubMed  Google Scholar 

  2. Craig AM, Banker G. Neuronal polarity. Annu Rev Neurosci 1994, 17: 267–310.

    Article  CAS  PubMed  Google Scholar 

  3. Barnes AP, Solecki D, Polleux F. New insights into the molecular mechanisms specifying neuronal polarity in vivo. Curr Opin Neurobiol 2008, 18: 44–52.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Funahashi Y, Namba T, Nakamuta S, Kaibuchi K. Neuronal polarization in vivo: Growing in a complex environment. Curr Opin Neurobiol 2014, 27: 215–223.

    Article  CAS  PubMed  Google Scholar 

  5. Randlett O, Norden C, Harris WA. The vertebrate retina: a model for neuronal polarization in vivo. Dev Neurobiol 2011, 71: 567–583.

    Article  PubMed  Google Scholar 

  6. Arimura N, Kaibuchi K. Neuronal polarity: from extracellular signals to intracellular mechanisms. Nat Rev Neurosci 2007, 8: 194–205.

    Article  CAS  PubMed  Google Scholar 

  7. Barnes AP, Polleux F. Establishment of axon-dendrite polarity in developing neurons. Annu Rev Neurosci 2009, 32: 347–381.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Cheng PL, Poo MM. Early events in axon/dendrite polarization. Annu Rev Neurosci 2012, 35: 181–201.

    Article  CAS  PubMed  Google Scholar 

  9. Stiess M, Bradke F. Neuronal polarization: the cytoskeleton leads the way. Dev Neurobiol 2011, 71: 430–444.

    Article  CAS  PubMed  Google Scholar 

  10. Arikkath J. Molecular mechanisms of dendrite morphogenesis. Front Cell Neurosci 2012, 6: 61.

    Article  PubMed Central  PubMed  Google Scholar 

  11. Cline H, Haas K. The regulation of dendritic arbor development and plasticity by glutamatergic synaptic input: a review of the synaptotrophic hypothesis. J Physiol 2008, 586: 1509–1517.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Koleske AJ. Molecular mechanisms of dendrite stability. Nat Rev Neurosci 2013, 14: 536–550.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Puram SV, Bonni A. Cell-intrinsic drivers of dendrite morphogenesis. Development 2013, 140: 4657–4671.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Urbanska M, Blazejczyk M, Jaworski J. Molecular basis of dendritic arborization. Acta Neurobiol Exp (Wars) 2008, 68: 264–288.

    Google Scholar 

  15. Jan YN, Jan LY. Branching out: mechanisms of dendritic arborization. Nat Rev Neurosci 2010, 11: 316–328.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Wong RO, Ghosh A. Activity-dependent regulation of dendritic growth and patterning. Nat Rev Neurosci 2002, 3: 803–812.

    Article  CAS  PubMed  Google Scholar 

  17. Dalva MB, McClelland AC, Kayser MS. Cell adhesion molecules: signalling functions at the synapse. Nat Rev Neurosci 2007, 8: 206–220.

    Article  CAS  PubMed  Google Scholar 

  18. McAllister AK. Dynamic aspects of CNS synapse formation. Annu Rev Neurosci 2007, 30: 425–450.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Shen K, Scheiffele P. Genetics and cell biology of building specific synaptic connectivity. Annu Rev Neurosci 2010, 33: 473–507.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Waites CL, Craig AM, Garner CC. Mechanisms of vertebrate synaptogenesis. Annu Rev Neurosci 2005, 28: 251–274.

    Article  CAS  PubMed  Google Scholar 

  21. Yuste R, Bonhoeffer T. Genesis of dendritic spines: insights from ultrastructural and imaging studies. Nat Rev Neurosci 2004, 5: 24–34.

    Article  CAS  PubMed  Google Scholar 

  22. Bhatt DH, Zhang S, Gan WB. Dendritic spine dynamics. Annu Rev Physiol 2009, 71: 261–282.

    Article  CAS  PubMed  Google Scholar 

  23. Holtmaat A, Svoboda K. Experience-dependent structural synaptic plasticity in the mammalian brain. Nat Rev Neurosci 2009, 10: 647–658.

    Article  CAS  PubMed  Google Scholar 

  24. Tada T, Sheng M. Molecular mechanisms of dendritic spine morphogenesis. Curr Opin Neurobiol 2006, 16: 95–101.

    Article  CAS  PubMed  Google Scholar 

  25. da Silva JS, Dotti CG. Breaking the neuronal sphere: regulation of the actin cytoskeleton in neuritogenesis. Nat Rev Neurosci 2002, 3: 694–704.

    Article  PubMed  Google Scholar 

  26. Flynn KC. The cytoskeleton and neurite initiation. Bioarchitecture 2013, 3: 86–109.

    PubMed  Google Scholar 

  27. Sainath R, Gallo G. Cytoskeletal and signaling mechanisms of neurite formation. Cell Tissue Res 2014.

  28. Zolessi FR, Poggi L, Wilkinson CJ, Chien CB, Harris WA. Polarization and orientation of retinal ganglion cells in vivo. Neural Dev 2006, 1: 2.

    Article  PubMed Central  PubMed  Google Scholar 

  29. Namba T, Kibe Y, Funahashi Y, Nakamuta S, Takano T, Ueno T, et al. Pioneering axons regulate neuronal polarization in the developing cerebral cortex. Neuron 2014, 81: 814–829.

    Article  CAS  PubMed  Google Scholar 

  30. Hatanaka Y, Yamauchi K. Excitatory cortical neurons with multipolar shape establish neuronal polarity by forming a tangentially oriented axon in the intermediate zone. Cereb Cortex 2013, 23: 105–113.

    Article  PubMed  Google Scholar 

  31. Gupton SL, Gertler FB. Filopodia: the fingers that do the walking. Sci STKE 2007, 2007: re5.

  32. Gallo G. Mechanisms underlying the initiation and dynamics of neuronal filopodia: from neurite formation to synaptogenesis. Int Rev Cell Mol Biol 2013, 301: 95–156.

    Article  CAS  PubMed  Google Scholar 

  33. Mattila PK, Lappalainen P. Filopodia: molecular architecture and cellular functions. Nat Rev Mol Cell Biol 2008, 9: 446–454.

    Article  CAS  PubMed  Google Scholar 

  34. Edson K, Weisshaar B, Matus A. Actin depolymerisation induces process formation on MAP2-transfected non-neuronal cells. Development 1993, 117: 689–700.

    CAS  PubMed  Google Scholar 

  35. Caceres A, Mautino J, Kosik KS. Suppression of MAP2 in cultured cerebellar macroneurons inhibits minor neurite formation. Neuron 1992, 9: 607–618.

    Article  CAS  PubMed  Google Scholar 

  36. Smith CL. The initiation of neurite outgrowth by sympathetic neurons grown in vitro does not depend on assembly of microtubules. J Cell Biol 1994, 127: 1407–1418.

    Article  CAS  PubMed  Google Scholar 

  37. Teng J, Takei Y, Harada A, Nakata T, Chen J, Hirokawa N. Synergistic effects of MAP2 and MAP1B knockout in neuronal migration, dendritic outgrowth, and microtubule organization. J Cell Biol 2001, 155: 65–76.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Dehmelt L, Smart FM, Ozer RS, Halpain S. The role of microtubule-associated protein 2c in the reorganization of microtubules and lamellipodia during neurite initiation. J Neurosci 2003, 23: 9479–9490.

    CAS  PubMed  Google Scholar 

  39. Dehmelt L, Halpain S. Actin and microtubules in neurite initiation: are MAPs the missing link? J Neurobiol 2004, 58: 18–33.

    Article  CAS  PubMed  Google Scholar 

  40. Marsh L, Letourneau PC. Growth of neurites without filopodial or lamellipodial activity in the presence of cytochalasin B. J Cell Biol 1984, 99: 2041–2047.

    Article  CAS  PubMed  Google Scholar 

  41. Dent EW, Kwiatkowski AV, Mebane LM, Philippar U, Barzik M, Rubinson DA, et al. Filopodia are required for cortical neurite initiation. Nat Cell Biol 2007, 9: 1347–1359.

    Article  CAS  PubMed  Google Scholar 

  42. Kwiatkowski AV, Rubinson DA, Dent EW, Edward van Veen J, Leslie JD, Zhang J, et al. Ena/VASP Is Required for neuritogenesis in the developing cortex. Neuron 2007, 56: 441–455.

    Article  CAS  PubMed  Google Scholar 

  43. Barzik M, Kotova TI, Higgs HN, Hazelwood L, Hanein D, Gertler FB, et al. Ena/VASP proteins enhance actin polymerization in the presence of barbed end capping proteins. J Biol Chem 2005, 280: 28653–28662.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  44. Bear JE, Svitkina TM, Krause M, Schafer DA, Loureiro JJ, Strasser GA, et al. Antagonism between Ena/VASP proteins and actin filament capping regulates fibroblast motility. Cell 2002, 109: 509–521.

    Article  CAS  PubMed  Google Scholar 

  45. Andrianantoandro E, Pollard TD. Mechanism of actin filament turnover by severing and nucleation at different concentrations of ADF/cofilin. Mol Cell 2006, 24: 13–23.

    Article  CAS  PubMed  Google Scholar 

  46. Bernstein BW, Bamburg JR. ADF/cofilin: a functional node in cell biology. Trends Cell Biol 2010, 20: 187–195.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  47. Flynn KC, Hellal F, Neukirchen D, Jacob S, Tahirovic S, Dupraz S, et al. ADF/cofilin-mediated actin retrograde flow directs neurite formation in the developing brain. Neuron 2012, 76: 1091–1107.

    Article  CAS  PubMed  Google Scholar 

  48. Gartner A, Fornasiero EF, Valtorta F, Dotti CG. Distinct temporal hierarchies in membrane and cytoskeleton dynamics precede the morphological polarization of developing neurons. J Cell Sci 2014, 127: 4409–4419.

    Article  CAS  PubMed  Google Scholar 

  49. Tan ZJ, Peng Y, Song HL, Zheng JJ, Yu X. N-cadherin-dependent neuron-neuron interaction is required for the maintenance of activity-induced dendrite growth. Proc Natl Acad Sci U S A 2010, 107: 9873–9878.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  50. Yu X, Malenka RC. Beta-catenin is critical for dendritic morphogenesis. Nat Neurosci 2003, 6: 1169–1177.

    Article  CAS  PubMed  Google Scholar 

  51. Gallardo G, Schluter OM, Sudhof TC. A molecular pathway of neurodegeneration linking alpha-synuclein to ApoE and Abeta peptides. Nat Neurosci 2008, 11: 301–308.

    Article  CAS  PubMed  Google Scholar 

  52. Edlund M, Lotano MA, Otey CA. Dynamics of alpha-actinin in focal adhesions and stress fibers visualized with alpha-actinin-green fluorescent protein. Cell Motil Cytoskeleton 2001, 48: 190–200.

    Article  CAS  PubMed  Google Scholar 

  53. Rompani SB, Cepko CL. Retinal progenitor cells can produce restricted subsets of horizontal cells. Proc Natl Acad Sci U S A 2008, 105: 192–197.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  54. Zheng JJ, Li SJ, Zhang XD, Miao WY, Zhang D, Yao H, et al. Oxytocin mediates early experience-dependent cross-modal plasticity in the sensory cortices. Nat Neurosci 2014, 17: 391–399.

    Article  CAS  PubMed  Google Scholar 

  55. He S, Ma J, Liu N, Yu X. Early enriched environment promotes neonatal GABAergic neurotransmission and accelerates synapse maturation. J Neurosci 2010, 30: 7910–7916.

    Article  CAS  PubMed  Google Scholar 

  56. Kriegstein AR, Noctor SC. Patterns of neuronal migration in the embryonic cortex. Trends Neurosci 2004, 27: 392–399.

    Article  CAS  PubMed  Google Scholar 

  57. Hayashi K, Kubo K, Kitazawa A, Nakajima K. Cellular dynamics of neuronal migration in the hippocampus. Front Neurosci 2015, 9: 135.

    Article  PubMed Central  PubMed  Google Scholar 

  58. Hirokawa N, Niwa S, Tanaka Y. Molecular motors in neurons: transport mechanisms and roles in brain function, development, and disease. Neuron 2010, 68: 610–638.

    Article  CAS  PubMed  Google Scholar 

  59. Kapitein LC, Hoogenraad CC. Which way to go? Cytoskeletal organization and polarized transport in neurons. Mol Cell Neurosci 2011, 46: 9–20.

    Article  CAS  PubMed  Google Scholar 

  60. Namba T, Nakamuta S, Funahashi Y, Kaibuchi K. The role of selective transport in neuronal polarization. Dev Neurobiol 2011, 71: 445–457.

    Article  CAS  PubMed  Google Scholar 

  61. Kuijpers M, Hoogenraad CC. Centrosomes, microtubules and neuronal development. Mol Cell Neurosci 2011, 48: 349–358.

    Article  CAS  PubMed  Google Scholar 

  62. Xiao S, Jan LY. A gate keeper for axonal transport. Cell 2009, 136: 996–998.

    Article  CAS  PubMed  Google Scholar 

  63. Hirokawa N, Takemura R. Molecular motors in neuronal development, intracellular transport and diseases. Curr Opin Neurobiol 2004, 14: 564–573.

    Article  CAS  PubMed  Google Scholar 

  64. Heckman CA, Plummer HK, 3rd. Filopodia as sensors. Cell Signal 2013, 25: 2298–2311.

    Article  CAS  PubMed  Google Scholar 

  65. Edson K, Weisshaar B, Matus A. Actin Depolymerization Induces Process Formation on Map2-Transfected Nonneuronal Cells. Development 1993, 117: 689–700.

    CAS  PubMed  Google Scholar 

  66. Graziano BR, Weiner OD. Self-organization of protrusions and polarity during eukaryotic chemotaxis. Curr Opin Cell Biol 2014, 30: 60–67.

    Article  CAS  PubMed  Google Scholar 

  67. Rougerie P, Miskolci V, Cox D. Generation of membrane structures during phagocytosis and chemotaxis of macrophages: role and regulation of the actin cytoskeleton. Immunol Rev 2013, 256: 222–239.

    Article  CAS  PubMed  Google Scholar 

  68. Wu D. Signaling mechanisms for regulation of chemotaxis. Cell Res 2005, 15: 52–56.

    Article  CAS  PubMed  Google Scholar 

  69. Polleux F, Morrow T, Ghosh A. Semaphorin 3A is a chemoattractant for cortical apical dendrites. Nature 2000, 404: 567–573.

    Article  CAS  PubMed  Google Scholar 

  70. Shelly M, Cancedda L, Heilshorn S, Sumbre G, Poo MM. LKB1/STRAD promotes axon initiation during neuronal polarization. Cell 2007, 129: 565–577.

    Article  CAS  PubMed  Google Scholar 

  71. McAllister AK, Katz LC, Lo DC. Opposing roles for endogenous BDNF and NT-3 in regulating cortical dendritic growth. Neuron 1997, 18: 767–778.

    Article  CAS  PubMed  Google Scholar 

  72. Gartner A, Fornasiero EF, Munck S, Vennekens K, Seuntjens E, Huttner WB, et al. N-cadherin specifies first asymmetry in developing neurons. EMBO J 2012, 31: 1893–1903.

    Article  PubMed Central  PubMed  Google Scholar 

  73. Janmey PA, Lindberg U. Cytoskeletal regulation: rich in lipids. Nat Rev Mol Cell Biol 2004, 5: 658–666.

    Article  CAS  PubMed  Google Scholar 

  74. Saarikangas J, Zhao H, Lappalainen P. Regulation of the actin cytoskeleton-plasma membrane interplay by phosphoinositides. Physiol Rev 2010, 90: 259–289.

    Article  CAS  PubMed  Google Scholar 

  75. Shi SH, Jan LY, Jan YN. Hippocampal neuronal polarity specified by spatially localized mPar3/mPar6 and PI 3-kinase activity. Cell 2003, 112: 63–75.

    Article  CAS  PubMed  Google Scholar 

  76. Jiang H, Guo W, Liang X, Rao Y. Both the establishment and the maintenance of neuronal polarity require active mechanisms: critical roles of GSK-3beta and its upstream regulators. Cell 2005, 120: 123–135.

    CAS  PubMed  Google Scholar 

  77. Ketschek A, Gallo G. Nerve growth factor induces axonal filopodia through localized microdomains of phosphoinositide 3-kinase activity that drive the formation of cytoskeletal precursors to filopodia. J Neurosci 2010, 30: 12185–12197.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  78. Kim H, Binder LI, Rosenbaum JL. The periodic association of MAP2 with brain microtubules in vitro. J Cell Biol 1979, 80: 266–276.

    Article  CAS  PubMed  Google Scholar 

  79. Schaefer AW, Kabir N, Forscher P. Filopodia and actin arcs guide the assembly and transport of two populations of microtubules with unique dynamic parameters in neuronal growth cones. J Cell Biol 2002, 158: 139–152.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  80. Geraldo S, Khanzada UK, Parsons M, Chilton JK, Gordon-Weeks PR. Targeting of the F-actin-binding protein drebrin by the microtubule plus-tip protein EB3 is required for neuritogenesis. Nat Cell Biol 2008, 10: 1181–1189.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Yuan Lu, Zong-Fang Wan, and Shun-Ji He for excellent technical assistance. We thank the ION Optical Imaging Core Facility for technical support, and the IOBS-Nikon Biological Imaging Center for use of the N-SIM microscope. We are grateful to colleagues at ION and members of the Yu laboratory for suggestions and comments. This work was supported by grants from the National Natural Science Foundation of China (31125015 and 31321091).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiang Yu.

Additional information

Shu-Xin Zhang and Li-Hui Duan have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, SX., Duan, LH., Qian, H. et al. Actin Aggregations Mark the Sites of Neurite Initiation. Neurosci. Bull. 32, 1–15 (2016). https://doi.org/10.1007/s12264-016-0012-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12264-016-0012-2

Keywords

Navigation