Skip to main content

Advertisement

Log in

Imaging Microglial Activation During Neuroinflammation and Alzheimer’s Disease

  • Invited Review
  • Published:
Journal of Neuroimmune Pharmacology Aims and scope Submit manuscript

Abstract

Microglial activation is an important pathogenic component of neurodegenerative disease processes. This state of increased inflammation is associated not only with neurotoxic consequences but also neuroprotective effects, e.g., phagocytosis and clearance of amyloid in Alzheimer’s disease. In addition, activation of microglia appears to be one of the major mechanisms of amyloid clearance following active or passive immunotherapy. Imaging techniques may provide a minimally invasive tool to elucidate the complexities and dynamics of microglial function and dysfunction in aging and neurodegenerative diseases. Imaging microglia in vivo in live subjects by confocal or two/multiphoton microscopy offers the advantage of studying these cells over time in their native environment. Imaging microglia in human subjects by positron emission tomography scanning with translocator protein-18 kDa ligands can offer a measure of the inflammatory process and a means of detecting progression of disease and efficacy of therapeutics over time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Aine CJ (1995) A conceptual overview and critique of functional neuroimaging techniques in humans: I. MRI/FMRI and PET. Crit Rev Neurobiol 9:229–309

    PubMed  CAS  Google Scholar 

  • Aisen PS, Schafer KA, Grundman M, Pfeiffer E, Sano M, Davis KL, Farlow MR, Jin S, Thomas RG, Thal LJ (2003) Effects of rofecoxib or naproxen vs placebo on Alzheimer disease progression: a randomized controlled trial. JAMA 289:2819–2826 doi:10.1001/jama.289.21.2819

    PubMed  CAS  Google Scholar 

  • Ajami B, Bennett JL, Krieger C, Tetzlaff W, Rossi FM (2007) Local self-renewal can sustain CNS microglia maintenance and function throughout adult life. Nat Neurosci 10:1538–1543 doi:10.1038/nn2014

    PubMed  CAS  Google Scholar 

  • Akiyama H, McGeer PL (2004) Specificity of mechanisms for plaque removal after A beta immunotherapy for Alzheimer disease. Nat Med 10:117–118 author reply 118–119 doi:10.1038/nm0204-117

    PubMed  CAS  Google Scholar 

  • Akiyama H, Schwab C, Kondo H, Mori H, Kametani F, Ikeda K, McGeer PL (1996) Granules in glial cells of patients with Alzheimer’s disease are immunopositive for C-terminal sequences of beta-amyloid protein. Neurosci Lett 206:169–172 doi:10.1016/S0304-3940(96)12474-5

    PubMed  CAS  Google Scholar 

  • Akiyama H, Barger S, Barnum S, Bradt B, Bauer J, Cole GM, Cooper NR, Eikelenboom P, Emmerling M, Fiebich BL, Finch CE, Frautschy S, Griffin WS, Hampel H, Hull M, Landreth G, Lue L, Mrak R, Mackenzie IR, McGeer PL, O’Banion MK, Pachter J, Pasinetti G, Plata-Salaman C, Rogers J, Rydel R, Shen Y, Streit W, Strohmeyer R, Tooyoma I, Van Muiswinkel FL, Veerhuis R, Walker D, Webster S, Wegrzyniak B, Wenk G, Wyss-Coray T (2000) Inflammation and Alzheimer’s disease. Neurobiol Aging 21:383–421 doi:10.1016/S0197-4580(00)00124-X

    PubMed  CAS  Google Scholar 

  • Alafuzoff I, Overmyer M, Helisalmi S, Soininen H (2000) Lower counts of astroglia and activated microglia in patients with Alzheimer’s disease with regular use of non-steroidal anti-inflammatory drugs. J Alzheimers Dis 2:37–46

    PubMed  CAS  Google Scholar 

  • Arlicot N, Katsifis A, Garreau L, Mattner F, Vergote J, Duval S, Bodard S, Guilloteau D, Chalon S (2008) Evaluation of CLINDE as potent translocator protein (18 kDa) SPECT radiotracer reflecting the degree of neuroinflammation in a rat model of microglial activation. Eur J Nucl Med Mol Imaging (in press)

  • Bacskai BJ, Kajdasz ST, Christie RH, Carter C, Games D, Seubert P, Schenk D, Hyman BT (2001) Imaging of amyloid-beta deposits in brains of living mice permits direct observation of clearance of plaques with immunotherapy. Nat Med 7:369–372 doi:10.1038/85525

    PubMed  CAS  Google Scholar 

  • Bacskai BJ, Kajdasz ST, McLellan ME, Games D, Seubert P, Schenk D, Hyman BT (2002) Non-Fc-mediated mechanisms are involved in clearance of amyloid-beta in vivo by immunotherapy. J Neurosci 22:7873–7878

    PubMed  CAS  Google Scholar 

  • Banati RB (2002) Visualising microglial activation in vivo. Glia 40:206–217 doi:10.1002/glia.10144

    PubMed  Google Scholar 

  • Banati RB, Myers R, Kreutzberg GW (1997) PK (‘peripheral benzodiazepine’)-binding sites in the CNS indicate early and discrete brain lesions: microautoradiographic detection of [3H]PK11195 binding to activated microglia. J Neurocytol 26:77–82 doi:10.1023/A:1018567510105

    PubMed  CAS  Google Scholar 

  • Banati RB, Goerres GW, Myers R, Gunn RN, Turkheimer FE, Kreutzberg GW, Brooks DJ, Jones T, Duncan JS (1999) [11C](R)-PK11195 positron emission tomography imaging of activated microglia in vivo in Rasmussen’s encephalitis. Neurology 53:2199–2203

    PubMed  CAS  Google Scholar 

  • Banati RB, Newcombe J, Gunn RN, Cagnin A, Turkheimer F, Heppner F, Price G, Wegner F, Giovannoni G, Miller DH, Perkin GD, Smith T, Hewson AK, Bydder G, Kreutzberg GW, Jones T, Cuzner ML, Myers R (2000) The peripheral benzodiazepine binding site in the brain in multiple sclerosis: quantitative in vivo imaging of microglia as a measure of disease activity. Brain 123(Pt 11):2321–2337 doi:10.1093/brain/123.11.2321

    PubMed  Google Scholar 

  • Bard F, Cannon C, Barbour R, Burke RL, Games D, Grajeda H, Guido T, Hu K, Huang J, Johnson-Wood K, Khan K, Kholodenko D, Lee M, Lieberburg I, Motter R, Nguyen M, Soriano F, Vasquez N, Weiss K, Welch B, Seubert P, Schenk D, Yednock T (2000) Peripherally administered antibodies against amyloid beta-peptide enter the central nervous system and reduce pathology in a mouse model of Alzheimer disease. Nat Med 6:916–919 doi:10.1038/78682

    PubMed  CAS  Google Scholar 

  • Battista D, Ferrari CC, Gage FH, Pitossi FJ (2006) Neurogenic niche modulation by activated microglia: transforming growth factor beta increases neurogenesis in the adult dentate gyrus. Eur J Neurosci 23:83–93 doi:10.1111/j.1460-9568.2005.04539.x

    PubMed  Google Scholar 

  • Belloli S, Moresco RM, Matarrese M, Biella G, Sanvito F, Simonelli P, Turolla E, Olivieri S, Cappelli A, Vomero S, Galli-Kienle M, Fazio F (2004) Evaluation of three quinoline-carboxamide derivatives as potential radioligands for the in vivo pet imaging of neurodegeneration. Neurochem Int 44:433–440 doi:10.1016/j.neuint.2003.08.006

    PubMed  CAS  Google Scholar 

  • Boche D, Nicoll JA (2008) The role of the immune system in clearance of Abeta from the brain. Brain Pathol 18:267–278 doi:10.1111/j.1750-3639.2008.00134.x

    PubMed  Google Scholar 

  • Bolmont T, Haiss F, Eicke D, Radde R, Mathis CA, Klunk WE, Kohsaka S, Jucker M, Calhoun ME (2008) Dynamics of the microglial/amyloid interaction indicate a role in plaque maintenance. J Neurosci 28:4283–4292 doi:10.1523/JNEUROSCI.4814-07.2008

    PubMed  CAS  Google Scholar 

  • Boutin H, Chauveau F, Thominiaux C, Kuhnast B, Gregoire MC, Jan S, Trebossen R, Dolle F, Tavitian B, Mattner F, Katsifis A (2007) In vivo imaging of brain lesions with [(11)C]CLINME, a new PET radioligand of peripheral benzodiazepine receptors. Glia 55:1459–1468 doi:10.1002/glia.20562

    PubMed  Google Scholar 

  • Braestrup C, Albrechtsen R, Squires RF (1977) High densities of benzodiazepine receptors in human cortical areas. Nature 269:702–704 doi:10.1038/269702a0

    PubMed  CAS  Google Scholar 

  • Buttini M, Masliah E, Barbour R, Grajeda H, Motter R, Johnson-Wood K, Khan K, Seubert P, Freedman S, Schenk D, Games D (2005) Beta-amyloid immunotherapy prevents synaptic degeneration in a mouse model of Alzheimer’s disease. J Neurosci 25:9096–9101 doi:10.1523/JNEUROSCI.1697-05.2005

    PubMed  CAS  Google Scholar 

  • Cagnin A, Myers R, Gunn RN, Lawrence AD, Stevens T, Kreutzberg GW, Jones T, Banati RB (2001a) In vivo visualization of activated glia by [11C] (R)-PK11195-PET following herpes encephalitis reveals projected neuronal damage beyond the primary focal lesion. Brain 124:2014–2027 doi:10.1093/brain/124.10.2014

    PubMed  CAS  Google Scholar 

  • Cagnin A, Brooks DJ, Kennedy AM, Gunn RN, Myers R, Turkheimer FE, Jones T, Banati RB (2001b) In-vivo measurement of activated microglia in dementia. Lancet 358:461–467 doi:10.1016/S0140-6736(01)05625-2

    PubMed  CAS  Google Scholar 

  • Cagnin A, Rossor M, Sampson EL, Mackinnon T, Banati RB (2004) In vivo detection of microglial activation in frontotemporal dementia. Ann Neurol 56:894–897 doi:10.1002/ana.20332

    PubMed  Google Scholar 

  • Cagnin A, Kassiou M, Meikle SR, Banati RB (2006a) In vivo evidence for microglial activation in neurodegenerative dementia. Acta Neurol Scand Suppl 185:107–114 doi:10.1111/j.1600-0404.2006.00694.x

    PubMed  CAS  Google Scholar 

  • Cagnin A, Taylor-Robinson SD, Forton DM, Banati RB (2006b) In vivo imaging of cerebral “peripheral benzodiazepine binding sites” in patients with hepatic encephalopathy. Gut 55:547–553 doi:10.1136/gut.2005.075051

    PubMed  CAS  Google Scholar 

  • Cappelli A, Matarrese M, Moresco RM, Valenti S, Anzini M, Vomero S, Turolla EA, Belloli S, Simonelli P, Filannino MA, Lecchi M, Fazio F (2006) Synthesis, labeling, and biological evaluation of halogenated 2-quinolinecarboxamides as potential radioligands for the visualization of peripheral benzodiazepine receptors. Bioorg Med Chem 14:4055–4066 doi:10.1016/j.bmc.2006.02.004

    PubMed  CAS  Google Scholar 

  • Carty NC, Wilcock DM, Rosenthal A, Grimm J, Pons J, Ronan V, Gottschall PE, Gordon MN, Morgan D (2006) Intracranial administration of deglycosylated C-terminal-specific anti-Abeta antibody efficiently clears amyloid plaques without activating microglia in amyloid-depositing transgenic mice. J Neuroinflammation 3:11 doi:10.1186/1742-2094-3-11

    PubMed  Google Scholar 

  • Castedo M, Perfettini JL, Kroemer G (2002) Mitochondrial apoptosis and the peripheral benzodiazepine receptor: a novel target for viral and pharmacological manipulation. J Exp Med 196:1121–1125 doi:10.1084/jem.20021758

    PubMed  CAS  Google Scholar 

  • Chaki S, Funakoshi T, Yoshikawa R, Okuyama S, Okubo T, Nakazato A, Nagamine M, Tomisawa K (1999) Binding characteristics of [3H]DAA1106, a novel and selective ligand for peripheral benzodiazepine receptors. Eur J Pharmacol 371:197–204 doi:10.1016/S0014-2999(99)00118-1

    PubMed  CAS  Google Scholar 

  • Chen MK, Guilarte TR (2006) Imaging the peripheral benzodiazepine receptor response in central nervous system demyelination and remyelination. Toxicol Sci 91:532–539

    PubMed  CAS  Google Scholar 

  • Chen MK, Baidoo K, Verina T, Guilarte TR (2004) Peripheral benzodiazepine receptor imaging in CNS demyelination: functional implications of anatomical and cellular localization. Brain 127:1379–1392 doi:10.1093/brain/awh161

    PubMed  Google Scholar 

  • Chen MK, Kuwabara H, Zhou Y, Adams RJ, Brasic JR, McGlothan JL, Verina T, Burton NC, Alexander M, Kumar A, Wong DF, Guilarte TR (2008) VMAT2 and dopamine neuron loss in a primate model of Parkinson’s disease. J Neurochem 105:78–90 doi:10.1111/j.1471-4159.2007.05108.x

    PubMed  CAS  Google Scholar 

  • Choi SH, Veeraraghavalu K, Lazarov O, Marler S, Ransohoff RM, Ramirez JM, Sisodia SS (2008) Non-cell-autonomous effects of presenilin 1 variants on enrichment-mediated hippocampal progenitor cell proliferation and differentiation. Neuron 59:568–580 doi:10.1016/j.neuron.2008.07.033

    PubMed  CAS  Google Scholar 

  • Cicchetti F, Brownell AL, Williams K, Chen YI, Livni E, Isacson O (2002) Neuroinflammation of the nigrostriatal pathway during progressive 6-OHDA dopamine degeneration in rats monitored by immunohistochemistry and PET imaging. Eur J Neurosci 15:991–998 doi:10.1046/j.1460-9568.2002.01938.x

    PubMed  CAS  Google Scholar 

  • Colton CA, Mott RT, Sharpe H, Xu Q, Van Nostrand WE, Vitek MP (2006) Expression profiles for macrophage alternative activation genes in AD and in mouse models of AD. J Neuroinflammation 3:27 doi:10.1186/1742-2094-3-27

    PubMed  Google Scholar 

  • Cooper NR, Kalaria RN, McGeer PL, Rogers J (2000) Key issues in Alzheimer’s disease inflammation. Neurobiol Aging 21:451–453 doi:10.1016/S0197-4580(00)00148-2

    PubMed  CAS  Google Scholar 

  • Cumming P, Danielsen EH, Vafaee M, Falborg L, Steffensen E, Sorensen JC, Gillings N, Bender D, Marthi K, Andersen F, Munk O, Smith D, Moller A, Gjedde A (2001) Normalization of markers for dopamine innervation in striatum of MPTP-lesioned miniature pigs with intrastriatal grafts. Acta Neurol Scand 103:309–315 doi:10.1034/j.1600-0404.2001.103005309.x

    PubMed  CAS  Google Scholar 

  • Das P, Howard V, Loosbrock N, Dickson D, Murphy MP, Golde TE (2003) Amyloid-beta immunization effectively reduces amyloid deposition in FcRgamma−/− knock-out mice. J Neurosci 23:8532–8538

    PubMed  CAS  Google Scholar 

  • Davalos D, Grutzendler J, Yang G, Kim JV, Zuo Y, Jung S, Littman DR, Dustin ML, Gan WB (2005) ATP mediates rapid microglial response to local brain injury in vivo. Nat Neurosci 8:752–758 doi:10.1038/nn1472

    PubMed  CAS  Google Scholar 

  • Debruyne JC, Versijpt J, Van Laere KJ, De Vos F, Keppens J, Strijckmans K, Achten E, Slegers G, Dierckx RA, Korf J, De Reuck JL (2003) PET visualization of microglia in multiple sclerosis patients using [11C]PK11195. Eur J Neurol 10:257–264 doi:10.1046/j.1468-1331.2003.00571.x

    PubMed  CAS  Google Scholar 

  • Del Rio Hortega P (1932) Microglia. In: Penfield W (ed) Cytology and cellular pathology of the nervous system. Hoeber, New York, pp 482–534

    Google Scholar 

  • DeMattos RB, Bales KR, Cummins DJ, Dodart JC, Paul SM, Holtzman DM (2001) Peripheral anti-A beta antibody alters CNS and plasma A beta clearance and decreases brain A beta burden in a mouse model of Alzheimer’s disease. Proc Natl Acad Sci USA 98:8850–8855 doi:10.1073/pnas.151261398

    PubMed  CAS  Google Scholar 

  • Desjardins P, Bandeira P, Raghavendra Rao VL, Ledoux S, Butterworth RF (1997) Increased expression of the peripheral-type benzodiazepine receptor-isoquinoline carboxamide binding protein mRNA in brain following portacaval anastomosis. Brain Res 758:255–258 doi:10.1016/S0006-8993(97)00339-9

    PubMed  CAS  Google Scholar 

  • DiCarlo G, Wilcock D, Henderson D, Gordon M, Morgan D (2001) Intrahippocampal LPS injections reduce Abeta load in APP+PS1 transgenic mice. Neurobiol Aging 22:1007–1012 doi:10.1016/S0197-4580(01)00292-5

    PubMed  CAS  Google Scholar 

  • El Khoury J, Toft M, Hickman SE, Means TK, Terada K, Geula C, Luster AD (2007) Ccr2 deficiency impairs microglial accumulation and accelerates progression of Alzheimer-like disease. Nat Med 13:432–438 doi:10.1038/nm1555

    PubMed  Google Scholar 

  • Flanary BE, Streit WJ (2004) Progressive telomere shortening occurs in cultured rat microglia, but not astrocytes. Glia 45:75–88 doi:10.1002/glia.10301

    PubMed  Google Scholar 

  • Flanary BE, Sammons NW, Nguyen C, Walker D, Streit WJ (2007) Evidence that aging and amyloid promote microglial cell senescence. Rejuvenation Res 10:61–74 doi:10.1089/rej.2006.9096

    PubMed  CAS  Google Scholar 

  • Fookes CJ, Pham TQ, Mattner F, Greguric I, Loc’h C, Liu X, Berghofer P, Shepherd R, Gregoire MC, Katsifis A (2008) Synthesis and biological evaluation of substituted [18F]imidazo[1,2-a]pyridines and [18F]pyrazolo[1,5-a]pyrimidines for the study of the peripheral benzodiazepine receptor using positron emission tomography. J Med Chem 51:3700–3712 doi:10.1021/jm7014556

    PubMed  CAS  Google Scholar 

  • Frank MG, Barrientos RM, Biedenkapp JC, Rudy JW, Watkins LR, Maier SF (2006) mRNA up-regulation of MHC II and pivotal pro-inflammatory genes in normal brain aging. Neurobiol Aging 27:717–722 doi:10.1016/j.neurobiolaging.2005.03.013

    PubMed  CAS  Google Scholar 

  • Frenkel D, Maron R, Burt DS, Weiner HL (2005) Nasal vaccination with a proteosome-based adjuvant and glatiramer acetate clears beta-amyloid in a mouse model of Alzheimer disease. J Clin Invest 115:2423–2433 doi:10.1172/JCI23241

    PubMed  CAS  Google Scholar 

  • Garcia-Alloza M, Ferrara BJ, Dodwell SA, Hickey GA, Hyman BT, Bacskai BJ (2007) A limited role for microglia in antibody mediated plaque clearance in APP mice. Neurobiol Dis 28:286–292 doi:10.1016/j.nbd.2007.07.019

    PubMed  CAS  Google Scholar 

  • Gasparini L, Ongini E, Wenk G (2004a) Non-steroidal anti-inflammatory drugs (NSAIDs) in Alzheimer’s disease: old and new mechanisms of action. J Neurochem 91:521–536 doi:10.1111/j.1471-4159.2004.02743.x

    PubMed  CAS  Google Scholar 

  • Gasparini L, Rusconi L, Xu H, del Soldato P, Ongini E (2004b) Modulation of beta-amyloid metabolism by non-steroidal anti-inflammatory drugs in neuronal cell cultures. J Neurochem 88:337–348

    Article  PubMed  CAS  Google Scholar 

  • Gehlert DR, Stephenson DT, Schober DA, Rash K, Clemens JA (1997) Increased expression of peripheral benzodiazepine receptors in the facial nucleus following motor neuron axotomy. Neurochem Int 31:705–713 doi:10.1016/S0197-0186(97)00007-7

    PubMed  CAS  Google Scholar 

  • Gehrmann J, Matsumoto Y, Kreutzberg GW (1995) Microglia: intrinsic immuneffector cell of the brain. Brain Res Brain Res Rev 20:269–287 doi:10.1016/0165-0173(94)00015-H

    PubMed  CAS  Google Scholar 

  • Gelinas DS, DaSilva K, Fenili D, St George-Hyslop P, McLaurin J (2004) Immunotherapy for Alzheimer’s disease. Proc Natl Acad Sci USA 101(Suppl 2):14657–14662 doi:10.1073/pnas.0404866101

    PubMed  CAS  Google Scholar 

  • Gerhard A, Neumaier B, Elitok E, Glatting G, Ries V, Tomczak R, Ludolph AC, Reske SN (2000) In vivo imaging of activated microglia using [11C]PK11195 and positron emission tomography in patients after ischemic stroke. Neuroreport 11:2957–2960 doi:10.1097/00001756-200009110-00025

    PubMed  CAS  Google Scholar 

  • Gerhard A, Watts J, Trender-Gerhard I, Turkheimer F, Banati RB, Bhatia K, Brooks DJ (2004) In vivo imaging of microglial activation with [11C](R)-PK11195 PET in corticobasal degeneration. Mov Disord 19:1221–1226 doi:10.1002/mds.20162

    PubMed  Google Scholar 

  • Gerhard A, Schwarz J, Myers R, Wise R, Banati RB (2005) Evolution of microglial activation in patients after ischemic stroke: a [11C](R)-PK11195 PET study. Neuroimage 24:591–595 doi:10.1016/j.neuroimage.2004.09.034

    PubMed  Google Scholar 

  • Gerhard A, Pavese N, Hotton G, Turkheimer F, Es M, Hammers A, Eggert K, Oertel W, Banati RB, Brooks DJ (2006) In vivo imaging of microglial activation with [11C](R)-PK11195 PET in idiopathic Parkinson’s disease. Neurobiol Dis 21:404–412 doi:10.1016/j.nbd.2005.08.002

    PubMed  CAS  Google Scholar 

  • Gilman S, Koller M, Black RS, Jenkins L, Griffith SG, Fox NC, Eisner L, Kirby L, Rovira MB, Forette F, Orgogozo JM (2005) Clinical effects of Abeta immunization (AN1792) in patients with AD in an interrupted trial. Neurology 64:1553–1562 doi:10.1212/01.WNL.0000159740.16984.3C

    PubMed  CAS  Google Scholar 

  • Goerres GW, Revesz T, Duncan J, Banati RB (2001) Imaging cerebral vasculitis in refractory epilepsy using [(11)C](R)-PK11195 positron emission tomography. AJR Am J Roentgenol 176:1016–1018

    PubMed  CAS  Google Scholar 

  • Groom GN, Junck L, Foster NL, Frey KA, Kuhl DE (1995) PET of peripheral benzodiazepine binding sites in the microgliosis of Alzheimer’s disease. J Nucl Med 36:2207–2210

    PubMed  CAS  Google Scholar 

  • Group AR, Lyketsos CG, Breitner JC, Green RC, Martin BK, Meinert C, Piantadosi S, Sabbagh M (2007) Naproxen and celecoxib do not prevent AD in early results from a randomized controlled trial. Neurology 68:1800–1808 doi:10.1212/01.wnl.0000260269.93245.d2

    Google Scholar 

  • Gulyas B, Halldin C, Vas A, Banati RB, Shchukin E, Finnema S, Tarkainen J, Tihanyi K, Szilagyi G, Farde L (2005) [11C]vinpocetine: a prospective peripheral benzodiazepine receptor ligand for primate PET studies. J Neurol Sci 229–230:219–223 doi:10.1016/j.jns.2004.11.032

    PubMed  Google Scholar 

  • Halliday GM, Shepherd CE, McCann H, Reid WG, Grayson DA, Broe GA, Kril JJ (2000) Effect of anti-inflammatory medications on neuropathological findings in Alzheimer disease. Arch Neurol 57:831–836 doi:10.1001/archneur.57.6.831

    PubMed  CAS  Google Scholar 

  • Hammoud DA, Endres CJ, Chander AR, Guilarte TR, Wong DF, Sacktor NC, McArthur JC, Pomper MG (2005) Imaging glial cell activation with [11C]-R-PK11195 in patients with AIDS. J Neurovirol 11:346–355 doi:10.1080/13550280500187351

    PubMed  CAS  Google Scholar 

  • Hanisch UK, Kettenmann H (2007) Microglia: active sensor and versatile effector cells in the normal and pathologic brain. Nat Neurosci 10:1387–1394 doi:10.1038/nn1997

    PubMed  CAS  Google Scholar 

  • Heneka MT, O’Banion MK (2007) Inflammatory processes in Alzheimer’s disease. J Neuroimmunol 184:69–91 doi:10.1016/j.jneuroim.2006.11.017

    PubMed  CAS  Google Scholar 

  • Henkel K, Karitzky J, Schmid M, Mader I, Glatting G, Unger JW, Neumaier B, Ludolph AC, Reske SN, Landwehrmeyer GB (2004) Imaging of activated microglia with PET and [11C]PK 11195 in corticobasal degeneration. Mov Disord 19:817–821 doi:10.1002/mds.20040

    PubMed  Google Scholar 

  • Hickman SE, Allison EK, El Khoury J (2008) Microglial dysfunction and defective beta-amyloid clearance pathways in aging Alzheimer’s disease mice. J Neurosci 28:8354–8360 doi:10.1523/JNEUROSCI.0616-08.2008

    PubMed  CAS  Google Scholar 

  • Hirsch JD, Beyer CF, Malkowitz L, Beer B, Blume AJ (1989) Mitochondrial benzodiazepine receptors mediate inhibition of mitochondrial respiratory control. Mol Pharmacol 35:157–163

    PubMed  CAS  Google Scholar 

  • Hock C, Konietzko U, Streffer JR, Tracy J, Signorell A, Muller-Tillmanns B, Lemke U, Henke K, Moritz E, Garcia E, Wollmer MA, Umbricht D, de Quervain DJ, Hofmann M, Maddalena A, Papassotiropoulos A, Nitsch RM (2003) Antibodies against beta-amyloid slow cognitive decline in Alzheimer’s disease. Neuron 38:547–554 doi:10.1016/S0896-6273(03)00294-0

    PubMed  CAS  Google Scholar 

  • Itzhak Y, Baker L, Norenberg MD (1993) Characterization of the peripheral-type benzodiazepine receptors in cultured astrocytes: evidence for multiplicity. Glia 9:211–218 doi:10.1002/glia.440090306

    PubMed  CAS  Google Scholar 

  • Itzhak Y, Roig-Cantisano A, Norenberg MD (1995) Ontogeny of peripheral-type benzodiazepine receptors in cultured astrocytes and brain from rat. Brain Res Dev Brain Res 84:62–66 doi:10.1016/0165-3806(94)00163-T

    PubMed  CAS  Google Scholar 

  • Iversen P, Hansen DA, Bender D, Rodell A, Munk OL, Cumming P, Keiding S (2006) Peripheral benzodiazepine receptors in the brain of cirrhosis patients with manifest hepatic encephalopathy. Eur J Nucl Med Mol Imaging 33:810–816 doi:10.1007/s00259-005-0052-8

    PubMed  CAS  Google Scholar 

  • James ML, Fulton RR, Henderson DJ, Eberl S, Meikle SR, Thomson S, Allan RD, Dolle F, Fulham MJ, Kassiou M (2005) Synthesis and in vivo evaluation of a novel peripheral benzodiazepine receptor PET radioligand. Bioorg Med Chem 13:6188–6194 doi:10.1016/j.bmc.2005.06.030

    PubMed  CAS  Google Scholar 

  • James ML, Fulton RR, Vercoullie J, Henderson DJ, Garreau L, Chalon S, Dolle F, Costa B, Guilloteau D, Kassiou M (2008) DPA-714, a new translocator protein-specific ligand: synthesis, radiofluorination, and pharmacologic characterization. J Nucl Med 49:814–822 doi:10.2967/jnumed.107.046151

    PubMed  CAS  Google Scholar 

  • Janus C, Pearson J, McLaurin J, Mathews PM, Jiang Y, Schmidt SD, Chishti MA, Horne P, Heslin D, French J, Mount HT, Nixon RA, Mercken M, Bergeron C, Fraser PE, St George-Hyslop P, Westaway D (2000) A beta peptide immunization reduces behavioural impairment and plaques in a model of Alzheimer’s disease. Nature 408:979–982 doi:10.1038/35050110

    PubMed  CAS  Google Scholar 

  • Klyubin I, Betts V, Welzel AT, Blennow K, Zetterberg H, Wallin A, Lemere CA, Cullen WK, Peng Y, Wisniewski T, Selkoe DJ, Anwyl R, Walsh DM, Rowan MJ (2008) Amyloid beta protein dimer-containing human CSF disrupts synaptic plasticity: prevention by systemic passive immunization. J Neurosci 28:4231–4237 doi:10.1523/JNEUROSCI.5161-07.2008

    PubMed  CAS  Google Scholar 

  • Kreutzberg GW (1996) Microglia: a sensor for pathological events in the CNS. Trends Neurosci 19:312–318 doi:10.1016/0166-2236(96)10049-7

    PubMed  CAS  Google Scholar 

  • Kuhlmann AC, Guilarte TR (2000) Cellular and subcellular localization of peripheral benzodiazepine receptors after trimethyltin neurotoxicity. J Neurochem 74:1694–1704 doi:10.1046/j.1471-4159.2000.0741694.x

    PubMed  CAS  Google Scholar 

  • Kumar A, Chugani HT, Luat A, Asano E, Sood S (2008) Epilepsy surgery in a case of encephalitis: use of 11C-PK11195 positron emission tomography. Pediatr Neurol 38:439–442 doi:10.1016/j.pediatrneurol.2008.03.001

    PubMed  Google Scholar 

  • Lemere CA, Beierschmitt A, Iglesias M, Spooner ET, Bloom JK, Leverone JF, Zheng JB, Seabrook TJ, Louard D, Li D, Selkoe DJ, Palmour RM, Ervin FR (2004) Alzheimer’s disease abeta vaccine reduces central nervous system abeta levels in a non-human primate, the Caribbean vervet. Am J Pathol 165:283–297

    PubMed  CAS  Google Scholar 

  • Li L, Lu J, Tay SS, Moochhala SM, He BP (2007) The function of microglia, either neuroprotection or neurotoxicity, is determined by the equilibrium among factors released from activated microglia in vitro. Brain Res 1159:8–17 doi:10.1016/j.brainres.2007.04.066

    PubMed  CAS  Google Scholar 

  • Mackenzie IR (2001) Postmortem studies of the effect of anti-inflammatory drugs on Alzheimer-type pathology and associated inflammation. Neurobiol Aging 22:819–822 doi:10.1016/S0197-4580(01)00304-9

    PubMed  CAS  Google Scholar 

  • Mackenzie IR, Munoz DG (1998) Nonsteroidal anti-inflammatory drug use and Alzheimer-type pathology in aging. Neurology 50:986–990

    PubMed  CAS  Google Scholar 

  • Maeda J, Higuchi M, Inaji M, Ji B, Haneda E, Okauchi T, Zhang MR, Suzuki K, Suhara T (2007a) Phase-dependent roles of reactive microglia and astrocytes in nervous system injury as delineated by imaging of peripheral benzodiazepine receptor. Brain Res 1157:100–111 doi:10.1016/j.brainres.2007.04.054

    PubMed  CAS  Google Scholar 

  • Maeda J, Ji B, Irie T, Tomiyama T, Maruyama M, Okauchi T, Staufenbiel M, Iwata N, Ono M, Saido TC, Suzuki K, Mori H, Higuchi M, Suhara T (2007b) Longitudinal, quantitative assessment of amyloid, neuroinflammation, and anti-amyloid treatment in a living mouse model of Alzheimer’s disease enabled by positron emission tomography. J Neurosci 27:10957–10968 doi:10.1523/JNEUROSCI.0673-07.2007

    PubMed  CAS  Google Scholar 

  • Maier M, Peng Y, Jiang L, Seabrook TJ, Carroll MC, Lemere CA (2008) Complement C3 deficiency leads to accelerated amyloid beta plaque deposition and neurodegeneration and modulation of the microglia/macrophage phenotype in amyloid precursor protein transgenic mice. J Neurosci 28:6333–6341 doi:10.1523/JNEUROSCI.0829-08.2008

    PubMed  CAS  Google Scholar 

  • Mankowski JL, Queen SE, Tarwater PJ, Adams RJ, Guilarte TR (2003) Elevated peripheral benzodiazepine receptor expression in simian immunodeficiency virus encephalitis. J Neurovirol 9:94–100 doi:10.1080/713831342

    PubMed  CAS  Google Scholar 

  • Masliah E, Hansen L, Adame A, Crews L, Bard F, Lee C, Seubert P, Games D, Kirby L, Schenk D (2005) Abeta vaccination effects on plaque pathology in the absence of encephalitis in Alzheimer disease. Neurology 64:129–131

    PubMed  CAS  Google Scholar 

  • McEnery MW, Snowman AM, Trifiletti RR, Snyder SH (1992) Isolation of the mitochondrial benzodiazepine receptor: association with the voltage-dependent anion channel and the adenine nucleotide carrier. Proc Natl Acad Sci USA 89:3170–3174 doi:10.1073/pnas.89.8.3170

    PubMed  CAS  Google Scholar 

  • McGeer PL, Schulzer M, McGeer EG (1996) Arthritis and anti-inflammatory agents as possible protective factors for Alzheimer’s disease: a review of 17 epidemiologic studies. Neurology 47:425–432

    PubMed  CAS  Google Scholar 

  • Meyer-Luehmann M, Spires-Jones TL, Prada C, Garcia-Alloza M, de Calignon A, Rozkalne A, Koenigsknecht-Talboo J, Holtzman DM, Bacskai BJ, Hyman BT (2008) Rapid appearance and local toxicity of amyloid-beta plaques in a mouse model of Alzheimer’s disease. Nature 451:720–724 doi:10.1038/nature06616

    PubMed  CAS  Google Scholar 

  • Mildner A, Schmidt H, Nitsche M, Merkler D, Hanisch UK, Mack M, Heikenwalder M, Bruck W, Priller J, Prinz M (2007) Microglia in the adult brain arise from Ly-6ChiCCR2+ monocytes only under defined host conditions. Nat Neurosci 10:1544–1553 doi:10.1038/nn2015

    PubMed  CAS  Google Scholar 

  • Minghetti L, Levi G (1998) Microglia as effector cells in brain damage and repair: focus on prostanoids and nitric oxide. Prog Neurobiol 54:99–125 doi:10.1016/S0301-0082(97)00052-X

    PubMed  CAS  Google Scholar 

  • Morgan D, Gordon MN, Tan J, Wilcock D, Rojiani AM (2005) Dynamic complexity of the microglial activation response in transgenic models of amyloid deposition: implications for Alzheimer therapeutics. J Neuropathol Exp Neurol 64:743–753 doi:10.1097/01.jnen.0000178444.33972.e0

    PubMed  CAS  Google Scholar 

  • Myers R, Manjil LG, Cullen BM, Price GW, Frackowiak RS, Cremer JE (1991) Macrophage and astrocyte populations in relation to [3H]PK 11195 binding in rat cerebral cortex following a local ischaemic lesion. J Cereb Blood Flow Metab 11:314–322

    PubMed  CAS  Google Scholar 

  • Nicoll JA, Wilkinson D, Holmes C, Steart P, Markham H, Weller RO (2003) Neuropathology of human Alzheimer disease after immunization with amyloid-beta peptide: a case report. Nat Med 9:448–452 doi:10.1038/nm840

    PubMed  CAS  Google Scholar 

  • Nicoll JA, Barton E, Boche D, Neal JW, Ferrer I, Thompson P, Vlachouli C, Wilkinson D, Bayer A, Games D, Seubert P, Schenk D, Holmes C (2006) Abeta species removal after abeta42 immunization. J Neuropathol Exp Neurol 65:1040–1048 doi:10.1097/01.jnen.0000240466.10758.ce

    PubMed  CAS  Google Scholar 

  • Nimmerjahn A, Kirchhoff F, Helmchen F (2005) Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science 308:1314–1318 doi:10.1126/science.1110647

    PubMed  CAS  Google Scholar 

  • Okuyama S, Chaki S, Yoshikawa R, Ogawa S, Suzuki Y, Okubo T, Nakazato A, Nagamine M, Tomisawa K (1999) Neuropharmacological profile of peripheral benzodiazepine receptor agonists, DAA1097 and DAA1106. Life Sci 64:1455–1464 doi:10.1016/S0024-3205(99)00079-X

    PubMed  CAS  Google Scholar 

  • Orgogozo JM, Gilman S, Dartigues JF, Laurent B, Puel M, Kirby LC, Jouanny P, Dubois B, Eisner L, Flitman S, Michel BF, Boada M, Frank A, Hock C (2003) Subacute meningoencephalitis in a subset of patients with AD after Abeta42 immunization. Neurology 61:46–54

    PubMed  CAS  Google Scholar 

  • Ouchi Y, Yoshikawa E, Sekine Y, Futatsubashi M, Kanno T, Ogusu T, Torizuka T (2005) Microglial activation and dopamine terminal loss in early Parkinson’s disease. Ann Neurol 57:168–175 doi:10.1002/ana.20338

    PubMed  CAS  Google Scholar 

  • Papadopoulos V, Amri H, Li H, Boujrad N, Vidic B, Garnier M (1997) Targeted disruption of the peripheral-type benzodiazepine receptor gene inhibits steroidogenesis in the R2C Leydig tumor cell line. J Biol Chem 272:32129–32135 doi:10.1074/jbc.272.51.32129

    PubMed  CAS  Google Scholar 

  • Papadopoulos V, Lecanu L, Brown RC, Han Z, Yao ZX (2006a) Peripheral-type benzodiazepine receptor in neurosteroid biosynthesis, neuropathology and neurological disorders. Neuroscience 138:749–756 doi:10.1016/j.neuroscience.2005.05.063

    PubMed  CAS  Google Scholar 

  • Papadopoulos V, Baraldi M, Guilarte TR, Knudsen TB, Lacapere JJ, Lindemann P, Norenberg MD, Nutt D, Weizman A, Zhang MR, Gavish M (2006b) Translocator protein (18 kDa): new nomenclature for the peripheral-type benzodiazepine receptor based on its structure and molecular function. Trends Pharmacol Sci 27:402–409 doi:10.1016/j.tips.2006.06.005

    PubMed  CAS  Google Scholar 

  • Pappata S, Levasseur M, Gunn RN, Myers R, Crouzel C, Syrota A, Jones T, Kreutzberg GW, Banati RB (2000) Thalamic microglial activation in ischemic stroke detected in vivo by PET and [11C]PK1195. Neurology 55:1052–1054

    PubMed  CAS  Google Scholar 

  • Paresce DM, Chung H, Maxfield FR (1997) Slow degradation of aggregates of the Alzheimer’s disease amyloid beta-protein by microglial cells. J Biol Chem 272:29390–29397 doi:10.1074/jbc.272.46.29390

    PubMed  CAS  Google Scholar 

  • Park CH, Carboni E, Wood PL, Gee KW (1996) Characterization of peripheral benzodiazepine type sites in a cultured murine BV-2 microglial cell line. Glia 16:65–70 doi:10.1002/(SICI)1098-1136(199601)16:1<65::AID-GLIA7>3.0.CO;2-A

    PubMed  CAS  Google Scholar 

  • Pavese N, Gerhard A, Tai YF, Ho AK, Turkheimer F, Barker RA, Brooks DJ, Piccini P (2006) Microglial activation correlates with severity in Huntington disease: a clinical and PET study. Neurology 66:1638–1643 doi:10.1212/01.wnl.0000222734.56412.17

    PubMed  CAS  Google Scholar 

  • Pedersen MD, Minuzzi L, Wirenfeldt M, Meldgaard M, Slidsborg C, Cumming P, Finsen B (2006) Up-regulation of PK11195 binding in areas of axonal degeneration coincides with early microglial activation in mouse brain. Eur J Neurosci 24:991–1000 doi:10.1111/j.1460-9568.2006.04975.x

    PubMed  Google Scholar 

  • Peri F, Nusslein-Volhard C (2008) Live imaging of neuronal degradation by microglia reveals a role for v0-ATPase a1 in phagosomal fusion in vivo. Cell 133:916–927 doi:10.1016/j.cell.2008.04.037

    PubMed  CAS  Google Scholar 

  • Petit-Taboue MC, Baron JC, Barre L, Travere JM, Speckel D, Camsonne R, MacKenzie ET (1991) Brain kinetics and specific binding of [11C]PK 11195 to omega 3 sites in baboons: positron emission tomography study. Eur J Pharmacol 200:347–351 doi:10.1016/0014-2999(91)90594-G

    PubMed  CAS  Google Scholar 

  • Ponomarev ED, Maresz K, Tan Y, Dittel BN (2007) CNS-derived interleukin-4 is essential for the regulation of autoimmune inflammation and induces a state of alternative activation in microglial cells. J Neurosci 27:10714–10721 doi:10.1523/JNEUROSCI.1922-07.2007

    PubMed  CAS  Google Scholar 

  • Price CJ, Wang D, Menon DK, Guadagno JV, Cleij M, Fryer T, Aigbirhio F, Baron JC, Warburton EA (2006) Intrinsic activated microglia map to the peri-infarct zone in the subacute phase of ischemic stroke. Stroke 37:1749–1753 doi:10.1161/01.STR.0000226980.95389.0b

    PubMed  Google Scholar 

  • Raghavendra Rao VL, Dogan A, Bowen KK, Dempsey RJ (2000) Traumatic brain injury leads to increased expression of peripheral-type benzodiazepine receptors, neuronal death, and activation of astrocytes and microglia in rat thalamus. Exp Neurol 161:102–114 doi:10.1006/exnr.1999.7269

    PubMed  CAS  Google Scholar 

  • Raine CS (2000) Inflammation in Alzheimer’s disease: a view from the periphery. Neurobiol Aging 21:437–440 discussion 451–433 doi:10.1016/S0197-4580(00)00138-X

    PubMed  CAS  Google Scholar 

  • Richartz E, Stransky E, Batra A, Simon P, Lewczuk P, Buchkremer G, Bartels M, Schott K (2005) Decline of immune responsiveness: a pathogenetic factor in Alzheimer’s disease. J Psychiatr Res 39:535–543 doi:10.1016/j.jpsychires.2004.12.005

    PubMed  Google Scholar 

  • Rogers J, Strohmeyer R, Kovelowski CJ, Li R (2002) Microglia and inflammatory mechanisms in the clearance of amyloid beta peptide. Glia 40:260–269 doi:10.1002/glia.10153

    PubMed  Google Scholar 

  • Rojas S, Martin A, Arranz MJ, Pareto D, Purroy J, Verdaguer E, Llop J, Gomez V, Gispert JD, Millan O, Chamorro A, Planas AM (2007) Imaging brain inflammation with [(11)C]PK11195 by PET and induction of the peripheral-type benzodiazepine receptor after transient focal ischemia in rats. J Cereb Blood Flow Metab 27:1975–1986 doi:10.1038/sj.jcbfm.9600500

    PubMed  CAS  Google Scholar 

  • Schenk D, Barbour R, Dunn W, Gordon G, Grajeda H, Guido T, Hu K, Huang J, Johnson-Wood K, Khan K, Kholodenko D, Lee M, Liao Z, Lieberburg I, Motter R, Mutter L, Soriano F, Shopp G, Vasquez N, Vandevert C, Walker S, Wogulis M, Yednock T, Games D, Seubert P (1999) Immunization with amyloid-beta attenuates Alzheimer-disease-like pathology in the PDAPP mouse. Nature 400:173–177 doi:10.1038/22124

    PubMed  CAS  Google Scholar 

  • Schuitemaker A, Van Berckel BN, Boellaard R, Kropholler M, Boellaard R, Jonker C, Lubberlink M, Scheltens P, Lammertsma AA (2006) Assessment of microglial activation in mild cognitive impairment using [11C](R)-PK11195 and PET. Neuroimage 31:T159

    Google Scholar 

  • Schwartz M, Butovsky O, Bruck W, Hanisch UK (2006) Microglial phenotype: is the commitment reversible. Trends Neurosci 29:68–74

    PubMed  CAS  Google Scholar 

  • Sekimata K, Hatano K, Ogawa M, Abe J, Magata Y, Biggio G, Serra M, Laquintana V, Denora N, Latrofa A, Trapani G, Liso G, Ito K (2008) Radiosynthesis and in vivo evaluation of N-[11C]methylated imidazopyridineacetamides as PET tracers for peripheral benzodiazepine receptors. Nucl Med Biol 35:327–334

    PubMed  CAS  Google Scholar 

  • Sekine Y, Ouchi Y, Sugihara G, Takei N, Yoshikawa E, Nakamura K, Iwata Y, Tsuchiya KJ, Suda S, Suzuki K, Kawai M, Takebayashi K, Yamamoto S, Matsuzaki H, Ueki T, Mori N, Gold MS, Cadet JL (2008) Methamphetamine causes microglial activation in the brains of human abusers. J Neurosci 28:5756–5761

    PubMed  CAS  Google Scholar 

  • Sela M (2006) Immunomodulatory vaccines against autoimmune diseases. Rejuvenation Res 9:126–133

    PubMed  CAS  Google Scholar 

  • Shah F, Hume SP, Pike VW, Ashworth S, McDermott J (1994) Synthesis of the enantiomers of [N-methyl-11C]PK 11195 and comparison of their behaviours as radioligands for PK binding sites in rats. Nucl Med Biol 21:573–581

    PubMed  CAS  Google Scholar 

  • Sheffield LG, Berman NE (1998) Microglial expression of MHC class II increases in normal aging of nonhuman primates. Neurobiol Aging 19:47–55

    PubMed  CAS  Google Scholar 

  • Simard AR, Rivest S (2004) Bone marrow stem cells have the ability to populate the entire central nervous system into fully differentiated parenchymal microglia. FASEB J 18:998–1000

    PubMed  CAS  Google Scholar 

  • Skoch J, Hyman BT, Bacskai BJ (2006) Preclinical characterization of amyloid imaging probes with multiphoton microscopy. J Alzheimers Dis 9:401–407

    PubMed  CAS  Google Scholar 

  • Sobel RA, Ames MB (1988) Major histocompatibility complex molecule expression in the human central nervous system: immunohistochemical analysis of 40 patients. J Neuropathol Exp Neurol 47:19–28

    PubMed  CAS  Google Scholar 

  • Solomon B, Koppel R, Frankel D, Hanan-Aharon E (1997) Disaggregation of Alzheimer beta-amyloid by site-directed mAb. Proc Natl Acad Sci USA 94:4109–4112

    PubMed  CAS  Google Scholar 

  • Stephenson DT, Schober DA, Smalstig EB, Mincy RE, Gehlert DR, Clemens JA (1995) Peripheral benzodiazepine receptors are colocalized with activated microglia following transient global forebrain ischemia in the rat. J Neurosci 15:5263–5274

    PubMed  CAS  Google Scholar 

  • Stoll G, Bendszus M (2008) Imaging of inflammation in the peripheral and central nervous system by magnetic resonance imaging. Neuroscience (in press)

  • Streit WJ (2004) Microglia and Alzheimer’s disease pathogenesis. J Neurosci Res 77:1–8

    PubMed  CAS  Google Scholar 

  • Streit WJ, Sammons NW, Kuhns AJ, Sparks DL (2004) Dystrophic microglia in the aging human brain. Glia 45:208–212

    PubMed  Google Scholar 

  • Streit WJ, Miller KR, Lopes KO, Njie E (2008) Microglial degeneration in the aging brain—bad news for neurons. Front Biosci 13:3423–3438

    PubMed  CAS  Google Scholar 

  • Szekely CA, Green RC, Breitner JC, Ostbye T, Beiser AS, Corrada MM, Dodge HH, Ganguli M, Kawas CH, Kuller LH, Psaty BM, Resnick SM, Wolf PA, Zonderman AB, Welsh-Bohmer KA, Zandi PP (2008) No advantage of A beta 42-lowering NSAIDs for prevention of Alzheimer dementia in six pooled cohort studies. Neurology 70:2291–2298

    PubMed  CAS  Google Scholar 

  • Tai YF, Pavese N, Gerhard A, Tabrizi SJ, Barker RA, Brooks DJ, Piccini P (2007) Microglial activation in presymptomatic Huntington’s disease gene carriers. Brain 130:1759–1766

    PubMed  Google Scholar 

  • Thal LJ, Ferris SH, Kirby L, Block GA, Lines CR, Yuen E, Assaid C, Nessly ML, Norman BA, Baranak CC, Reines SA (2005) A randomized, double-blind, study of rofecoxib in patients with mild cognitive impairment. Neuropsychopharmacology 30:1204–1215

    PubMed  CAS  Google Scholar 

  • Toyama H, Hatano K, Suzuki H, Ichise M, Momosaki S, Kudo G, Ito F, Kato T, Yamaguchi H, Katada K, Sawada M, Ito K (2008) In vivo imaging of microglial activation using a peripheral benzodiazepine receptor ligand: [11C]PK-11195 and animal PET following ethanol injury in rat striatum. Ann Nucl Med 22:417–424

    PubMed  Google Scholar 

  • Turner MR, Cagnin A, Turkheimer FE, Miller CC, Shaw CE, Brooks DJ, Leigh PN, Banati RB (2004) Evidence of widespread cerebral microglial activation in amyotrophic lateral sclerosis: an [11C](R)-PK11195 positron emission tomography study. Neurobiol Dis 15:601–609

    PubMed  CAS  Google Scholar 

  • Turner MR, Gerhard A, Al-Chalabi A, Shaw CE, Hughes RA, Banati RB, Brooks DJ, Leigh PN (2005) Mills’ and other isolated upper motor neurone syndromes: in vivo study with 11C-(R)-PK11195 PET. J Neurol Neurosurg Psychiatry 76:871–874

    PubMed  CAS  Google Scholar 

  • van Berckel BN, Bossong MG, Boellaard R, Kloet R, Schuitemaker A, Caspers E, Luurtsema G, Windhorst AD, Cahn W, Lammertsma AA, Kahn RS (2008) Microglia activation in recent-onset schizophrenia: a quantitative (R)-[(11)C]PK11195 positron emission tomography study. Biol Psychiatry 64(9):820–822

    PubMed  Google Scholar 

  • van Rossum D, Hanisch UK (2004) Microglia. Metab Brain Dis 19:393–411

    PubMed  Google Scholar 

  • Venneti S, Lopresti BJ, Wang G, Bissel SJ, Mathis CA, Meltzer CC, Boada F, Capuano S 3rd, Kress GJ, Davis DK, Ruszkiewicz J, Reynolds IJ, Murphey-Corb M, Trichel AM, Wisniewski SR, Wiley CA (2004) PET imaging of brain macrophages using the peripheral benzodiazepine receptor in a macaque model of neuroAIDS. J Clin Invest 113:981–989

    PubMed  CAS  Google Scholar 

  • Venneti S, Lopresti BJ, Wiley CA (2006) The peripheral benzodiazepine receptor (translocator protein 18 kDa) in microglia: from pathology to imaging. Prog Neurobiol 80:308–322

    PubMed  CAS  Google Scholar 

  • Venneti S, Wagner AK, Wang G, Slagel SL, Chen X, Lopresti BJ, Mathis CA, Wiley CA (2007a) The high affinity peripheral benzodiazepine receptor ligand DAA1106 binds specifically to microglia in a rat model of traumatic brain injury: implications for PET imaging. Exp Neurol 207:118–127

    PubMed  CAS  Google Scholar 

  • Venneti S, Lopresti BJ, Wang G, Slagel SL, Mason NS, Mathis CA, Fischer ML, Larsen NJ, Mortimer AD, Hastings TG, Smith AD, Zigmond MJ, Suhara T, Higuchi M, Wiley CA (2007b) A comparison of the high-affinity peripheral benzodiazepine receptor ligands DAA1106 and (R)-PK11195 in rat models of neuroinflammation: implications for PET imaging of microglial activation. J Neurochem 102:2118–2131

    PubMed  CAS  Google Scholar 

  • Venneti S, Wang G, Wiley CA (2008a) The high affinity peripheral benzodiazepine receptor ligand DAA1106 binds to activated and infected brain macrophages in areas of synaptic degeneration: implications for PET imaging of neuroinflammation in lentiviral encephalitis. Neurobiol Dis 29:232–241

    PubMed  CAS  Google Scholar 

  • Venneti S, Wang G, Nguyen J, Wiley CA (2008b) The positron emission tomography ligand DAA1106 binds with high affinity to activated microglia in human neurological disorders. J Neuropathol Exp Neurol 67:1001–1010

    PubMed  Google Scholar 

  • Venneti S, Lopresti BJ, Wang G, Hamilton RL, Mathis CA, Klunk WE, Apte UM, Wiley CA (2008c) PK11195 labels activated microglia in Alzheimer’s disease and in vivo in a mouse model using PET. Neurobiol Aging (in press)

  • Venneti S, Bonneh-Barkay D, Lopresti BJ, Bissel SJ, Wang G, Mathis CA, Piatak M Jr., Lifson JD, Nyaundi JO, Murphey-Corb M, Wiley CA (2008d) Longitudinal in vivo positron emission tomography imaging of infected and activated brain macrophages in a macaque model of human immunodeficiency virus encephalitis correlates with central and peripheral markers of encephalitis and areas of synaptic degeneration. Am J Pathol 172:1603–1616

    PubMed  CAS  Google Scholar 

  • Versijpt J, Debruyne JC, Van Laere KJ, De Vos F, Keppens J, Strijckmans K, Achten E, Slegers G, Dierckx RA, Korf J, De Reuck JL (2005) Microglial imaging with positron emission tomography and atrophy measurements with magnetic resonance imaging in multiple sclerosis: a correlative study. Mult Scler 11:127–134

    PubMed  CAS  Google Scholar 

  • Vowinckel E, Reutens D, Becher B, Verge G, Evans A, Owens T, Antel JP (1997) PK11195 binding to the peripheral benzodiazepine receptor as a marker of microglia activation in multiple sclerosis and experimental autoimmune encephalomyelitis. J Neurosci Res 50:345–353

    PubMed  CAS  Google Scholar 

  • Waldau B, Shetty AK (2008) Behavior of neural stem cells in the Alzheimer brain. Cell Mol Life Sci 65:2372–2384

    PubMed  CAS  Google Scholar 

  • Walton NM, Sutter BM, Laywell ED, Levkoff LH, Kearns SM, Marshall GP 2nd, Scheffler B, Steindler DA (2006) Microglia instruct subventricular zone neurogenesis. Glia 54:815–825

    PubMed  Google Scholar 

  • Wang XJ, Ye M, Zhang YH, Chen SD (2007) CD200–CD200R regulation of microglia activation in the pathogenesis of Parkinson’s disease. J Neuroimmune Pharmacol 2:259–264

    PubMed  Google Scholar 

  • Weiner HL, Frenkel D (2006) Immunology and immunotherapy of Alzheimer’s disease. Nat Rev Immunol 6:404–416

    PubMed  CAS  Google Scholar 

  • Wilcock DM, DiCarlo G, Henderson D, Jackson J, Clarke K, Ugen KE, Gordon MN, Morgan D (2003) Intracranially administered anti-Abeta antibodies reduce beta-amyloid deposition by mechanisms both independent of and associated with microglial activation. J Neurosci 23:3745–3751

    PubMed  CAS  Google Scholar 

  • Wilcock DM, Munireddy SK, Rosenthal A, Ugen KE, Gordon MN, Morgan D (2004a) Microglial activation facilitates Abeta plaque removal following intracranial anti-Abeta antibody administration. Neurobiol Dis 15:11–20

    PubMed  CAS  Google Scholar 

  • Wilcock DM, Rojiani A, Rosenthal A, Levkowitz G, Subbarao S, Alamed J, Wilson D, Wilson N, Freeman MJ, Gordon MN, Morgan D (2004b) Passive amyloid immunotherapy clears amyloid and transiently activates microglia in a transgenic mouse model of amyloid deposition. J Neurosci 24:6144–6151

    PubMed  CAS  Google Scholar 

  • Wilcock GK, Black SE, Hendrix SB, Zavitz KH, Swabb EA, Laughlin MA (2008) Efficacy and safety of tarenflurbil in mild to moderate Alzheimer’s disease: a randomised phase II trial. Lancet Neurol 7:483–493

    PubMed  CAS  Google Scholar 

  • Wiley CA, Lopresti BJ, Becker JT, Boada F, Lopez OL, Mellors J, Meltzer CC, Wisniewski SR, Mathis CA (2006) Positron emission tomography imaging of peripheral benzodiazepine receptor binding in human immunodeficiency virus-infected subjects with and without cognitive impairment. J Neurovirol 12:262–271

    PubMed  CAS  Google Scholar 

  • Wiley CA, Lopresti BJ, Venneti S, Price CJ, Mathis CA, Klunk WE, DeKosky ST, Mathis CA (2008) [11C]PIB and [11C](R)-PK11195 PET imaging in Alzheimer’s disease. Arch Neurol (in press)

  • Wilms H, Claasen J, Rohl C, Sievers J, Deuschl G, Lucius R (2003) Involvement of benzodiazepine receptors in neuroinflammatory and neurodegenerative diseases: evidence from activated microglial cells in vitro. Neurobiol Dis 14:417–424

    PubMed  CAS  Google Scholar 

  • Wisniewski HM, Barcikowska M, Kida E (1991) Phagocytosis of beta/A4 amyloid fibrils of the neuritic neocortical plaques. Acta Neuropathol 81:588–590

    PubMed  CAS  Google Scholar 

  • Wyss-Coray T, Yan F, Lin AH, Lambris JD, Alexander JJ, Quigg RJ, Masliah E (2002) Prominent neurodegeneration and increased plaque formation in complement-inhibited Alzheimer’s mice. Proc Natl Acad Sci USA 99:10837–10842

    PubMed  CAS  Google Scholar 

  • Yanamoto K, Zhang MR, Kumata K, Hatori A, Okada M, Suzuki K (2007) In vitro and ex vivo autoradiography studies on peripheral-type benzodiazepine receptor binding using [11C]AC-5216 in normal and kainic acid-lesioned rats. Neurosci Lett 428:59–63

    PubMed  CAS  Google Scholar 

  • Yasuno F, Ota M, Kosaka J, Ito H, Higuchi M, Doronbekov TK, Nozaki S, Fujimura Y, Koeda M, Asada T, Suhara T (2008) Increased binding of peripheral benzodiazepine receptor in Alzheimer’s disease measured by positron emission tomography with [(11)C]DAA1106. Biol Psychiatry 64(10):835–841

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sriram Venneti.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Venneti, S., Wiley, C.A. & Kofler, J. Imaging Microglial Activation During Neuroinflammation and Alzheimer’s Disease. J Neuroimmune Pharmacol 4, 227–243 (2009). https://doi.org/10.1007/s11481-008-9142-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11481-008-9142-2

Keywords

Navigation