Skip to main content
Log in

Characterization of a LAL-type regulator NemR in nemadectin biosynthesis and its application for increasing nemadectin production in Streptomyces cyaneogriseus

  • Research Paper
  • Published:
Science China Life Sciences Aims and scope Submit manuscript

Abstract

Nemadectin, a macrocyclic lactone antibiotic, is produced by Streptomyces cyaneogriseus ssp. noncyanogenus. A methoxime derivative of nemadectin, moxdectin, has been widely used to control insect and helminth in animal health. Despite the importance of nemadectin, little attention has been paid to the regulation of nemadectin biosynthesis, which has hindered efforts to improve nemadectin production via genetic manipulation of regulatory genes. Here, we characterize the function of nemR, the cluster-situated regulatory gene encoding a LAL-family transcriptional regulator, in the nemadectin biosynthesis gene cluster of S. cyaneogriseus ssp. noncyanogenus NMWT1. NemR is shown to be essential for nemadectin production and found to directly activate the transcription of nemA1-1/A1-2/A2, nemC and nemA4/A3/E/D operons, but indirectly activate that of nemG and nemF. A highly conserved sequence 5′-TGGGGTGKATAGGGGGTA-3′ (K=T/G) is verified to be essential for NemR binding. Moreover, four novel targets of NemR, including genes encoding an SsgA-like protein (TU94_12730), a methylmalonyl-CoA mutase (TU94_19950), a thioesterase of oligomycin biosynthesis (TU94_22425) and a MFS family transporter (TU94_24835) are identified. Overexpression of nemR significantly increased nemadectin production by 79.9%, in comparison with NMWT1, suggesting that nemR plays an important role in the nemadectin biosynthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Afzal, J., Burke, A.B., Batten, P.L., DeLay, R.L., and Miller, P. (1997). Moxidectin: metabolic fate and blood pharmacokinetics of 14C-labeled moxidectin in horses. J Agric Food Chem 45, 3627–3633.

    Article  CAS  Google Scholar 

  • Carter, G.T., Nietsche, J.A., and Borders, D.B. (1987). Structure determination of LL-F28249α, β, γ, and λ, potent antiparasitic macrolides from Streptomyces cyaneogriseus ssp. noncyanogenus. J Chem Soc Chem Commun 402–404.

    Google Scholar 

  • Carter, G.T., Nietsche, J.A., Hertz, M.R., Williams, D.R., Siegel, M.M., Morton, G.O., James, J.C., and Borders, D.B. (1988). LL-F28249 antibiotic complex: a new family of antiparasitic macrocyclic lactones. Isolation, characterization and structures of LL-F28249 alpha, beta, gamma, lambda. J Antibiot 41, 519–529.

    CAS  Google Scholar 

  • Chaleff, D.T., Huang, C., Ruppen, M.E., and Stephens, J. (2008). Cloning genes from Streptomyces cyaneogriseus subsp. noncyanogenus for biosynthesis of antibiotics and methods of use. US Patent, Application 20050003409.

    Google Scholar 

  • Dupuy, J., Larrieu, G., Sutra, J.F., Lespine, A., and Alvinerie, M. (2003). Enhancement of moxidectin bioavailability in lamb by a natural flavonoid: quercetin. Vet Parasitol 112, 337–347.

    Article  CAS  PubMed  Google Scholar 

  • Guan, F., Pan, Y., Li, J., and Liu, G. (2017). A GATA-type transcription factor AcAREB for nitrogen metabolism is involved in regulation of cephalosporin biosynthesis in Acremonium chrysogenum. Sci China Life Sci 60, 958–967.

    Article  CAS  PubMed  Google Scholar 

  • Guo, J., Zhao, J., Li, L., Chen, Z., Wen, Y., and Li, J. (2010). The pathway-specific regulator AveR from Streptomyces avermitilis positively regulates avermectin production while it negatively affects oligomycin biosynthesis. Mol Genet Genomics 283, 123–133.

    Article  CAS  PubMed  Google Scholar 

  • Huang, H., Zheng, G., Jiang, W., Hu, H., and Lu, Y. (2015). One-step highefficiency CRISPR/Cas9-mediated genome editing in Streptomyces. Acta Biochim Biophys Sin 47, 231–243.

    Article  CAS  PubMed  Google Scholar 

  • Kieser, T., Bibb, M.J., Buttner, M.J., Chater, K.F., and Hopwood, D.A. (2000). Practical Streptomyces Genetics. (Norwich: The John Innes Foundation).

    Google Scholar 

  • Kuscer, E., Coates, N., Challis, I., Gregory, M., Wilkinson, B., Sheridan, R., and Petković, H. (2007). Roles of rapH and rapG in positive regulation of rapamycin biosynthesis in Streptomyces hygroscopicus. J Bacteriol 189, 4756–4763.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li, Y., Li, J., Tian, Z., Xu, Y., Zhang, J., Liu, W., and Tan, H. (2016). Coordinative modulation of chlorothricin biosynthesis by binding of the glycosylated intermediates and end product to a responsive regulator ChlF1. J Biol Chem 291, 5406–5417.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li, Y., and Tan, H. (2017). Biosynthesis and molecular regulation of secondary metabolites in microorganisms. Sci China Life Sci 60, 935–938.

    Article  CAS  PubMed  Google Scholar 

  • Liu, G., Chater, K.F., Chandra, G., Niu, G., and Tan, H. (2013). Molecular regulation of antibiotic biosynthesis in Streptomyces. Microbiol Mol Biol Rev 77, 112–143.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu, G., Tian, Y., Yang, H., and Tan, H. (2005). A pathway-specific transcriptional regulatory gene for nikkomycin biosynthesis in Streptomyces ansochromogenes that also influences colony development. Mol Microbiol 55, 1855–1866.

    Article  CAS  PubMed  Google Scholar 

  • Liu, P., Zhu, H., Zheng, G., Jiang, W., and Lu, Y. (2017). Metabolic engineering of Streptomyces coelicolor for enhanced prodigiosins (RED) production. Sci China Life Sci 60, 948–957.

    Article  CAS  PubMed  Google Scholar 

  • Lu, C., Zhang, X., Jiang, M., and Bai, L. (2016). Enhanced salinomycin production by adjusting the supply of polyketide extender units in Streptomyces albus. Metab Eng 35, 129–137.

    Article  CAS  PubMed  Google Scholar 

  • MacNeil, D., Occi, J., Gewain, K., MacNeil, T., Gibbons, P., Foor, F., Morin, N., Hegeman, G., Baltz, R., and Skatrud, P. (1993). A comparison of the genes encoding the polyketide synthases for avermectin, erythromycin, and nemadectin. Ind Microorg: Basic Appl Mol Genet, 245–256.

    Google Scholar 

  • Mounsey, K.E., Bernigaud, C., Chosidow, O., and McCarthy, J.S. (2016). Prospects for moxidectin as a new oral treatment for human scabies. PLoS Negl Trop Dis 10, e0004389.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mounsey, K.E., Walton, S.F., Innes, A., Cash-Deans, S., and McCarthy, J.S. (2017). In vitro efficacy of moxidectin versus ivermectin against Sarcoptes scabiei. Antimicrob Agents Chemother 61, e00381.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Myronovskyi, M., Welle, E., Fedorenko, V., and Luzhetskyy, A. (2011). β-Glucuronidase as a sensitive and versatile reporter in actinomycetes. Appl Environ Microbiol 77, 5370–5383.

    CAS  PubMed  Google Scholar 

  • Newman, D.J., and Cragg, G.M. (2016). Natural products as sources of new drugs from 1981 to 2014. J Nat Prod 79, 629–661.

    Article  CAS  PubMed  Google Scholar 

  • Niu, G., Zheng, J., and Tan, H. (2017). Biosynthesis and combinatorial biosynthesis of antifungal nucleoside antibiotics. Sci China Life Sci 60, 939–947.

    Article  CAS  PubMed  Google Scholar 

  • Rugg, D., Buckingham, S.D., Sattelle, D.B., and Jansson, R.K. (2005). The insecticidal macrocyclic lactones. In Comprehensive Molecular Insect Science. (Elsevier), pp. 25–52.

    Chapter  Google Scholar 

  • Sherwood, E.J., and Bibb, M.J. (2013). The antibiotic planosporicin coordinates its own production in the actinomycete Planomonospora alba. Proc Natl Acad Sci USA 110, e2500–E2509.

    Article  PubMed  PubMed Central  Google Scholar 

  • Traag, B.A., Kelemen, G.H., and Van Wezel, G.P. (2004). Transcription of the sporulation gene ssgA is activated by the IclR-type regulator SsgR in a whi-independent manner in Streptomyces coelicolor A3(2). Mol Microbiol 53, 985–1000.

    Article  CAS  PubMed  Google Scholar 

  • Tsou, H.R., Ahmed, Z.H., Fiala, R.R., Bullock, M.W., Carter, G.T., Goodman, J.J., and Borders, D.B. (1989). Biosynthetic origin of the carbon skeleton and oxygen atoms of the LL-F28249.ALPHA., apoent antiparasitic macrolide.. J Antibiot 42, 398–406.

    Article  CAS  Google Scholar 

  • Wang, H., Li, C., Zhang, B., He, H., Jin, P., Wang, J., Zhang, J., Wang, X., and Xiang, W. (2015). Complete genome sequence of Streptomyces cyaneogriseus ssp. noncyanogenus, the thermotolerant producer of commercial antibiotics nemadectin. J Biotechnol 204, 1–2.

    Article  CAS  PubMed  Google Scholar 

  • Wilson, D.J., Xue, Y., Reynolds, K.A., and Sherman, D.H. (2001). Characterization and analysis of the PikD regulatory factor in the pikromycin biosynthetic pathway of Streptomyces venezuelae. J Bacteriol 183, 3468–3475.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yin, S., Wang, X., Shi, M., Yuan, F., Wang, H., Jia, X., Yuan, F., Sun, J., Liu, T., Yang, K., et al. (2017). Improvement of oxytetracycline production mediated via cooperation of resistance genes in Streptomyces rimosus. Sci China Life Sci 60, 992–999.

    Article  CAS  PubMed  Google Scholar 

  • Yin, S., Wang, W., Wang, X., Zhu, Y., Jia, X., Li, S., Yuan, F., Zhang, Y., and Yang, K. (2015). Identification of a cluster-situated activator of oxytetracycline biosynthesis and manipulation of its expression for improved oxytetracycline production in Streptomyces rimosus. Microb Cell Fact 14, 46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zabala, D., Braña, A.F., Flórez, A.B., Salas, J.A., and Méndez, C. (2013). Engineering precursor metabolite pools for increasing production of antitumor mithramycins in Streptomyces argillaceus. Metab Eng 20, 187–197.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, P., Wu, H., Chen, X.L., Deng, Z., Bai, L., and Pang, X. (2014). Regulation of the biosynthesis of thiopeptide antibiotic cyclothiazomycin by the transcriptional regulator SHJG8833 in Streptomyces hygroscopicus 5008. Microbiology 160, 1379–1392.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, Y., He, H., Liu, H., Wang, H., Wang, X., and Xiang, W. (2016). Characterization of a pathway-specific activator of milbemycin biosynthesis and improved milbemycin production by its overexpression in Streptomyces bingchenggensis. Microb Cell Fact 15, 152.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang, Y., Pan, G., Zou, Z., Fan, K., Yang, K., and Tan, H. (2013). JadR*- mediated feed-forward regulation of cofactor supply in jadomycin biosynthesis. Mol Microbiol 90, 884–897.

    Article  CAS  PubMed  Google Scholar 

  • Zhu, Z., Li, H., Yu, P., Guo, Y., Luo, S., Chen, Z., Mao, X., Guan, W., and Li, Y. (2017). SlnR is a positive pathway-specific regulator for salinomycin biosynthesis in Streptomyces albus. Appl Microbiol Biotechnol 101, 1547–1557.

    Article  CAS  PubMed  Google Scholar 

  • Zhuo, J., Ma, B., Xu, J., Hu, W., Zhang, J., Tan, H., and Tian, Y. (2017). Reconstruction of a hybrid nucleoside antibiotic gene cluster based on scarless modification of large DNA fragments. Sci China Life Sci 60, 968–979.

    Article  CAS  PubMed  Google Scholar 

  • Zianni, M., Tessanne, K., Merighi, M., Laguna, R., and Tabita, F.R. (2006). Identification of the DNA bases of a DNase I footprint by the use of dye primer sequencing on an automated capillary DNA analysis instrument. J Biomol Tech 17, 103–113.

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the National Natural Science Foundation of China (31372006 and 31401814). We are grateful to Prof. Mervyn Bibb (John Innes Centre, Norwich, UK) for providing S. coelicolor M1146, Prof. Mark Buttner (John Innes Centre, Norwich, UK) for providing pIJ10500 and Prof. Yinhua Lu (Institute of Plant Physiology and Ecology, CAcademy of Sciences, Shanghai, China) for providing pKCcas9dO.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yanyan Zhang or Wensheng Xiang.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, C., He, H., Wang, J. et al. Characterization of a LAL-type regulator NemR in nemadectin biosynthesis and its application for increasing nemadectin production in Streptomyces cyaneogriseus. Sci. China Life Sci. 62, 394–405 (2019). https://doi.org/10.1007/s11427-018-9442-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11427-018-9442-9

Keywords

Navigation