Skip to main content
Log in

Cellulases and Xylanases Production by Penicillium echinulatum Grown on Sugar Cane Bagasse in Solid-State Fermentation

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

To investigate the production of cellulases and xylanases from Penicillium echinulatum 9A02S1, solid-state fermentation (SSF) was performed by using different ratios of sugar cane bagasse (SCB) and wheat bran (WB). The greatest filter paper activity obtained was 45.82 ± 1.88 U gdm−1 in a culture containing 6SCB/4WB on the third day. The greatest β-glucosidase activities were 40.13 ± 5.10 U gdm−1 obtained on the third day for the 0SCB/10WB culture and 29.17 ± 1.06 U gdm−1 for the 2SCB/8WB culture. For endoglucanase, the greatest activities were 290.47 ± 43.57 and 276.84 ± 15.47 U gdm−1, for the culture 6SCB/4WB on the fourth and fifth days of cultivation, respectively. The greatest xylanase activities were found on the third day for the cultures 6SCB/4WB (36.38 ± 5.38 U gdm−1) and 4SCB/6WB (37.87 ± 2.26 U gdm−1). In conclusion, the results presented in this article showed that it was possible to obtain large amounts of cellulases and xylanases enzymes using low-cost substrates, such as SCB and WB.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Chahal, D. S. (1985). Applied and Environmental Microbiology, 49, 205–210.

    CAS  Google Scholar 

  2. Lonsane, B. K., Saucedo-Castaneda, G., Raimbault, M., Roussos, S., Viniegra-Gonzalez, G., Ghildyal, N. P., et al. (1992). Process Biochemistry, 27, 259–273.

    Article  CAS  Google Scholar 

  3. Viniegra-Gonzáles, G., Favela-Torres, E., Aguilar, C. N., Rómero-Gómez, S. J., Diaz-Godínez, G., & Augur, C. (2003). Biochemical Engineering Journal, 13, 157–167.

    Article  Google Scholar 

  4. Soccol, C., & Vandenberghe, L. (2003). Biochemical Engineering Journal, 13, 205–218.

    Article  CAS  Google Scholar 

  5. Bhat, M. K. (2000). Biotechnology Advances, 18, 355–383.

    Article  CAS  Google Scholar 

  6. Cavaco-Paulo, A. (1998). Carbohydrate Polymers, 37, 273–277.

    Article  CAS  Google Scholar 

  7. Rau, M., Heidemann, C., Pascoalin, A. M., Ximenes Filho, E., Camassola, M., Dillon, A. J. P., et al. (2008). Biocatalysis and Biotransformation, 26, 383–390.

    Article  CAS  Google Scholar 

  8. Mandebvu, P., West, J. W., Froetschel, M. A., Hatfield, R. D., Gates, R. N., & Hill, G. M. (1999). Animal Feed Science and Technology, 77, 317–329.

    Article  CAS  Google Scholar 

  9. Camassola, M., & Dillon, A. J. P. (2007). Journal of Applied Microbiology, 102, 478–485.

    Article  CAS  Google Scholar 

  10. Gusakov, A. V., Berlin, A. G., Popova, N. N., Okunev, O. N., Sinitsyn, A. O., & Sinitsyn, A. P. (2000). Applied Biochemistry and Biotechnology, 88, 119–126.

    Article  CAS  Google Scholar 

  11. Sheehan, J., & Himmel, M. E. (1999). Biotechnology Progress, 15, 817–827.

    Article  CAS  Google Scholar 

  12. Camassola, M., & Dillon, A. J. P. (2009). Industrial Crops and Products, 29, 642–647.

    Article  CAS  Google Scholar 

  13. Rosillo-Calle, F., & Walter, A. (2006). ESD. X, 18–30.

  14. Sun, Y., & Cheng, J. (2002). Bioresource Technology, 83, 1–11.

    Article  CAS  Google Scholar 

  15. Camassola, M., & Dillon, A. J. P. (2007). Journal of Applied Microbiology, 103, 2196–2204.

    Article  CAS  Google Scholar 

  16. Mosier, N., Wyman, C., Dale, B., Elander, R., Lee, Y. Y., Holtzapple, M., et al. (2005). Bioresource Technology, 96, 673–686.

    Article  CAS  Google Scholar 

  17. Dillon, A. J. P., Zorgi, C., Camassola, M., & Henriques, J. A. P. (2006). Applied Microbiology and Biotechnology, 70, 740–746.

    Article  CAS  Google Scholar 

  18. Ghose, T. K. (1987). Pure and Applied Chemistry, 59, 257–268.

    Article  CAS  Google Scholar 

  19. Miller, G. (1959). Analytical Chemistry, 31, 426–428.

    Article  CAS  Google Scholar 

  20. Reissig, J. L., Strominger, J. L., & Leloir, L. F. (1955). The Journal of Biological Chemistry, 27, 959–966.

    Google Scholar 

  21. Bittencourt, L. R., Silveira, M. M., & Dillon, A. J. P. (2002). In: VII Simpósio de Hidrólise Enzimática de Biomassas. Brazil: Resumos, pp. 209.

  22. Papinutti, V. L., & Forchiassin, F. (2007). Journal of Food Engineering, 81, 54–59.

    Article  CAS  Google Scholar 

  23. Jecu, L. (2000). Industrial Crops and Products, 11, 1–5.

    Article  CAS  Google Scholar 

  24. Olsson, L., Christensen, T. M. I. E., Hansen, K. P., & Palmqvist, E. A. (2003). Enzyme and Microbial Technology, 33, 612–619.

    Article  CAS  Google Scholar 

  25. Archana, A., & Satyanarayana, T. (1997). Enzyme and Microbial Technology, 21, 12–17.

    Article  CAS  Google Scholar 

  26. Lequart, C., Nuzillard, J.-M., Kurek, B., & Debeire, P. (1999). Carbohydrate Research, 319, 102–111.

    Article  CAS  Google Scholar 

  27. Mo, H., Zhang, X., & Li, Z. (2004). Process Biochemistry, 39, 1293–1297.

    Article  CAS  Google Scholar 

  28. Badhan, A. K., Chadha, B. S., Kaur, J., Saini, H. S., & Bhat, M. K. (2007). Bioresource Technology, 98, 504–510.

    Article  CAS  Google Scholar 

  29. Ramesh, M. V., & Lonsane, B. K. (1991). Applied Microbiology and Biotechnology, 35, 591–593.

    Article  CAS  Google Scholar 

  30. Souza, D., Souza, C., & Peralta, R. (2001). Process Biochemistry, 36, 835–838.

    Article  Google Scholar 

  31. Babu, K. R., & Satyanarayana, T. (1995). Process Biochemistry, 30, 305–309.

    CAS  Google Scholar 

  32. Kalogeris, E., Christakopoulos, P., Katapodis, P., Alexiou, A., Vlachou, S., Kekos, D., et al. (2003). Process Biochemistry, 38, 1099–1104.

    Article  CAS  Google Scholar 

  33. Camassola, M., Bittencourt, L. R., Shenem, N. T., Andreaus, J., & Dillon, A. J. P. (2004). Biocatalysis and Biotransformation, 22, 391–396.

    Article  CAS  Google Scholar 

  34. Martins, L. F., Kolling, D., Camassola, M., Dillon, A. J. P., & Ramos, L. P. (2008). Bioresource Technology, 99, 1417–1424.

    Article  CAS  Google Scholar 

  35. Botella, C., Diaz, A., de Ory, I., Webb, C., & Blandino, A. (2007). Process Biochemistry, 42, 98–101.

    Article  CAS  Google Scholar 

  36. Blandino, A., Iqbalsyah, T., Pandiella, S. S., Cantero, D., & Webb, C. (2002). Applied Microbiology and Biotechnology, 58, 164–169.

    Article  CAS  Google Scholar 

  37. Mekala, N. K., Singhania, R. R., Sukumaran, R. K., & Pandey, A. (2008). Applied Biochemistry and Biotechnology, 151, 122–131.

    Article  CAS  Google Scholar 

  38. Gutierrez-Correa, M., & Tengerdy, R. P. (1997). Biotechnological Letters, 19, 665–667.

    Article  CAS  Google Scholar 

  39. Gutierrez-Correa, M., & Tengerdy, R. P. (1998). Biotechnological Letters, 19, 45–47.

    Article  Google Scholar 

  40. Shamala, T. R., & Sreekantiah, K. R. (1986). Enzyme and Microbial Technology, 8, 178–182.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marli Camassola.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Camassola, M., Dillon, A.J.P. Cellulases and Xylanases Production by Penicillium echinulatum Grown on Sugar Cane Bagasse in Solid-State Fermentation. Appl Biochem Biotechnol 162, 1889–1900 (2010). https://doi.org/10.1007/s12010-010-8967-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-010-8967-3

Keywords

Navigation