Skip to main content
Log in

Melatonin increased maize (Zea mays L.) seedling drought tolerance by alleviating drought-induced photosynthetic inhibition and oxidative damage

  • Original Article
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

The effect of melatonin application on enhancing plant stress tolerance is already known, but the specifics of its performance and its underlying mechanism are still poorly understood. The influences of foliar-sprayed melatonin (100 μmol/L) on maize (Zea mays L.) seedlings growth during drought stress were investigated in this study. The growth of seedlings was not affected by melatonin application under normal conditions. After 8 days of drought stress, growth was significantly inhibited, but this inhibition was alleviated by foliar-spraying with melatonin. After rehydration, melatonin-treated plants recovered more quickly than untreated plants. Further investigation showed that, under drought condition, melatonin-treated plants showed higher photosynthetic rates, stomatal conductances and transpiration rates than those untreated plants. Compared with untreated plants, the melatonin-treated plants exhibited low osmotic potential under drought stress, which contributed to the maintenance of high turgor potential and relative water content. Drought stress induced the accumulation of hydrogen peroxide and malondialdehyde, but the accumulation was decreased by melatonin application. Also, both enzymatic and nonenzymatic antioxidant activity were enhanced by melatonin application under drought stress. These results imply that the effects of melatonin on enhancing drought tolerance can be ascribed to the alleviation of drought-induced photosynthetic inhibition, improvement in plant water status, and mitigation of drought-induced oxidative damage. The results suggest that melatonin could be considered as a potential plant growth regulator for the improvement of crop drought tolerance in crop production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

Fv/Fm:

Maximal quantum yield of PSII photochemistry

ΦPSII:

Effective PSII quantum yield

NPQ:

Non-photochemical quenching coefficient

ETR:

Electron transport rate

RWC:

Relative water content

FW:

Fresh weight

TW:

Turgid weight

DW:

Dry weight

H2O2 :

Hydrogen peroxide

MDA:

Malondialdehyde

SOD:

Superoxide dismutase

CAT:

Catalase

APX:

Ascorbate peroxidase

POD:

Peroxidase

AsA:

Ascorbic acid

DPPH:

1,1-Diphenyl-2-picryl-hydrazyl

ROS:

Reactive oxygen species

References

  • Arnao MB (2014) Phytomelatonin: discovery, content, and role in plants. Adv Bot 2014:1–11

    Article  Google Scholar 

  • Arnao MB, Hernández-Ruiz J (2014) Melatonin: plant growth regulator and/or biostimulator during stress? Trends Plant Sci 19:789–797

    Article  CAS  PubMed  Google Scholar 

  • Arnao MB, Hernández-Ruiz J (2015) Functions of Melatonin in Plants: a review. J Pineal Res 59:133–150

    Article  CAS  PubMed  Google Scholar 

  • Beauchamp C, Fridovich I (1973) Isozymes of superoxide dismutase from wheat germ. BBA-Protein Struct 317:50–64

    Article  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Chan Z, Shi H (2015) Improved abiotic stress tolerance of bermudagrass by exogenous small molecules. Plant Signal Behav 10:e991577

    Article  PubMed Central  PubMed  Google Scholar 

  • Chaves M, Flexas J, Pinheiro C (2009) Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cell. Ann Bot 103:551–560

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chen DQ, Yin LN, Deng XP, Wang SW (2014) Silicon increases salt tolerance by influencing the two-phase growth response to salinity in wheat (Triticum aestivum L.). Acta Physiol Plant 36:2531–2535

    Article  CAS  Google Scholar 

  • Chen DQ, Wang SW, Xiong BL, Cao BB, Deng XP (2015) Carbon/nitrogen imbalance associated with drought-induced leaf senescence in sorghum bicolor. PLoS ONE 10:e0137026

    Article  PubMed Central  PubMed  Google Scholar 

  • de Souza TC, Magalhães PC, de Castro EM, Carneiro NP, Padilha FA, Júnior CCG (2014) ABA application to maize hybrids contrasting for drought tolerance: changes in water parameters and in antioxidant enzyme activity. Plant Growth Regul 73:205–217

    Article  Google Scholar 

  • Gong H, Zhu X, Chen K, Wang S, Zhang C (2005) Silicon alleviates oxidative damage of wheat plants in pots under drought. Plant Sci 169:313–321

    Article  CAS  Google Scholar 

  • Hamurcu M, Sekmen AH, Turkan İ, Gezgin S, Demiral T, Bell RW (2013) Induced anti-oxidant activity in soybean alleviates oxidative stress under moderate boron toxicity. Plant Growth Regul 70:217–226

    Article  CAS  Google Scholar 

  • Hardeland R (2015) Melatonin in plants and other phototrophs: advances and gaps concerning the diversity of functions. J Exp Bot 66:627–646

    Article  CAS  PubMed  Google Scholar 

  • Heath RL, Packer L (1968) Photoperoxidation in isolated chloroplasts: I. Kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys 125:189–198

    Article  CAS  PubMed  Google Scholar 

  • Janas KM, Posmyk MM (2013) Melatonin, an underestimated natural substance with great potential for agricultural application. Acta Physiol Plant 35:3285–3292

    Article  CAS  Google Scholar 

  • Kochba J, Lavee S, Spiegel-Roy P (1977) Differences in peroxidase activity and isoenzymes in embryogenic ane non-embryogenic ‘Shamouti’ orange ovular callus lines. Plant Cell Physiol 18:463–467

    CAS  Google Scholar 

  • Li C, Tan DX, Liang D, Chang C, Jia D, Ma F (2015) Melatonin mediates the regulation of ABA metabolism, free-radical scavenging, and stomatal behaviour in two Malus species under drought stress. J Exp Bot 66:669–680

    Article  CAS  PubMed  Google Scholar 

  • Liu D, Wu L, Naeem MS, Liu H, Deng X, Xu L, Zhang F, Zhou W (2013) 5-Aminolevulinic acid enhances photosynthetic gas exchange, chlorophyll fluorescence and antioxidant system in oilseed rape under drought stress. Acta Physiol Plant 35:2747–2759

    Article  CAS  Google Scholar 

  • Liu J, Wang W, Wang L, Sun Y (2015) Exogenous melatonin improves seedling health index and drought tolerance in tomato. Plant Growth Regul. doi:10.1007/s10725-015-0066-6

    Google Scholar 

  • Lobell DB, Roberts MJ, Schlenker W, Braun N, Little BB, Rejesus RM, Hammer GL (2014) Greater sensitivity to drought accompanies maize yield increase in the US Midwest. Science 344:516–519

    Article  CAS  PubMed  Google Scholar 

  • Loreto F, Velikova V (2001) Isoprene produced by leaves protects the photosynthetic apparatus against ozone damage, quenches ozone products, and reduces lipid peroxidation of cellular membranes. Plant Physiol 127:1781–1787

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Matsuura H, Chiji H, Asakawa C, Amano M, Yoshihara T, Mizutani J (2003) DPPH radical scavengers from dried leaves of oregano (Origanum vulgare). Biosci Biotech Biochem 67:2311–2316

    Article  CAS  Google Scholar 

  • Maxwell K, Johnson GN (2000) Chlorophyll fluorescence-a practical guide. J Exp Bot 51:659–668

    Article  CAS  PubMed  Google Scholar 

  • Meng JF, Xu TF, Wang ZZ, Fang YL, Xi ZM, Zhang ZW (2014) The ameliorative effects of exogenous melatonin on grape cuttings under water-deficient stress: antioxidant metabolites, leaf anatomy, and chloroplast morphology. J Pineal Res 57:200–212

    Article  CAS  PubMed  Google Scholar 

  • Nakano Y, Asada K (1981) Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol 22:867–880

    CAS  Google Scholar 

  • Ogbaga CC, Stepien P, Johnson GN (2014) Sorghum (Sorghum bicolor) varieties adopt strongly contrasting strategies in response to drought. Physiol Plant 152:389–401

    Article  CAS  PubMed  Google Scholar 

  • Paredes SD, Korkmaz A, Manchester LC, Tan DX, Reiter RJ (2009) Phytomelatonin: a review. J Exp Bot 60:57–69

    Article  CAS  PubMed  Google Scholar 

  • Park WJ (2011) Melatonin as an endogenous plant regulatory signal: debates and perspectives. J Plant Biol 54:143–149

    Article  CAS  Google Scholar 

  • Posmyk MM, Janas KM (2009) Melatonin in plants. Acta Physiol Plant 31:1–11

    Article  CAS  Google Scholar 

  • Reiter RJ, Tan DX, Zhou Z, Cruz MHC, Fuentes-Broto L, Galano A (2015) Phytomelatonin: assisting plants to survive and thrive. Molecules 20:7396–7437

    Article  CAS  PubMed  Google Scholar 

  • Singh B, Usha K (2003) Salicylic acid induced physiological and biochemical changes in wheat seedlings under water stress. Plant Growth Regul 39:137–141

    Article  CAS  Google Scholar 

  • Tal O, Haim A, Harel O, Gerchman Y (2011) Melatonin as an antioxidant and its semi-lunar rhythm in green macroalga Ulva sp. J Exp Bot 62:1903–1910

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tan DX, Hardeland R, Manchester LC, Korkmaz A, Ma S, Rosales-Corral S, Reiter RJ (2012) Functional roles of melatonin in plants, and perspectives in nutritional and agricultural science. J Exp Bot 63:577–597

    Article  CAS  PubMed  Google Scholar 

  • Turk H, Erdal S, Genisel M, Atici O, Demir Y, Yanmis D (2014) The regulatory effect of melatonin on physiological, biochemical and molecular parameters in cold-stressed wheat seedlings. Plant Growth Regul 74:139–152

    Article  CAS  Google Scholar 

  • Turner NC (1981) Techniques and experimental approaches for the measurement of plant water status. Plant Soil 58:339–366

    Article  Google Scholar 

  • Wang AY, Li Y, Zhang CQ (2012) QTL mapping for stay-green in maize (Zea mays). Can J Plant Sci 92:249–256

    Article  Google Scholar 

  • Wang P, Sun X, Li C, Wei Z, Liang D, Ma F (2013) Long-term exogenous application of melatonin delays drought-induced leaf senescence in apple. J Pineal Res 54:292–302

    Article  CAS  PubMed  Google Scholar 

  • Wang LY, Liu JL, Wang WX, Sun Y (2015) Exogenous melatonin improves growth and photosynthetic capacity of cucumbers under salinity-induced stress. Photosynthetica. doi:10.1007/s11099-015-0140-3

    Google Scholar 

  • Wei W, Li QT, Chu YN, Reiter RJ, Yu XM, Zhu DH, Zhang WK, Ma B, Lin Q, Zhang JS (2014) Melatonin enhances plant growth and abiotic stress tolerance in soybean plants. J Exp Bot 66:695–707

    Article  PubMed Central  PubMed  Google Scholar 

  • Xu WZ, Deng XP, Xu BC, Gao ZJ, Ding WL (2014) Photosynthetic activity and efficiency of Bothriochloa ischaemum and Lespedeza davurica in mixtures across growth periods under water stress. Acta Physiol Plant 36:1033–1044

    Article  CAS  Google Scholar 

  • Yin L, Wang S, Li J, Tanaka K, Oka M (2013) Application of silicon improves salt tolerance through ameliorating osmotic and ionic stresses in the seedling of sorghum bicolor. Acta Physiol Plant 35:3099–3107

    Article  CAS  Google Scholar 

  • Zhang HM, Zhang YQ (2014) Melatonin: a well-documented antioxidant with conditional pro-oxidant actions. J Pineal Res 57:131–146

    Article  CAS  PubMed  Google Scholar 

  • Zhang N, Zhao B, Zhang HJ, Weeda S, Yang C, Yang ZC, Ren S, Guo YD (2013) Melatonin promotes water-stress tolerance, lateral root formation, and seed germination in cucumber (Cucumis sativus L.). J Pineal Res 54:15–23

    CAS  PubMed  Google Scholar 

  • Zhang N, Sun Q, Zhang H, Cao Y, Weeda S, Ren S, Guo YD (2015) Roles of melatonin in abiotic stress resistance in plants. J Exp Bot 66:647–656

    Article  CAS  PubMed  Google Scholar 

  • Ziyomo C, Bernardo R (2013) Drought tolerance in maize: indirect selection through secondary traits versus genomewide selection. Crop Sci 53:1269–1275

    Article  Google Scholar 

Download references

Acknowledgments

This study was supported by Youth Innovation Promotion Association of the Chinese Academy of Sciences (2013307), National Key Technology Support Program of China (2015BAD22B01), National Basic Research Program of China (2015CB150402) and the 111 Project of Chinese Education Ministry (B12007).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shiwen Wang.

Additional information

Communicated by A. Gniazdowska-Piekarska.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ye, J., Wang, S., Deng, X. et al. Melatonin increased maize (Zea mays L.) seedling drought tolerance by alleviating drought-induced photosynthetic inhibition and oxidative damage. Acta Physiol Plant 38, 48 (2016). https://doi.org/10.1007/s11738-015-2045-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11738-015-2045-y

Keywords

Navigation