Skip to main content
Log in

Role of miRNAs in hypoxia-related disorders

  • Mini-Review
  • Published:
Journal of Biosciences Aims and scope Submit manuscript

Abstract

Hypoxia is a complex pathophysiological condition. The physiological and molecular responses to this stress have been extensively studied. However, the management of its ill effects still poses a challenge to clinicians. MicroRNAs (miRNAs) are short non-coding RNA molecules that control post-transcriptional gene expression. The regulatory role of miRNAs in hypoxic environments has been studied in many hypoxia-related disorders, however a comprehensive compilation and analysis of all data and the significance of miRNAs in hypoxia adaption is still lacking. This review summarizes the miRNAs related to various hypoxia-related disorders and highlights the computational approaches to study them. This would help in designing novel strategies toward efficient management of hypoxia-related disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  • Acunzo M, Romano G, Wernicke D and Croce CM 2015 MicroRNA and cancer – a brief overview. Adv. Biol. Regul. 57 1–9

    Article  PubMed  CAS  Google Scholar 

  • Alam P, Saini N and Pasha MA 2015 MicroRNAs: an apparent switch for high-altitude pulmonary edema. Microrna 4 158–167

    Article  PubMed  CAS  Google Scholar 

  • Azzouzi HE, Leptidis S, Doevendans PA and De Windt LJ 2015 HypoxamiRs: regulators of cardiac hypoxia and energy metabolism. Trends Endocrinol. Metab. 26 502–508

    Article  PubMed  CAS  Google Scholar 

  • Berra E, Pages G and Pouyssegur J 2000 MAP kinases and hypoxia in the control of VEGF expression. Cancer Metastasis Rev. 19 139–145

    Article  PubMed  CAS  Google Scholar 

  • Boettger T and Braun T 2012 A new level of complexity: the role of microRNAs in cardiovascular development. Circ. Res. 110 1000–1013

    Article  PubMed  CAS  Google Scholar 

  • Brown JM 2007 Tumor hypoxia in cancer therapy. Methods Enzymol. 435 297–321

    PubMed  CAS  Google Scholar 

  • Bruning U, Cerone L, Neufeld Z, Fitzpatrick SF, Cheong A, Scholz CC, Simpson DA, Leonard MO, Tambuwala MM, Cummins EP and Taylor CT 2011 MicroRNA-155 promotes resolution of hypoxia-inducible factor 1alpha activity during prolonged hypoxia. Mol. Cell. Biol. 31 4087–4096

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Buroker NE 2013 Circulating miRNAs from dried blood spots are associated with high altitude sickness. J. Med. Diagn. Meth. 2 1–7

    Google Scholar 

  • Camps C, Buffa FM, Colella S, Moore J, Sotiriou C, Sheldon H, Harris AL, Gleadle JM and Ragoussis J 2008 hsa-miR-210 is induced by hypoxia and is an independent prognostic factor in breast cancer. Clin. Cancer Res. 14 1340–1348

    Article  PubMed  CAS  Google Scholar 

  • Chan YC, Khanna S, Roy S and Sen CK 2011 miR-200b targets Ets-1 and is down-regulated by hypoxia to induce angiogenic response of endothelial cells. J. Biol. Chem. 286 2047–2056

    Article  PubMed  CAS  Google Scholar 

  • Chen J and Wang DZ 2012 microRNAs in cardiovascular development. J. Mol. Cell. Cardiol. 52 949–957

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cheng C, Wang Q, You W, Chen M and Xia J 2014 MiRNAs as biomarkers of myocardial infarction: a meta-analysis. PLoS One 9 e88566

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chistiakov DA, Orekhov AN and Bobryshev YV 2016. The role of miR-126 in embryonic angiogenesis, adult vascular homeostasis, and vascular repair and its alterations in atherosclerotic disease. J. Mol. Cell Cardiol. 97 47–55

    Article  PubMed  CAS  Google Scholar 

  • Choudhry H, Harris AL and McIntyre A 2016 The tumour hypoxia induced non-coding transcriptome. Mol. Aspects Med. 47-48 35–53

    Article  PubMed  CAS  Google Scholar 

  • Crosby ME, Kulshreshtha R, Ivan M and Glazer PM 2009 MicroRNA regulation of DNA repair gene expression in hypoxic stress. Cancer Res. 69 1221–1229

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Crystal RG 2001 Research opportunities and advances in lung disease. JAMA 285 612–618

    Article  PubMed  CAS  Google Scholar 

  • El Baroudi M, Cora D, Bosia C, Osella M and Caselle M 2011 A curated database of miRNA mediated feed-forward loops involving MYC as master regulator. PLoS One 6 e14742

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Felekkis K, Touvana E, Stefanou C and Deltas C 2010 microRNAs: a newly described class of encoded molecules that play a role in health and disease. Hippokratia 14 236–240

    PubMed  PubMed Central  CAS  Google Scholar 

  • Ferrara N 2002 VEGF and the quest for tumour angiogenesis factors. Nat. Rev. Cancer 2 795–803

    Article  PubMed  CAS  Google Scholar 

  • Fuziwara CS and Kimura ET 2015 Insights into regulation of the miR-17-92 cluster of miRNAs in cancer. Front Med (Lausanne) 2 64

    Google Scholar 

  • Ge RL, Simonson TS, Cooksey RC, Tanna U, Qin G, Huff CD, Witherspoon DJ, Xing J, Zhengzhong B, Prchal JT, Jorde LB and McClain DA 2012 Metabolic insight into mechanisms of high-altitude adaptation in Tibetans. Mol. Genet. Metab. 106 244–247

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gee HE, Ivan C, Calin GA and Ivan M 2014 HypoxamiRs and cancer: from biology to targeted therapy. Antioxid. Redox Signaling 21 1220–1238

    Article  CAS  Google Scholar 

  • Gluck AA, Aebersold DM, Zimmer Y and Medova M 2015 Interplay between receptor tyrosine kinases and hypoxia signaling in cancer. Int. J. Biochem. Cell Biol. 62 101–114

    Article  PubMed  CAS  Google Scholar 

  • Greco S, Zaccagnini G, Voellenkle C and Martelli F 2016 microRNAs in ischaemic cardiovascular diseases. Eur. Heart J. Suppl. 18 E31–E36

    Article  PubMed  CAS  Google Scholar 

  • Greijer AE and van der Wall E 2004 The role of hypoxia inducible factor 1 (HIF-1) in hypoxia induced apoptosis. J. Clin. Pathol. 57 1009–1014

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gulyaeva LF and Kushlinskiy NE 2016 Regulatory mechanisms of microRNA expression. J. Transl. Med. 14 143

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gupta MK, Halley C, Duan ZH, Lappe J, Viterna J, Jana S, Augoff K, Mohan ML, Vasudevan NT, Na J, Sossey-Alaoui K, Liu X, Liu CG, Tang WH and Naga Prasad SV 2013 miRNA-548c: a specific signature in circulating PBMCs from dilated cardiomyopathy patients. J. Mol. Cell Cardiol. 62 131–141

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hayes J, Peruzzi PP and Lawler S 2014 MicroRNAs in cancer: biomarkers, functions and therapy. Trends Mol. Med. 20 460–469

    Article  PubMed  CAS  Google Scholar 

  • Huang X, Ding L, Bennewith KL, Tong RT, Welford SM, Ang KK, Story M, Le QT and Giaccia AJ 2009 Hypoxia-inducible mir-210 regulates normoxic gene expression involved in tumor initiation. Mol. Cell 35 856–867

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Huang X, Le QT and Giaccia AJ 2010 MiR-210–micromanager of the hypoxia pathway. Trends Mol. Med. 16 230–237

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hubbi ME and Semenza GL 2015 Regulation of cell proliferation by hypoxia-inducible factors. Am. J. Physiol. Cell Physiol. 309 C775–C782

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Huerta-Sanchez E, Degiorgio M, Pagani L, Tarekegn A, Ekong R, Antao T, Cardona A, Montgomery HE, Cavalleri GL, Robbins PA, Weale ME, Bradman N, Bekele E, Kivisild T, Tyler-Smith C and Nielsen R 2013 Genetic signatures reveal high-altitude adaptation in a set of Ethiopian populations. Mol. Biol. Evol. 30 1877–1888

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Khorshidi A, Dhaliwal P and Yang BB 2016 Noncoding RNAs in tumor angiogenesis. Adv. Exp. Med. Biol. 927 217–241

    Article  PubMed  CAS  Google Scholar 

  • Khurana P, Sugadev R, Jain J and Singh SB 2013 HypoxiaDB: a database of hypoxia-regulated proteins. Database (Oxford) 2013 bat074

  • Khurana P, Sugadev R, Sarkar S and Singh S 2016a A network-based analysis of proteins involved in hypoxia stress and identification of leader proteins. J. Proteomics Enzymol. 5 1–8

    Article  CAS  Google Scholar 

  • Khurana P, Tiwari D, Sugadev R, Sarkar S and Singh SB 2016b A comprehensive assessment of networks and pathways of hypoxia-associated proteins and identification of responsive protein modules. Netw. Model. Anal. Health Inform. Bioinform. 5 17

    Article  Google Scholar 

  • Koh MY and Powis G 2012 Passing the baton: the HIF switch. Trends Biochem. Sci. 37 364–372

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kulshreshtha R, Ferracin M, Wojcik SE, Garzon R, Alder H, Agosto-Perez FJ, Davuluri R, Liu CG, Croce CM, Negrini M, Calin GA and Ivan M 2007 A microRNA signature of hypoxia. Mol. Cell Biol. 27 1859–1867

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lei Z, Li B, Yang Z, Fang H, Zhang GM, Feng ZH and Huang B 2009 Regulation of HIF-1alpha and VEGF by miR-20b tunes tumor cells to adapt to the alteration of oxygen concentration. PLoS One 4 e7629

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li X, Gao L, Cui Q, Gary BD, Dyess DL, Taylor W, Shevde LA, Samant RS, Dean-Colomb W, Piazza GA and Xi Y 2012b Sulindac inhibits tumor cell invasion by suppressing NF-kappaB-mediated transcription of microRNAs. Oncogene 31 4979–4986

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li T, Li RS, Li YH, Zhong S, Chen YY, Zhang CM, Hu MM and Shen ZJ 2012a miR-21 as an independent biochemical recurrence predictor and potential therapeutic target for prostate cancer. J. Urol. 187 1466–1472

    Article  PubMed  CAS  Google Scholar 

  • Liu B, Huang H, Wang SX, Wu G, Xu G, Sun BD, Zhang EL and Gao YQ 2016 Physiological adjustments and circulating MicroRNA reprogramming are involved in early acclimatization to high altitude in Chinese Han males. Front. Physiol. 7 601

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu S, Song N, He J, Yu X, Guo J, Jiao X, Ding X and Teng J 2017 Effect of hypoxia on the differentiation and the self-renewal of metanephrogenic mesenchymal stem cells. Stem Cells Int. 2017 7168687

    PubMed  PubMed Central  Google Scholar 

  • Ma L 2010 Role of miR-10b in breast cancer metastasis. Breast Cancer Res. 12 210

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mattiske S, Suetani RJ, Neilsen PM and Callen DF 2012 The oncogenic role of miR-155 in breast cancer. Cancer Epidemiol., Biomarkers Prev. 21 1236–1243

    Article  CAS  Google Scholar 

  • McCormick R, Buffa FM, Ragoussis J and Harris AL 2010 The role of hypoxia regulated microRNAs in cancer. Curr. Top. Microbiol. Immunol. 345 47–70

    PubMed  CAS  Google Scholar 

  • Mehta SR, Chawla A and Kashyap AS 2008 Acute mountain sickness, high altitude cerebral oedema, high altitude pulmonary oedema: the current concepts. Med. J. Armed Forces India 64 149–153

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Noman MZ, Janji B, Berchem G and Chouaib S 2016 miR-210 and hypoxic microvesicles: two critical components of hypoxia involved in the regulation of killer cells function. Cancer Lett. 380 257–262

    Article  PubMed  CAS  Google Scholar 

  • Nouraee N and Mowla SJ 2015 miRNA therapeutics in cardiovascular diseases: promises and problems. Front. Genet. 6 232

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Paralikar SJ 2012 High altitude pulmonary edema-clinical features, pathophysiology, prevention and treatment. Indian J. Occup. Environ. Med. 16 59–62

    Article  PubMed  PubMed Central  Google Scholar 

  • Pinti MV, Hathaway QA and Hollander JM 2017 Role of microRNA in metabolic shift during heart failure. Am. J. Physiol. Heart Circ. Physiol. 312 H33–H45

    Article  PubMed  Google Scholar 

  • Pinweha P, Rattanapornsompong K, Charoensawan V and Jitrapakdee S 2016 MicroRNAs and oncogenic transcriptional regulatory networks controlling metabolic reprogramming in cancers. Comput. Struct. Biotechnol. J. 14 223–233

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Poliseno L, Tuccoli A, Mariani L, Evangelista M, Citti L, Woods K, Mercatanti A, Hammond S and Rainaldi G 2006 MicroRNAs modulate the angiogenic properties of HUVECs. Blood 108 3068–3071

    Article  PubMed  CAS  Google Scholar 

  • Roy S and Sen CK 2012 miRNA in wound inflammation and angiogenesis. Microcirculation 19 224–232

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Schuierer S, Tranchevent LC, Dengler U and Moreau Y 2010 Large-scale benchmark of endeavour using MetaCore maps. Bioinformatics 26 1922–1923

    Article  PubMed  CAS  Google Scholar 

  • Sen CK 2011 MicroRNAs as new maestro conducting the expanding symphony orchestra of regenerative and reparative medicine. Physiol. Genomics 43 517–520

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sen CK and Roy S 2012 OxymiRs in cutaneous development, wound repair and regeneration. Semin. Cell Dev. Biol. 23 971–980

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shen G, Li X, Jia YF, Piazza GA and Xi Y 2013 Hypoxia-regulated microRNAs in human cancer. Acta Pharmacol. Sin. 34 336–341

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shilo S, Roy S, Khanna S and Sen CK 2007 MicroRNA in cutaneous wound healing: a new paradigm. DNA Cell Biol. 26 227–237

    Article  PubMed  CAS  Google Scholar 

  • Shilo S, Roy S, Khanna S and Sen CK 2008 Evidence for the involvement of miRNA in redox regulated angiogenic response of human microvascular endothelial cells. Arterioscler Thromb. Vasc. Biol. 28 471–477

    Article  PubMed  CAS  Google Scholar 

  • Simon MC, Liu L, Barnhart BC and Young RM 2008 Hypoxia-induced signaling in the cardiovascular system. Annu. Rev. Physiol. 70 51–71

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Srivastava M, Khurana P and Sugadev R 2012 Lung cancer signature biomarkers: tissue specific semantic similarity based clustering of digital differential display (DDD) data. BMC Res. Notes 5 617

    Article  PubMed  PubMed Central  Google Scholar 

  • Stadelmann WK, Digenis AG and Tobin GR 1998 Physiology and healing dynamics of chronic cutaneous wounds. Am. J. Surg. 176 26S–38S

    Article  PubMed  CAS  Google Scholar 

  • Storz JF and Moriyama H 2008 Mechanisms of hemoglobin adaptation to high altitude hypoxia. High Alt. Med. Biol. 9 148–157

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Suarez Y, Fernandez-Hernando C, Yu J, Gerber SA, Harrison KD, Pober JS, Iruela-Arispe ML, Merkenschlager M and Sessa WC 2008 Dicer-dependent endothelial microRNAs are necessary for postnatal angiogenesis. Proc. Natl. Acad. Sci. U S A 105 14082–14087

  • Taylor CT and Cummins EP 2009 The role of NF-kappaB in hypoxia-induced gene expression. Ann. N Y Acad. Sci. 1177 178–184

    Article  PubMed  CAS  Google Scholar 

  • Tili E, Croce CM and Michaille JJ 2009 miR-155: on the crosstalk between inflammation and cancer. Int. Rev. Immunol. 28 264–284

    Article  PubMed  CAS  Google Scholar 

  • Vickers KC, Rye KA and Tabet F 2014 MicroRNAs in the onset and development of cardiovascular disease. Clin. Sci. (Lond.) 126 183–194

    Article  CAS  Google Scholar 

  • Wang J, Lu M, Qiu C and Cui Q 2010 TransmiR: a transcription factor-microRNA regulation database. Nucleic Acids Res. 38 D119–D122

  • Wong LL, Wang J, Liew OW, Richards AM and Chen YT 2016 MicroRNA and heart failure. Int. J. Mol. Sci. 17 502

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yan Y, Shi Y, Wang C, Guo P, Wang J, Zhang CY and Zhang C 2015 Influence of a high-altitude hypoxic environment on human plasma microRNA profiles. Sci. Rep. 5 15156

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yan Y, Wang C, Zhou W, Shi Y, Guo P, Liu Y, Wang J, Zhang CY and Zhang C 2016 Elevation of circulating miR-210-3p in high-altitude hypoxic environment. Front. Physiol. 7 84

    PubMed  PubMed Central  Google Scholar 

  • Yan HL, Xue G, Mei Q, Wang YZ, Ding FX, Liu MF, Lu MH, Tang Y, Yu HY and Sun SH 2009 Repression of the miR-17-92 cluster by p53 has an important function in hypoxia-induced apoptosis. EMBO J. 28 2719–2732

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yu AM, Tian Y, Tu MJ, Ho PY and Jilek JL 2016 MicroRNA pharmacoepigenetics: posttranscriptional regulation mechanisms behind variable drug disposition and strategy to develop more effective therapy. Drug. Metab. Dispos. 44 308–319

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang W, Liu J and Wang G 2014 The role of microRNAs in human breast cancer progression. Tumour Biol. 35 6235–6244

    Article  PubMed  CAS  Google Scholar 

  • Zhang B, Qiangba Y, Shang P, Wang Z, Ma J, Wang L and Zhang H 2015a A comprehensive MicroRNA expression profile related to hypoxia adaptation in the Tibetan pig. PLoS One 10 e0143260

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang G, Shi H, Wang L, Zhou M, Wang Z, Liu X, Cheng L, Li W and Li X 2015b MicroRNA and transcription factor mediated regulatory network analysis reveals critical regulators and regulatory modules in myocardial infarction. PLoS One 10 e0135339

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang G, Xu Z and Wang N 2017 Network of microRNA, transcription factors, target genes and host genes in human mesothelioma. Exp. Ther. Med. 13 3039–3046

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zheng Q, Chen C, Guan H, Kang W and Yu C 2017 Prognostic role of microRNAs in human gastrointestinal cancer: a systematic review and meta-analysis. Oncotarget 8 46611–46623

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P Khurana.

Additional information

Communicated by Ullas Kolthur-Seetharam.

Corresponding editor: Ullas Kolthur-Seetharam

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gupta, A., Sugadev, R., Sharma, Y.K. et al. Role of miRNAs in hypoxia-related disorders. J Biosci 43, 739–749 (2018). https://doi.org/10.1007/s12038-018-9789-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12038-018-9789-7

Keywords

Navigation