Skip to main content
Log in

Flower colours along an alpine altitude gradient, seen through the eyes of fly and bee pollinators

  • Original Paper
  • Published:
Arthropod-Plant Interactions Aims and scope Submit manuscript

Abstract

Alpine flowers face multiple challenges in terms of abiotic and biotic factors, some of which may result in selection for certain colours at increasing altitude, in particular the changing pollinator species composition, which tends to move from bee-dominated at lower elevations to fly-dominated in high-alpine regions. To evaluate whether growing at altitude—and the associated change in the dominant pollinator groups present—has an effect on the colour of flowers, we analysed data collected from the Dovrefjell National Park in Norway. Unlike previous studies, however, we considered the flower colours according to ecologically relevant models of bee and fly colour vision and also their physical spectral properties independently of any colour vision system, rather than merely looking at human colour categories. The shift from bee to fly pollination with elevation might, according to the pollination syndrome hypothesis, lead to the prediction that flower colours should shift from more bee-blue and UV-blue flowers (blue/violet to humans, i.e. colours traditionally associated with large bee pollinators) at low elevations to more bee-blue-green and green (yellow and white to humans—colours often linked to fly pollination) flowers at higher altitude. However, although there was a slight increase in bee-blue-green flowers and a decrease in bee-blue flowers with increasing elevation, there were no statistically significant effects of altitude on flower colour as seen either by bees or by flies. Although flower colour is known to be constrained by evolutionary history, in this sample we also did not find evidence that phylogeny and elevation interact to determine flower colours in alpine areas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aceto S, Caputo P, Cozzolino S, Gaudio L, Moretti A (1999) Phylogeny and evolution of Orchis and allied genera based on ITS DNA variation: morphological gaps and molecular continuity. Mol Phylogenet Evol 13:67–76. doi:10.1006/mpev.1999.0628

    Article  PubMed  CAS  Google Scholar 

  • Albert VA, Williams SE, Chase MW (1992) Carnivorous plants: phylogeny and structural evolution. Science 257:1491–1495. doi:10.1126/science.1523408

    Article  PubMed  CAS  Google Scholar 

  • Altshuler DL (2003) Flower color, hummingbird pollination, and habitat irradiance in four Neotropical forests. Biotropica 35:344–355

    Google Scholar 

  • Anderberg AA, Stahl B, Källersjö M (1998) Phylogenetic interrelationships in the Primulales inferred from cpDNA rbcL sequence data. Plant Syst Evol 211:93–102. doi:10.1007/BF00984914

    Article  Google Scholar 

  • Antonelli A (2008) Higher level phylogeny and evolutionary trends in Campanulaceae subfam. Lobelioideae: molecular signal overshadows morphology. Mol Phylogenet Evol 46:1–18. doi:10.1016/j.ympev.2007.06.015

    Article  PubMed  CAS  Google Scholar 

  • Arnold SEJ, Savolainen V, Chittka L (2008) FReD: the floral reflectance spectra database. Nat Preced: doi: 10.1038/npre.2008.1846.1031

  • Arroyo MTK, Primack R, Armesto J (1982) Community studies in pollination ecology in the high temperate Andes of central Chile. I. Pollination mechanisms and altitudinal variation. Am J Bot 69:82–97. doi:10.2307/2442833

    Article  Google Scholar 

  • Backlund A, Bremer B (1997) Phylogeny of the Asteridae s.str. based on rbcL sequences with particular reference to the Dipsacales. Plant Syst Evol 207:225–254. doi:10.1007/BF00984390

    Article  Google Scholar 

  • Ben-Tal Y, King RW (1997) Environmental factors involved in colouration of flowers of Kangaroo Paw. Sci Hortic (Amsterdam) 72:35–48. doi:10.1016/S0304-4238(97)00071-X

    Article  Google Scholar 

  • Boeing WJ, Leech DM, Williamson CE, Cooke S, Torres L (2004) Damaging UV radiation and invertebrate predation: conflicting selective pressures for zooplankton vertical distribution in the water column of low DOC lakes. Oecologia 138:603–612. doi:10.1007/s00442-003-1468-0

    Article  PubMed  Google Scholar 

  • Bradshaw HD Jr, Schemske DW (2003) Allele substitution at a flower colour locus produces a pollinator shift in monkey flowers. Nature 426:176–178. doi:10.1038/nature02106

    Article  PubMed  CAS  Google Scholar 

  • Bremer K (2000) Early Cretaceous lineages of monocot flowering plants. Proc Natl Acad Sci USA 97:4707–4711. doi:10.1073/pnas.080421597

    Article  PubMed  CAS  Google Scholar 

  • Briscoe AD (2000) Six opsins from the butterfly Papilio glaucus: molecular phylogenetic evidence for paralogous origins of red-sensitive visual pigments in insects. J Mol Evol 51:110–121

    PubMed  CAS  Google Scholar 

  • Briscoe AD, Bernard GD (2005) Eyeshine and spectral tuning of long wavelength-sensitive rhodopsins: no evidence for red-sensitive photoreceptors among five Nymphaline butterfly species. J Exp Biol 208:687–696. doi:10.1242/jeb.01453

    Article  PubMed  CAS  Google Scholar 

  • Briscoe AD, Chittka L (2001) The evolution of colour vision in insects. Ann Rev Ent 46:471–510. doi:10.1146/annurev.ento.46.1.471

    Article  CAS  Google Scholar 

  • Cameron KM et al (1999) A phylogenetic analysis of the Orchidaceae: evidence from rbcL nucleotide sequences. Am J Bot 86:208–224. doi:10.2307/2656938

    Article  Google Scholar 

  • Chalker-Scott L (1999) Environmental significance of anthocyanins in plant stress responses. Photochem Photobiol 70:1–9. doi:10.1111/j.1751-1097.1999.tb01944.x

    Article  CAS  Google Scholar 

  • Chase MW et al (1993) Phylogenetics of seed plants: An analysis of nucleotide sequences from the plastid gene rbcL. Ann Mo Bot Gard 80:528–548+550–580

    Google Scholar 

  • Chittka L (1992) The color hexagon: a chromaticity diagram based on photoreceptor excitations as a generalized representation of colour opponency. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 170:533–543

    Google Scholar 

  • Chittka L (1997) Bee color vision is optimal for coding flower color, but flower colors are not optimal for being coded—why? Isr J Plant Sci 45:115–127

    Google Scholar 

  • Chittka L, Kevan PG (2005) Flower colour as advertisement. In: Dafni A, Kevan PG, Husband BC (eds) Practical pollination biology. Enviroquest Ltd., Cambridge, ON, Canada, pp 157–196

    Google Scholar 

  • Chittka L, Menzel R (1992) The evolutionary adaptation of flower colors and the insect pollinators’ color vision systems. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 171:171–181

    Google Scholar 

  • Chittka L, Shmida A, Troje N, Menzel R (1994) Ultraviolet as a component of flower reflections, and the colour perception of Hymenoptera. Vision Res 34:1489–1508. doi:10.1016/0042-6989(94)90151-1

    Article  PubMed  CAS  Google Scholar 

  • Chittka L, Thomson JD, Waser NM (1999) Flower constancy, insect psychology, and plant evolution. Naturwiss 86:361–377. doi:10.1007/s001140050636

    Article  CAS  Google Scholar 

  • Chittka L, Spaethe J, Schmidt A, Hickelsberger A (2001) Adaptation, constraint, and chance in the evolution of flower color and pollinator color vision. In: Chittka L, Thomson JD (eds) Cognitive ecology of pollination. Cambridge University Press, Cambridge, pp 106–126

    Google Scholar 

  • Conti E, Soltis DE, Hardig TM, Schneider J (1999) Phylogenetic relationships of the silver saxifrages (Saxifraga, sect. Ligulatae Haworth): implications for the evolution of substrate specificity, life histories, and biogeography. Mol Phylogenet Evol 13:536–555. doi:10.1006/mpev.1999.0673

    Article  PubMed  CAS  Google Scholar 

  • Cummings MP, Nugent JM, Olmstead RG, Palmer JD (2003) Phylogenetic analysis reveals five independent transfers of the chloroplast gene rbcL to the mitochondrial genome in angiosperms. Curr Genet 43:131–138

    PubMed  CAS  Google Scholar 

  • Desfeux C, Maurice S, Henry JP, Lejeune B, Gouyon PH (1996) Evolution of reproductive systems in the genus Silene. Proc R Soc Lond B Biol Sci 263:409–414. doi:10.1098/rspb.1996.0062

    Article  CAS  Google Scholar 

  • Dyer AG, Chittka L (2004) Biological significance of discriminating between similar colours in spectrally variable illumination: bumblebees as a study case. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 190:105–114. doi:10.1007/s00359-003-0475-2

    Article  PubMed  CAS  Google Scholar 

  • Faegri K, van der Pijl L (1978) The principles of pollination ecology. Pergamon Press, Oxford

    Google Scholar 

  • Fineblum WL, Rausher MD (1997) Do floral pigmentation genes also influence resistance to enemies? The W locus in Ipomoea purpurea. Ecology 78:1646–1654

    Google Scholar 

  • Fiz O, Vargas P, Alarcon M, Aedo C, Garcia JL, Aldasoro JJ (2008) Phylogeny and historical biogeography of Geraniaceae in relation to multiple major increases and decreases in mitochondrial climate changes and pollination ecology. Syst Bot 33:326–342. doi:10.1600/036364408784571482

    Article  Google Scholar 

  • Forest F et al (2007) Preserving the evolutionary potential of floras in biodiversity hotspots. Nature 445:757–760. doi:10.1038/nature05587

    Article  PubMed  CAS  Google Scholar 

  • Friedman JW, Shmida A (1995) Pollination, gathering nectar and the distribution of flower species. J Theor Biol 175:127–138. doi:10.1006/jtbi.1995.0125

    Article  Google Scholar 

  • Giurfa M, Núñez J, Chittka L, Menzel R (1995) Colour preferences of flower-naive honeybees. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 177:247–259

    Google Scholar 

  • Gumbert A, Kunze J, Chittka L (1999) Floral colour diversity in plant communities, bee colour space and a null model. Proc R Soc Lond B Biol Sci 266:1711–1716. doi:10.1098/rspb.1999.0836

    Article  Google Scholar 

  • Guo H, et al. (2007) Identification of Radix Astragali by DNA sequence of its ITS, rbcL, matk, cox1, and NAD1-intron2. Direct submission: School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China

  • Hansson LA (2000) Induced pigmentation in zooplankton: a trade-off between threats from predation and ultraviolet radiation. Proc R Soc Lond B Biol Sci 267:2327–2331. doi:10.1098/rspb.2000.1287

    Article  CAS  Google Scholar 

  • Hardie RC, Kirschfeld K (1983) Ultraviolet sensitivity of fly photoreceptors R7 and R8: evidence for a sensitising function. Biophys Struct Mech 9:171–180. doi:10.1007/BF00537814

    Article  Google Scholar 

  • Hosouchi T, Tsuruoka H, Kotani H (2007) Sequencing analysis of Draba nemorosa chloroplast DNA. Direct submission: NCBI Genome Project, National Centre for Biotechnology Information, NIH, Bethesda, MD 20894, USA

  • Inamura A, Ohashi Y, Sato E, Yoda Y, Masuzawa T, Yoshinaga K (1998) Intraspecific sequence variation of chloroplast DNA and a molecular phytogeographic study of Polygonum cuspidatum. Direct submission: Shizuoka University, Faculty of Science, Oya 836, Shizuoka 422–8529, Japan

  • Johnson ET, Berhow MA, Dowd PF (2008) Colored and white sectors from star-patterned Petunia flowers display differential resistance to corn earworm and cabbage looper. J Chem Ecol 34:757–765. doi:10.1007/s10886-008-9444-0

    Article  PubMed  CAS  Google Scholar 

  • Jung YH, Han SH, Oh YS, Oh MY (2001). Direct submission: Department of Biology, College of Natural Sciences, Cheju National University, 1 Ara-Dong, Jeju 690–756, Korea

  • Kalisz S, Kramer EM (2008) Variation and constraint in plant evolution and development. Heredity 100:171–177. doi:10.1038/sj.hdy.6800939

    Article  PubMed  CAS  Google Scholar 

  • Kearns CA (1992) Anthophilous fly distribution across an elevation gradient. Am Midl Nat 127:172–182. doi:10.2307/2426332

    Article  Google Scholar 

  • Kevan PG (1972) Floral colors in the high arctic with reference to insect-flower relations and pollination. Can J Bot 28:2289–2316. doi:10.1139/b72-298

    Article  Google Scholar 

  • Kevan PG, Baker HG (1983) Insects as flower visitors and pollinators. Ann Rev Ent 28:407–453. doi:10.1146/annurev.en.28.010183.002203

    Article  Google Scholar 

  • Kevan PG, Giurfa M, Chittka L (1996) Why are there so many and so few white flowers? Trends Plant Sci 1:280–284. doi:10.1016/1360-1385(96)20008-1

    Article  Google Scholar 

  • Kim KJ, Jansen RK (1995) ndhF sequence evolution and the major clades in the sunflower family. Proc Natl Acad Sci USA 92:10379–10383. doi:10.1073/pnas.92.22.10379

    Article  PubMed  CAS  Google Scholar 

  • Kondo K, Terabayashi S, Okada M, Yuan C, He S (1996) Phylogenetic relationship of medicinally important Cnidium offcinale and Japanese Apiaceae besed on rbcL sequences. J Plant Res 109:21–27. doi:10.1007/BF02344283

    Article  CAS  Google Scholar 

  • Kron KA (2001). Direct submission: Wake Forest University, Winston-Salem, NC 27109–7325, USA

  • Kron KA, Chase MW (1993) Systematics of the Ericaceae, Empetraceae, Epacridaceae and related taxa based upon rbcL sequence data. Ann Mo Bot Gard 80:735–741. doi:10.2307/2399857

    Article  Google Scholar 

  • Kron KA, King JM (1996) Cladistic relationships of Kalmia, Leiophyllum and Loiseleuria (Phyllodoceae, Ericaceae) based on rbcL and nrITS data. Syst Bot 21:17–29. doi:10.2307/2419560

    Article  Google Scholar 

  • Kron KA, Judd WS, Crayn DM (1999) Phylogenetic analyses of Andromedeae (Ericaceae subfam. Vaccinioideae). Am J Bot 86:1290–1300. doi:10.2307/2656777

    Article  PubMed  Google Scholar 

  • Lázaro A, Hegland SJ, Totland Ø (2008) The relationships between floral traits and specificity of pollination systems in three Scandinavian plant communities. Oecologia 157:249–257. doi:10.1007/s00442-008-1066-2

    Article  PubMed  Google Scholar 

  • Levin RA et al (2003) Family-level relationships of Onagraceae based on chloroplast rbcL and ndhF data. Am J Bot 90:107–115. doi:10.3732/ajb.90.1.107

    Article  CAS  Google Scholar 

  • Li M et al (2008) Development of COS genes as universally amplifiable markers for phylogenetic reconstructions of closely related plant species. Cladistics 24:727–745. doi:10.1111/j.1096-0031.2008.00207.x

    Article  Google Scholar 

  • Lid J, Lid DT (2005) Norsk Flora, 7th edn. Det Norske Samlaget, Oslo

    Google Scholar 

  • Lunau K, Maier EJ (1995) Innate colour preferences of flower visitors. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 177:1–19

    Google Scholar 

  • Lunau K, Wacht S, Chittka L (1996) Colour choices of naive bumble bees and their implications for colour perception. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 178:477–489

    Google Scholar 

  • Maddison WP, Maddison DR (1992) MacClade: analysis of phylogeny and character evolution. Sinauer Associates, Inc., Sunderland, MA

    Google Scholar 

  • Manhart JR, Hugh JH, Wilson D (1991) Phylogeny of the Caryophyllales. Direct submission, GenBank

    Google Scholar 

  • McCall C, Primack R (1992) Influence of flower characteristics, weather, time of day, and season on insect visitation rates in three plant communities. Am J Bot 79:434–442. doi:10.2307/2445156

    Article  Google Scholar 

  • Menzel R (1985) Learning in honey bees in an ecological and behavioral context. In: Hölldobler B, Lindauer M (eds) Experimental behavioral ecology, vol 31. Gustav Fischer Verlag, Stuttgart, pp 55–74

    Google Scholar 

  • Menzel R, Shmida A (1993) The ecology of flower colours and the natural colour vision of insect pollinators: the Israeli flora as a study case. Biol Rev Camb Philos Soc 68:81–120. doi:10.1111/j.1469-185X.1993.tb00732.x

    Article  Google Scholar 

  • Morante J, Desplan C (2008) The color-vision circuit in the medulla of Drosophila. Curr Biol 18:553–565. doi:10.1016/j.cub.2008.02.075

    Article  PubMed  CAS  Google Scholar 

  • Mori M, Yoshida Y, Matsunaga T, Nikaido O, Kameda K, Kondo T (2005) UV-B protective effect of a polyacylated anthocyanin, HBA, in flower petals of the blue morning glory, Ipomoea tricolor cv. Heavenly Blue. Bioorg Med Chem 13:2015–2020. doi:10.1016/j.bmc.2005.01.011

    Article  PubMed  CAS  Google Scholar 

  • Muir G, Filatov D (2007) A selective sweep in the chloroplast DNA of dioecious Silene (section Elisanthe). Genetics 177:1239–1247. doi:10.1534/genetics.107.071969

    Article  PubMed  CAS  Google Scholar 

  • Neumayer J, Spaethe J (2007) Flower color, nectar standing crop, and flower visitation of butterflies in an alpine habitat in central Europe. Entomol Gen 29:269–284

    Google Scholar 

  • Olmstead RG, Michaels HJ, Scott KM, Palmer JD (1992) Monophyly of the Asteridae and identification of their major lineages inferred from DNA sequences of rbcL. Ann Mo Bot Gard 79:249–265. doi:10.2307/2399768

    Article  Google Scholar 

  • Panero JL, Funk VA (2008) The value of sampling anomalous taxa in phylogenetic studies: Major clades of the Asteraceae revealed. Mol Phylogenet Evol 47:757–782. doi:10.1016/j.ympev.2008.02.011

    Article  PubMed  CAS  Google Scholar 

  • Peitsch D, Fietz A, Hertel H, de Souza J, Ventura DF, Menzel R (1992) The spectral input systems of hymenopteran insects and their receptor-based colour vision. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 170:23–40

    CAS  Google Scholar 

  • R Development Core Team (2004) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria

    Google Scholar 

  • Raine NE, Chittka L (2007) The adaptive significance of sensory bias in a foraging context: floral colour preferences in the bumblebee Bombus terrestris. PLoS ONE 2:e556–e557. doi:10.1371/journal.pone.0000556

    Article  PubMed  Google Scholar 

  • Raine NE, Ings TC, Dornhaus A, Saleh N, Chittka L (2006) Adaptation, genetic drift, pleiotropy, and history in the evolution of bee foraging behavior. Adv Stud Behav 36:305–354. doi:10.1016/S0065-3454(06)36007-X

    Article  Google Scholar 

  • Rodriguez-Girones MA, Santamaria L (2004) Why are so many bird flowers red? PLoS Biol 2:1515–1519. doi:10.1371/journal.pbio.0020350

    Article  CAS  Google Scholar 

  • Savile DBO (1972) Arctic adaptations in plants. In: Canada Department of Agriculture, Ottawa

  • Silvertown J et al (2006) Absence of phylogenetic signal in the niche structure of meadow plant communities. Proc R Soc Lond B Biol Sci 273:39–44. doi:10.1098/rspb.2005.3288

    Article  Google Scholar 

  • Sison-Mangus MP, Bernard GD, Lampel J, Briscoe AD (2006) Beauty in the eye of the beholder: the two blue opsins of lycaenid butterflies and the opsin gene-driven evolution of sexually dimorphic eyes. J Exp Biol 209:3079–3090. doi:10.1242/jeb.02360

    Article  PubMed  CAS  Google Scholar 

  • Skorupski P, Döring TF, Chittka L (2007) Photoreceptor spectral sensitivity in island and mainland populations of the bumblebee, Bombus terrestris. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 193:485–494

    Article  PubMed  Google Scholar 

  • Sollid JL, Isaksen K, Eiken T, Ødegård RS (2003) The transition zone of mountain permafrost on Dovrefjell, southern Norway. In: 8th International Conference on Permafrost, vol. 1–2, Zürich, Switzerland, pp 1085–1089

  • Soltis DE, Morgan DR, Grable A, Soltis PS, Kuzoff R (1993) Molecular systematics of Saxifragaceae sensu stricto. Am J Bot 80:1056–1081. doi:10.2307/2445753

    Article  CAS  Google Scholar 

  • Soltis PS, Soltis DE, Chase MW (1999) Angiosperm phylogeny inferred from multiple genes as a tool for comparative biology. Nature 402:402–404. doi:10.1038/46528

    Article  PubMed  CAS  Google Scholar 

  • Soltis DE et al (2001) Elucidating deep-level phylogenetic relationships in Saxifragaceae using sequences for six chloroplastic and nuclear DNA regions. Ann Mo Bot Gard 88:669–693. doi:10.2307/3298639

    Article  Google Scholar 

  • Swensen SM (1996) The evolution of actinorhizal symbioses: evidence for multiple origins of the symbiotic association. Am J Bot 83:1503–1512. doi:10.2307/2446104

    Article  Google Scholar 

  • Swofford DL (2002) PAUP*: phylogenetic analysis using parsimony (*and other methods). Sinauer Associates, Inc., Sunderland, MA

    Google Scholar 

  • Tastard E, Andalo C, Giurfa M, Burrus M, Thébaud C (2008) Flower colour variation across a hybrid zone in Antirrhinum as perceived by bumblebee pollinators. Arthropod-Plant Interact 2:237–246. doi:10.1007/s11829-008-9046-3

    Article  Google Scholar 

  • Tokuoka T (2008) Molecular phylogenetic analysis of Violaceae (Malpighiales) based on plastid and nuclear DNA sequences. J Plant Res 121:253–260. doi:10.1007/s10265-008-0153-0

    Article  PubMed  CAS  Google Scholar 

  • Totland Ø (1992) Pollination ecology in alpine plant communities in southern Norway: effect of abiotic and biotic factors on insect visitation and interspecific interactions. University of Bergen, Norway

    Google Scholar 

  • Totland Ø (1993) Pollination in alpine Norway: flowering phenology, insect visitors, and visitation rates in two plant communities. Can J Bot 71:1072–1079

    Google Scholar 

  • Totland Ø, Eide W, Grytnes JA (2000) Is there a typical alpine flower? In: Totland Ø (ed) The Scandinavian association for pollination ecology honours Knut Fægri, vol 1. Det Norske Videnskaps-Akademi, Oslo, pp 139–148

    Google Scholar 

  • Trift I, Källersjö M, Anderberg AA (2002) The monophyly of Primula (Primulaceae) evaluated by analysis of sequences from the chloroplast gene rbcL. Syst Bot 27:396–407

    Google Scholar 

  • Troje N (1993) Spectral categories in the learning behaviour of blowflies. Z Naturforsch 48c:96–104

    Google Scholar 

  • Vázquez DP, Morris WF, Jordano P (2005) Interaction frequency as a surrogate for the total effect of animal mutualists on plants. Ecol Lett 8:1088–1094. doi:10.1111/j.1461-0248.2005.00810.x

    Article  Google Scholar 

  • Wagstaff SJ, Bayly MJ, Garnock-Jones PJ, Albach DC (2002) Classification, origin, and diversification of the New Zealand hebes (Scrophulariaceae). Ann Mo Bot Gard 89:38–63. doi:10.2307/3298656

    Article  Google Scholar 

  • Wang W, Li R-Q, Chen Z-D (2005) Systematic position of Asteropyrum (Ranunculaceae) inferred from chloroplast and nuclear sequences. Plant Syst Evol 255:41–54. doi:10.1007/s00606-005-0339-z

    Article  CAS  Google Scholar 

  • Warren J, Mackenzie S (2001) Why are all colour combinations not equally represented as flower-colour polymorphisms? New Phytol 151:237–241. doi:10.1046/j.1469-8137.2001.00159.x

    Article  Google Scholar 

  • Waser NM (1983) The adaptive nature of floral traits: ideas and evidence. In: Real LA (ed) Pollination biology. Academic Press, New York, pp 241–285

    Google Scholar 

  • Weevers T (1952) Flower colours and their frequency. Acta Bot Neerl 1:81–92

    Google Scholar 

  • West W, West GS (1910) Sketches of vegetation at home and abroad. V. The ecology of the Upper Driva Valley in the Dovrefjeld. New Phytol 9:353–374. doi:10.1111/j.1469-8137.1910.tb05557.x

    Article  Google Scholar 

  • Whibley AC et al (2006) Evolutionary paths underlying flower color variation in Antirrhinum. Science 313:963–966. doi:10.1126/science.1129161

    Article  PubMed  CAS  Google Scholar 

  • Yasui Y, Ohnishi O (1996) Comparative study of rbcL gene sequences in Fagopyrum and related taxa. Genes Genet Syst 71:219–224. doi:10.1266/ggs.71.219

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The raw data for this study were collected when LC worked under the auspices of the Institute of Neurobiology, Free University of Berlin. Financial support came from a Leibniz Award from the German Research Foundation (DFG) to R. Menzel. We wish to thank Simen Bretten for help with identification of the plants, and Neal Williams and three anonymous reviewers for their helpful comments on the manuscript. SEJA was supported by a Biotechnology and Biological Sciences Research Council/Co-operative Award in Science and Engineering (CASE) studentship in association with Kew Enterprises (BBS/S/L/2005/12155A).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarah E. J. Arnold.

Additional information

Handling editor: Neal Williams

Appendix

Appendix

See Tables 1, 2 and 3.

Table 1 List of plant species analysed, including colour information (as seen by bees, and also humans, after categorising the flower colour into one of six human colours) and elevation of collection (in m a.s.l.)
Table 2 Details of the rbcL sequences used to build the phylogenetic tree, including accession and citation details for the species providing rbcL sequences
Table 3 Details of the ITS sequences used to discriminate species within genera

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arnold, S.E.J., Savolainen, V. & Chittka, L. Flower colours along an alpine altitude gradient, seen through the eyes of fly and bee pollinators. Arthropod-Plant Interactions 3, 27–43 (2009). https://doi.org/10.1007/s11829-009-9056-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11829-009-9056-9

Keywords

Navigation