Skip to main content

Advertisement

Log in

GSTM1 Null Genotype and GSTP1 Ile105Val Polymorphism Are Associated with Alzheimer’s Disease: a Meta-Analysis

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Published studies on the associations between glutathione S-transferase (GST) polymorphisms and Alzheimer’s disease reported controversial findings. A meta-analysis of published studies was performed to assess the associations between polymorphisms of GSTM1, GSTT1 and GSTP1, and Alzheimer’s disease. PubMed, Embase, and other databases were searched for case-control on the associations between polymorphisms of GSTM1, GSTT1 and GSTP1, and Alzheimer’s disease. The odds ratio (OR) and 95 % confidence interval (95 % CI) were used to assess the associations. Eleven articles were finally included into the meta-analysis, including eight studies on GSTM1 null genotype, six studies on GSTT1 null genotype, and six studies on GSTP1 Ile105Val polymorphism. Overall, GSTM1 null genotype was associated with increased risk of Alzheimer’s disease (fixed effect OR = 1.34, 95 % CI 1.10–1.64, P = 0.004). GSTT1 null genotype was not associated with risk of Alzheimer’s disease (random effect OR = 1.15, 95 % CI 0.68–1.92, P = 0.60). Besides, GSTP1 Ile105Val polymorphism was significantly associated with increased risk of Alzheimer’s disease (Val vs Ile: OR = 1.45, 95 % CI 1.05–1.99, P = 0.023; ValVal vs IleIle: OR = 1.87, 95 % CI 1.30–2.69, P = 0.001; ValVal vs IleIle + IleVal: OR = 1.76, 95 % CI 1.24–2.51, P = 0.002). No obvious risk of publication bias was observed in the meta-analysis. GSTM1 null genotype and GSTP1 Ile105Val polymorphism are associated with increased risk of Alzheimer’s disease. More studies with large sample size are needed to validate the findings in the meta-analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Ballard C, Gauthier S, Corbett A, Brayne C, Aarsland D, Jones E (2011) Alzheimer’s disease. Lancet 377(9770):1019–1031

    Article  PubMed  Google Scholar 

  2. Weiner MW (2013) Dementia in 2012: further insights into Alzheimer disease pathogenesis. Nat Rev Neurol 9(2):65–66

    Article  PubMed  Google Scholar 

  3. Chan KY, Wang W, Wu JJ, Liu L, Theodoratou E, Car J, Middleton L, Russ TC, Deary IJ, Campbell H, Rudan I (2013) Epidemiology of Alzheimer’s disease and other forms of dementia in China, 1990-2010: a systematic review and analysis. Lancet 381(9882):2016–2023

    Article  PubMed  Google Scholar 

  4. Zlokovic BV (2011) Neurovascular pathways to neurodegeneration in Alzheimer’s disease and other disorders. Nat Rev Neurosci 12(12):723–738

    PubMed Central  CAS  PubMed  Google Scholar 

  5. Huang Y, Mucke L (2012) Alzheimer mechanisms and therapeutic strategies. Cell 148(6):1204–1222

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Krstic D, Knuesel I (2013) Deciphering the mechanism underlying late-onset Alzheimer disease. Nat Rev Neurol 9(1):25–34

    Article  CAS  PubMed  Google Scholar 

  7. Bettens K, Sleegers K, Van Broeckhoven C (2013) Genetic insights in Alzheimer’s disease. Lancet Neurol 12(1):92–104

    Article  CAS  PubMed  Google Scholar 

  8. Ketterer B (1998) Glutathione S-transferases and prevention of cellular free radical damage. Free Radic Res 28(6):647–658

    Article  CAS  PubMed  Google Scholar 

  9. Ouaissi A, Ouaissi M, Sereno D (2002) Glutathione S-transferases and related proteins from pathogenic human parasites behave as immunomodulatory factors. Immunol Lett 81(3):159–164

    Article  CAS  PubMed  Google Scholar 

  10. Sharma R, Yang Y, Sharma A, Awasthi S, Awasthi YC (2004) Antioxidant role of glutathione S-transferases: protection against oxidant toxicity and regulation of stress-mediated apoptosis. Antioxid Redox Signal 6(2):289–300

    Article  CAS  PubMed  Google Scholar 

  11. Coles BF, Kadlubar FF (2005) Human alpha class glutathione S-transferases: genetic polymorphism, expression, and susceptibility to disease. Methods Enzymol 401:9–42

    Article  CAS  PubMed  Google Scholar 

  12. Mahajan S, Atkins WM (2005) The chemistry and biology of inhibitors and pro-drugs targeted to glutathione S-transferases. Cell Mol Life Sci 62(11):1221–1233

    Article  CAS  PubMed  Google Scholar 

  13. Bolt HM, Thier R (2006) Relevance of the deletion polymorphisms of the glutathione S-transferases GSTT1 and GSTM1 in pharmacology and toxicology. Curr Drug Metab 7(6):613–628

    Article  CAS  PubMed  Google Scholar 

  14. Lo HW, Ali-Osman F (2007) Genetic polymorphism and function of glutathione S-transferases in tumor drug resistance. Curr Opin Pharmacol 7(4):367–374

    Article  CAS  PubMed  Google Scholar 

  15. Green VJ, Pirmohamed M, Kitteringham NR, Knapp MJ, Park BK (1995) Glutathione S-transferase mu genotype (GSTM1*0) in Alzheimer’s patients with tacrine transaminitis. Br J Clin Pharmacol 39(4):411–415

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Nicholl DJ, Bennett P, Hiller L, Bonifati V, Vanacore N, Fabbrini G, Marconi R, Colosimo C, Lamberti P, Stocchi F, Bonuccelli U, Vieregge P, Ramsden DB, Meco G, Williams AC (1999) A study of five candidate genes in Parkinson’s disease and related neurodegenerative disorders. European Study Group on Atypical Parkinsonism. Neurology 53(7):1415–1421

    Article  CAS  PubMed  Google Scholar 

  17. Zuntar I, Kalanj-Bognar S, Topic E, Petlevski R, Stefanovic M, Demarin V (2004) The glutathione S-transferase polymorphisms in a control population and in Alzheimer’s disease patients. Clin Chem Lab Med 42(3):334–339

    Article  CAS  PubMed  Google Scholar 

  18. Bernardini S, Bellincampi L, Ballerini S, Federici G, Iori R, Trequattrini A, Ciappi F, Baldinetti F, Bossu P, Caltagirone C, Spalletta G (2005) Glutathione S-transferase P1 *C allelic variant increases susceptibility for late-onset Alzheimer disease: association study and relationship with apolipoprotein E epsilon4 allele. Clin Chem 51(6):944–951

    Article  CAS  PubMed  Google Scholar 

  19. Spalletta G, Bernardini S, Bellincampi L, Federici G, Trequattrini A, Ciappi F, Bria P, Caltagirone C, Bossu P (2007) Glutathione S-transferase P1 and T1 gene polymorphisms predict longitudinal course and age at onset of Alzheimer disease. Am J Geriatr Psychiatr 15(10):879–887

    Article  Google Scholar 

  20. Li K, Liu Z, Wu D, Gao Y, Liu Y (2009) ssociations between Glutathione-S transferases P1 polymorphism and Alzheimer’s disease. Guangdong Med J 30(3):417–419

    CAS  Google Scholar 

  21. Piacentini S, Polimanti R, Squitti R, Ventriglia M, Cassetta E, Vernieri F, Rossini PM, Manfellotto D, Fuciarelli M (2012) GSTM1 null genotype as risk factor for late-onset Alzheimer’s disease in Italian patients. J Neurol Sci 317(1–2):137–140

    Article  CAS  PubMed  Google Scholar 

  22. Singh NK, Banerjee BD, Bala K, Basu M, Chhillar N (2014) Polymorphism in cytochrome P450 2D6, glutathione S-transferases Pi 1 genes, and organochlorine pesticides in Alzheimer disease: a case-control study in North Indian Population. J Geriatr Psychiatry Neurol 27(2):119–127

    Article  CAS  PubMed  Google Scholar 

  23. Cochran WG (1954) The combination of estimates from different experiments. Biometrics 10(1):101–129

    Article  Google Scholar 

  24. Higgins JP, Thompson SG, Deeks JJ, Altman DG (2003) Measuring inconsistency in meta-analyses. BMJ 327(7414):557–560

    Article  PubMed Central  PubMed  Google Scholar 

  25. DerSimonian R, Laird N (1986) Meta-analysis in clinical trials. Control Clin Trials 7(3):177–188

    Article  CAS  PubMed  Google Scholar 

  26. Mantel N, Haenszel W (1959) Statistical aspects of the analysis of data from retrospective studies of disease. J Natl Cancer Inst 22(4):719–748

    CAS  PubMed  Google Scholar 

  27. Egger M, Davey Smith G, Schneider M, Minder C (1997) Bias in meta-analysis detected by a simple, graphical test. BMJ 315(7109):629–634

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Stroombergen MC, Waring RH (1999) Determination of glutathione S-transferase mu and theta polymorphisms in neurological disease. Hum Exp Toxicol 18(3):141–145

    Article  CAS  PubMed  Google Scholar 

  29. Pinhel MA, Nakazone MA, Cacao JC, Piteri RC, Dantas RT, Godoy MF, Godoy MR, Tognola WA, Conforti-Froes ND, Souza D (2008) Glutathione S-transferase variants increase susceptibility for late-onset Alzheimer’s disease: association study and relationship with apolipoprotein E epsilon4 allele. Clin Chem Lab Med 46(4):439–445

    Article  CAS  PubMed  Google Scholar 

  30. Ghosh T, Mustafa M, Kumar V, Datta SK, Bhatia MS, Sircar S, Banerjee BD (2012) A preliminary study on the influence of glutathione S transferase T1 (GSTT1) as a risk factor for late onset Alzheimer’s disease in North Indian population. Asian J Psychiatr 5(2):160–163

    Article  PubMed  Google Scholar 

  31. Swaminathan S, Shen L, Kim S, Inlow M, West JD, Faber KM, Foroud T, Mayeux R, Saykin AJ (2012) Analysis of copy number variation in Alzheimer’s disease: the NIALOAD/NCRAD Family Study. Curr Alzheimer Res 9(7):801–814

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. de Mendonca E, Salazar Alcala E, Fernandez-Mestre M (2014) Role of genes GSTM1, GSTT1, and MnSOD in the development of late-onset Alzheimer disease and their relationship with APOE*4. Neurologia. [Epub ahead of print]

  33. Tuligenga RH, Dugravot A, Tabák AG, Elbaz A, Brunner EJ, Kivimäki M, Singh-Manoux A (2014) Midlife type 2 diabetes and poor glycaemic control as risk factors for cognitive decline in early old age: a post-hoc analysis of the Whitehall II cohort study. Lancet Diabetes Endocrinol 2(3):228–235

    Article  PubMed Central  PubMed  Google Scholar 

  34. Biessels GJ, Strachan MW, Visseren FL, Kappelle LJ, Whitmer RA (2014) Dementia and cognitive decline in type 2 diabetes and prediabetic stages: towards targeted interventions. Lancet Diabetes Endocrinol 2(3):246–255

    Article  PubMed  Google Scholar 

  35. Exalto LG, Biessels GJ, Karter AJ, Huang ES, Katon WJ, Minkoff JR, Whitmer RA (2013) Risk score for prediction of 10 year dementia risk in individuals with type 2 diabetes: a cohort study.Lancet. Diabetes Endocrinol 1(3):183–190

    Article  Google Scholar 

  36. Cunningham RL, Singh M, O’Bryant SE, Hall JR, Barber RC (2014) Oxidative stress, testosterone, and cognition among Caucasian and Mexican-American men with and without Alzheimer's disease. J Alzheimers Dis 40(3):563–573

    PubMed Central  CAS  PubMed  Google Scholar 

  37. Torres LL, Quaglio NB, de Souza GT, Garcia RT, Dati LM, Moreira WL, Loureiro AP, de Souza-Talarico JN, Smid J, Porto CS, Bottino CM, Nitrini R, Barros SB, Camarini R, Marcourakis T (2011) Peripheral oxidative stress biomarkers in mild cognitive impairment and Alzheimer’s disease. J Alzheimers Dis 26(1):59–68

    CAS  PubMed  Google Scholar 

Download references

Conflict of Interest

No competing interests existed.

Funding

There was no funding support in the study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guijun Song.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, M., Li, Y., Lin, L. et al. GSTM1 Null Genotype and GSTP1 Ile105Val Polymorphism Are Associated with Alzheimer’s Disease: a Meta-Analysis. Mol Neurobiol 53, 1355–1364 (2016). https://doi.org/10.1007/s12035-015-9092-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-015-9092-7

Keywords

Navigation