Skip to main content
Log in

Recent advances in selective acetylene hydrogenation using palladium containing catalysts

  • Review Article
  • Published:
Frontiers of Chemical Science and Engineering Aims and scope Submit manuscript

Abstract

Recent advances with Pd containing catalysts for the selective hydrogenation of acetylene are described. The overview classifies enhancement of catalytic properties for monometallic and bimetallic Pd catalysts. Activity/selectivity of Pd catalysts can be modified by controlling particle shape/morphology or immobilisation on a support which interacts strongly with Pd particles. In both cases enhanced ethylene selectivity is generally associated with modifying ethylene adsorption strength and/or changes to hydride formation. Inorganic and organic selectivity modifiers (i.e., species adsorbed onto Pd particle surface) have also been shown to enhance ethylene selectivity. Inorganic modifiers such as TiO2 change Pd ensemble size and modify ethylene adsorption strength whereas organic modifiers such as diphenylsulfide are thought to create a surface template effect which favours acetylene adsorption with respect to ethylene. A number of metals and synthetic approaches have been explored to prepare Pd bimetallic catalysts. Examples where enhanced selectivity is observed are generally associated with decreased Pd ensemble size and/or hindering of the ease with which an unselective hydride phase is formed for Pd. A final class of bimetallic catalysts are discussed where Pd is not thought to be the primary reaction site but merely acts as a site where hydrogen dissociation and spillover occurs onto a second metal (Cu or Au) where the reaction takes place more selectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Tiedtke D B, Cheung T T P, Leger J, Zisman S A, Bergmeister J J, Delzer G A. In: 13th Ethylene Producers Conference, 2001, 10: 1–21

    Google Scholar 

  2. Borodziński A, Bond G C. Selective Hydrogenation of ethyne in ethene—rich streams on palladium catalysts. Part 1. Effect of changes to the catalyst during reaction. Catalysis Reviews, 2006, 48(2): 91–144

    Article  Google Scholar 

  3. Borodziński A, Bond G C. Selective hydrogenation of ethyne in ethene—rich streams on palladium catalysts. Part 2: Steady—state kinetics and effects of palladium particle size, carbon monoxide, and promoters. Catalysis Reviews, 2008, 50(3): 379–469

    Article  Google Scholar 

  4. Nikolaev S A, Zanaveskin I L N, Smirnov V V, Averyanov V A, Zanaveskin K I. Catalytic hydrogenation of alkyne and alkadiene impurities from alkenes. Practical and theoretical aspects. Russian Chemical Reviews, 2009, 78(3): 231–247

    Article  CAS  Google Scholar 

  5. García-Mota M, Gómez-Díaz J, Novell-Leruth G, Vargas-Fuentes C, Bellarosa L, Bridier B, Pérez-Ramírez J, López N. A density functional theory study of the “mythic” Lindlar hydrogenation catalyst. Theoretical Chemistry Accounts, 2011, 128(4): 663–673

    Article  Google Scholar 

  6. Bridier B, Lopez N, Pérez-Ramírez J. Molecular understanding of alkyne hydrogenation for the design of selective catalysts. Dalton Transactions, 2010, 39(36): 8412–8419

    Article  CAS  Google Scholar 

  7. Segura Y, López N, Pérez-Ramírez J. Origin of the superior hydrogenation selectivity of gold nanoparticles in alkyne + alkene mixtures: Triple-versus double-bond activation. Journal of Catalysis, 2007, 247(2): 383–386

    Article  CAS  Google Scholar 

  8. Vilé G, Baudouin D, Remediakis I N, Copéret C, López N, Pérez-Ramírez J. Silver nanoparticles for olefin production: New insights into the mechanistic description of propyne hydrogenation. ChemCatChem, 2013, 5(12): 3750–3759

    Article  Google Scholar 

  9. Wehrli J T, Thomas D J, Wainwright M S, Trimm D L, Cant N W. Selective hydrogenation of propyne over supported copper catalysts: Influence of support. Applied Catalysis, 1991, 70(1): 253–262

    Article  CAS  Google Scholar 

  10. Bridier B, López N, Pérez-Ramírez J. Partial hydrogenation of propyne over copper-based catalysts and comparison with nickelbased analogues. Journal of Catalysis, 2010, 269(1): 80–92

    Article  CAS  Google Scholar 

  11. Abelló S, Verboekend D, Bridier B, Pérez-Ramírez J. Activated takovite catalysts for partial hydrogenation of ethyne, propyne, and propadiene. Journal of Catalysis, 2008, 259(1): 85–95

    Article  Google Scholar 

  12. Trimm D L, Liu I O Y, Cant N W. The selective hydrogenation of acetylene over a Ni/SiO2 catalyst in the presence and absence of carbon monoxide. Applied Catalysis A, General, 2010, 374(1–2): 58–64

    Article  CAS  Google Scholar 

  13. Trimm D L, Cant N W, Liu I O Y. The selective hydrogenation of acetylene in the presence of carbon monoxide over Ni and Ni-Zn supported on MgAl2O4. Catalysis Today, 2011, 178(1): 181–186

    Article  CAS  Google Scholar 

  14. Lopez-Sanchez J A, Lennon D. The use of titania- and iron oxide-supported gold catalysts for the hydrogenation of propyne. Applied Catalysis A, General, 2005, 291(1–2): 230–237

    Article  CAS  Google Scholar 

  15. García-Mota M, Bridier B, Pérez-Ramírez J, López N. Interplay between carbon monoxide, hydrides, and carbides in selective alkyne hydrogenation on palladium. Journal of Catalysis, 2010, 273(2): 92–102

    Article  Google Scholar 

  16. Yang B, Burch R, Hardacre C, Headdock G, Hu P. Influence of surface structures, subsurface carbon and hydrogen, and surface alloying on the activity and selectivity of acetylene hydrogenation on Pd surfaces: A density functional theory study. Journal of Catalysis, 2013, 305: 264–276

    Article  CAS  Google Scholar 

  17. Gabasch H, Hayek K, Klötzer B, Knop-Gericke A, Schlögl R. Carbon incorporation in Pd(111) by adsorption and dehydrogenation of ethene. Journal of Physical Chemistry B, 2006, 110(10): 4947–4952

    Article  CAS  Google Scholar 

  18. Teschner D, Borsodi J, Wootsch A, Révay Z, Hävecker M, Knop-Gericke A, Jackson S D, Schlögl R. The roles of subsurface carbon and hydrogen in palladium-catalyzed alkyne hydrogenation. Science, 2008, 320(5872): 86–89

    Article  CAS  Google Scholar 

  19. Teschner D, Borsodi J, Kis Z, Szentmiklósi L, Révay Z, Knop-Gericke A, Schlögl R, Torres D, Sautet P. Role of hydrogen species in palladium-catalyzed alkyne hydrogenation. Journal of Physical Chemistry C, 2010, 114(5): 2293–2299

    Article  CAS  Google Scholar 

  20. Sá J, Arteaga G D, Daley R A, Bernardi J, Anderson J A. Factors influencing hydride formation in a Pd/TiO2 catalyst. Journal of Physical Chemistry B, 2006, 110(34): 17090–17095

    Article  Google Scholar 

  21. Schauermann S, Nilius N, Shaikhutdinov S, Freund H J. Nanoparticles for heterogeneous catalysis: New mechanistic insights. Accounts of Chemical Research, 2013, 46(8): 1673–1681

    Article  CAS  Google Scholar 

  22. Ludwig W, Savara A, Madix R J, Schauermann S, Freund H J. Subsurface hydrogen diffusion into Pd nanoparticles: Role of lowcoordinated surface sites and facilitation by carbon. Journal of Physical Chemistry C, 2012, 116(5): 3539–3544

    Article  CAS  Google Scholar 

  23. Ludwig W, Savara A, Dostert K H, Schauermann S. Olefin hydrogenation on Pd model supported catalysts: New mechanistic insights. Journal of Catalysis, 2011, 284(2): 148–156

    Article  CAS  Google Scholar 

  24. Wilde M, Fukutani K, Ludwig W, Brandt B, Fischer J H, Schauermann S, Freund H J. Influence of carbon deposition on the hydrogen distribution in Pd nanoparticles and their reactivity in olefin hydrogenation. Angewandte Chemie International Edition, 2008, 47(48): 9289–9293

    Article  CAS  Google Scholar 

  25. Armbrüster M, Behrens M, Cinquini F, Föttinger K, Grin Y, Haghofer A, Klötzer B, Knop-Gericke A, Lorenz H, Ota A, Penner S, Prinz J, Rameshan C, Révay Z, Rosenthal D, Rupprechter G, Teschner D, Torres D, Wagner R, Widmer R, Wowsnick G. How to control the selectivity of palladium-based catalysts in hydrogenation reactions: The role of subsurface chemistry. ChemCatChem, 2012, 4(8): 1048–1063

    Article  Google Scholar 

  26. Khan N A, Shaikhutdinov S, Freund H J. Acetylene and ethylene hydrogenation on alumina supported Pd-Ag model catalysts. Catalysis Letters, 2006, 108(3‐4): 159–164

    Article  CAS  Google Scholar 

  27. Johnson M M, Walker D W, Nowack G P. U S Patent, 4404124A, 1983-09-13

  28. Lim B, Jiang M, Tao J, Camargo P H C, Zhu Y, Xia Y. Shapecontrolled synthesis of Pd nanocrystals in aqueous solutions. Advanced Functional Materials, 2009, 19(2): 189–200

    Article  CAS  Google Scholar 

  29. Yarulin A E, Crespo-Quesada R M, Egorova E V, Kiwi-Minsker L L. Structure sensitivity of selective acetylene hydrogenation over the catalysts with shape-controlled palladium nanoparticles. Kinetics and Catalysis, 2012, 53(2): 253–261

    Article  CAS  Google Scholar 

  30. Crespo-Quesada M, Andanson J M, Yarulin A, Lim B, Xia Y, Kiwi-Minsker L. UV-ozone cleaning of supported poly(vinylpyrrolidone)-stabilized palladium nanocubes: Effect of stabilizer removal on morphology and catalytic behavior. Langmuir, 2011, 27(12): 7909–7916

    Article  CAS  Google Scholar 

  31. Kim S K, Kim C, Lee J H, Kim J, Lee H, Moon S H. Performance of shape-controlled Pd nanoparticles in the selective hydrogenation of acetylene. Journal of Catalysis, 2013, 306: 146–150

    Article  CAS  Google Scholar 

  32. He Y F, Feng J T, Du Y Y, Li D Q. Controllable synthesis and acetylene hydrogenation performance of supported pd nanowire and cuboctahedron catalysts. ACS Catalysis, 2012, 2(8): 1703–1710

    Article  CAS  Google Scholar 

  33. Benavidez A D, Burton P D, Nogales J L, Jenkins A R, Ivanov S A, Miller J T, Karim A M, Datye A K. Improved selectivity of carbonsupported palladium catalysts for the hydrogenaiton of acetylene in excess ethylene. Applied Catalysis A, General, 2014, 482: 108–115

    Article  CAS  Google Scholar 

  34. Burton P D, Boyle T J, Datye A K. Facile. Surfactant-free synthesis of Pd nanoparticles for heterogeneous catalysts. Journal of Catalysis, 2011, 280(2): 145–149

    Article  CAS  Google Scholar 

  35. Boudart M, Hwang H S. Solubility of hydrogen in small particles of palladium. Journal of Catalysis, 1975, 39(1): 44–52

    Article  CAS  Google Scholar 

  36. Gulyaeva Y K, Kaichev V V, Zaikovskii V I, Kovalyov E V, Suknev A P, Bal’zhinimaev B S. Selective hydrogenation of acetylene over novel Pd/fiberglass catalysts. Catalysis Today, 2015, 245: 139–146

    Article  CAS  Google Scholar 

  37. Riyapan S, Boonyongmaneerat Y, Mekasuwandumrong O, Yoshida H, Fujita S I, Arai M, Panpranot J. Improved catalytic performance of Pd/TiO2 in the selective hydrogenation of acetylene by using H2-treated sol-gel TiO2. Journal of Molecular Catalysis A Chemical, 2014, 383–384: 182–187

    Article  Google Scholar 

  38. Riyapan S, Boonyongmaneerat Y, Mekasuwandumrong O, Praserthdam P, Panpranot J. Effect of surface Ti3+ on the sol-gel derived TiO2 in the selective acetylene hydrogenation on Pd/TiO2 catalysts. Catalysis Today, 2014, 245: 134–138

    Article  Google Scholar 

  39. Li Y, Jang B W L. Non-thermal RF plasma effects on surface properties of Pd/TiO2 catalysts for selective hydrogenation of acetylene. Applied Catalysis A, General, 2011, 392(1–2): 173–179

    Article  CAS  Google Scholar 

  40. Zhu B, Jang B W L. Insights into surface properties of non-thermal RF plasmas treated Pd/TiO2 in acetylene hydrogenation. Journal of Molecular Catalysis A, Chemical, 2014, 395: 137–144

    Article  CAS  Google Scholar 

  41. Kim W J, Moon S H. Modified Pd catalysts for the selective hydrogenation of acetylene. Catalysis Today, 2012, 185(1): 2–16

    Article  CAS  Google Scholar 

  42. Shin E W, Choi C H, Chang K S, Na Y H, Moon S H. Properties of Si-modified Pd catalyst for selective hydrogenation of acetylene. Catalysis Today, 1998, 44(3): 137–143

    Article  CAS  Google Scholar 

  43. Shin EW, Kang J H, Kim WJ, Park J D, Moon S H. Performance of Si-modified Pd catalyst in acetylene hydrogenation: The origin of the ethylene selectivity improvement. Applied Catalysis A, General, 2002, 223(1–2): 161–172

    Article  CAS  Google Scholar 

  44. Ahn I Y, Kim W J, Moon S H. Performance of La2O3- or Nb2O5-added Pd/SiO2 catalysts in acetylene hydrogenation. Applied Catalysis A, General, 2006, 308: 75–81

    Article  CAS  Google Scholar 

  45. Kim W J, Ahn I Y, Lee J H, Moon S H. Properties of Pd/SiO2 catalyst doubly promoted with La oxide and Si for acetylene hydrogenation. Catalysis Communications, 2012, 24: 52–55

    Article  CAS  Google Scholar 

  46. McKenna F M, Anderson J A. Selectivity enhancement in acetylene hydrogenation over diphenyl sulphide-modified Pd/TiO2 catalysts. Journal of Catalysis, 2011, 281(2): 231–240

    Article  CAS  Google Scholar 

  47. McCue A J, Anderson J A. Sulfur as a catalyst promoter or selectivity modifier in heterogeneous catalysis. Catalysis Science & Technology, 2014, 4(2): 272–294

    Article  CAS  Google Scholar 

  48. McKenna F M, Wells R P K, Anderson J A. Enhanced selectivity in acetylene hydrogenation by ligand modified Pd/TiO2 catalysts. Chemical Communications, 2011, 47(8): 2351–2353

    Article  CAS  Google Scholar 

  49. McKenna F M, Mantarosie L, Wells R P K, Hardacre C, Anderson J A. Selective hydrogenation of acetylene in ethylene rich feed streams at high pressure over ligand modified Pd/TiO2. Catalysis Science & Technology, 2012, 2(3): 632–638

    Article  CAS  Google Scholar 

  50. McCue A J, McKenna F M, Anderson J A. Triphenylphosphine: A ligand for heterogeneous catalysis too? Selectivity enhancement in acetylene hydrogenation over modified Pd/TiO2 catalyst. Catalysis Science & Technology, 2015, 5(4): 2449–2459

    Article  CAS  Google Scholar 

  51. Han Y, Peng D, Xu Z, Wan H, Zheng S, Zhu D. TiO2 supported Pd@Ag as highly selective catalysts for hydrogenation of acetylene in excess ethylene. Chemical Communications, 2013, 49(75): 8350–8352

    Article  CAS  Google Scholar 

  52. Zhang Y, Diao W, Williams C T, Monnier J R. Selective hydrogenation of acetylene in excess ethylene using Ag- and Au-Pd/SiO2 bimetallic catalysts prepared by electroless deposition. Applied Catalysis A, General, 2014, 469: 419–426

    Article  CAS  Google Scholar 

  53. Ma C, Du Y, Feng J, Cao X, Yang J, Li D. Fabrication of supported PdAu nanoflower catalyst for partial hydrogenation of acetylene. Journal of Catalysis, 2014, 317: 263–271

    Article  CAS  Google Scholar 

  54. Cherkasov N, Ibhadon A O, McCue A J, Anderson J A, Johnston S K. Palladium-bismuth intermetallic and surface-poisoned catalysts for the semi-hydrogenation of 2-methyl-3-butyn-2-ol. Applied Catalysis A, General, 2015, 497: 22–30

    Article  CAS  Google Scholar 

  55. Osswald J, Giedigkeit R, Jentoft R E, Armbrüster M, Girgsdies F, Kovnir K, Ressler T, Grin Y, Schlögl R. Palladium-gallium intermetallic compounds for the selective hydrogenation of acetylene Part 1: Preparation and structural investigation under reaction conditions. Journal of Catalysis, 2008, 258(1): 210–218

    Article  CAS  Google Scholar 

  56. Osswald J, Kovnir K, Armbrüster M, Giedigkeit R, Jentoft R E, Wild U, Grin Y, Schlögl R. Palladium-gallium intermetallic compounds for the selective hydrogenation of acetylene. Part II: Surface characterization and catalytic performance. Journal of Catalysis, 2008, 258(1): 219–227

    Article  CAS  Google Scholar 

  57. Friedrich M, Villaseca S A, Szentmiklósi L, Teschner D, Armbrüster M. Order-induced selectivity increase of Cu60Pd40 in the semihydrogenation of acetylene. Materials, 2013, 6(7): 2958–2977

    Article  CAS  Google Scholar 

  58. Kim S K, Lee J H, Ahn I Y, Kim W J, Moon S H. Performance of Cu-promoted Pd catalysts prepared by adding Cu using a surface redox method in acetylene hydrogenation. Applied Catalysis A, General, 2011, 401(1–2): 12–19

    Article  CAS  Google Scholar 

  59. Tierney H L, Baber A E, Kitchin J R, Sykes E C H. Hydrogen dissociation and spillover on individual isolated palladium atoms. Physical Review Letters, 2009, 103(24): 246102–246104

    Article  Google Scholar 

  60. Kyriakou G, Boucher M B, Jewell A D, Lewis E A, Lawton T J, Baber A E, Tierney H L, Flytzani-Stephanopoulos M, Sykes E C H. Isolated metal atom geomretries as a strategy for selective heterogeneous hydrogenations. Science, 2012, 335(6073): 1209–1212

    Article  CAS  Google Scholar 

  61. Boucher M B, Zugic B, Cladaras G, Kammert J, Marcinkowski M D, Lawton T J, Sykes E C H, Flytzani-Stephanopoulos M. Single atom alloy surface analogs in Pd0.18Cu15 nanoparticles for selective hydrogenation reactions. Physical Chemistry Chemical Physics, 2013, 15(29): 12187–12196

    Article  CAS  Google Scholar 

  62. McCue A J, McRitchie C J, Shepherd A M, Anderson J A. Cu/Al2O3 catalysts modified with Pd for selective acetylene hydrogenation. Journal of Catalysis, 2014, 319: 127–135

    Article  CAS  Google Scholar 

  63. Fu Q, Luo Y. Active sites of Pd-doped flat and stepped Cu(111) surfaces for H2 dissociation in heterogeneous catalytic hydrogenation. ACS Catalysis, 2013, 3(6): 1245–1252

    Article  CAS  Google Scholar 

  64. McCue A J, Shepherd A M, Anderson J A. Optimisation of preparation method for Pd coped Cu/Al2O3 catalysts for selective acetylene hydrogenation. Catalysis Science & Technology, 2015, 5(5): 2880–2890

    Article  CAS  Google Scholar 

  65. Pei G X, Liu X Y, Wang A, Li L, Huang Y, Zhang T, Lee JW, Jang B W L, Mou C Y. Promotional effect of Pd single atoms on Au nanoparticles supported on silica for the selective hydrogenation of acetylene in excess ethylene. New Journal of Chemistry, 2014, 38(5): 2043–2051

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Alan J. McCue or James A. Anderson.

Additional information

Alan J. McCue received his BSc (Hons) degree in Chemistry in 2008 and PhD in Chemistry in 2012 from the University of Aberdeen, UK. His primary interest is in the design and application of supported metal catalysts for selective alkyne hydrogenation. Strategies of particular interest include the addition of a 2nd or 3rd metal to modulate activity and the use of selectivity modifiers to moderate selectivity. To date, he has published 12 scientific papers.

James Anderson holds a Sixth Century Chair in Materials at The University of Aberdeen where he heads the Surface Chemistry and Catalysis Group and also a Chair in Chemical Engineering where he heads the Materials and Chemical Engineering Group. He has previously held the posts of Chairman of the UK SURCAT group (RSC Surface and Reactivity group) and secretary of EFCATS (European Federation of Catalysis Societies). He is author/co-author of over 180 scientific papers. His research interests include: use of vibrational spectroscopy to examine surfaces and interfaces, hydrocarbon (including biomass) activation (reforming and hydroisomerisation), acetylene, alkyne and carbon monoxide hydrogenation and photocatalytic water treatment.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

McCue, A.J., Anderson, J.A. Recent advances in selective acetylene hydrogenation using palladium containing catalysts. Front. Chem. Sci. Eng. 9, 142–153 (2015). https://doi.org/10.1007/s11705-015-1516-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11705-015-1516-4

Keywords

Navigation