Skip to main content
Log in

The endocrine regulation network of growth hormone synthesis and secretion in fish: Emphasis on the signal integration in somatotropes

  • Special Topic
  • Published:
Science China Life Sciences Aims and scope Submit manuscript

Abstract

In teleosts, growth hormone (GH) production is governed by multiple neuroendocrine factors from the hypothalamus and other regulators from the pituitary and peripheral organs. Exploring the principles followed by pituitary somatotropes when differentiating and integrating the signals from these regulators at the cellular and intracellular level is essential for understanding the endocrine regulation network of growth hormone synthesis and secretion in fish. This paper discusses recent advances in the action mechanisms of GH regulation factors, including the neuroendocrine regulators, pituitary level factors and peripheral factors, primarily involved in their receptor systems as well as in post-receptor signal transduction pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Butler A A, LeRoith D L. Control of growth by the somatotrophic axis: Growth hormone and the insulin-like growth factors have related and independent roles. Ann Rev Physiol, 2001, 63: 141–164 10.1146/annurev.physiol.63.1.141, 1:CAS:528:DC%2BD3MXjtFKmtL4%3D

    Google Scholar 

  2. Gahete M D, Durán-Prado M, Luque R M, et al. Understanding the multifactorial control of growth hormone release by somatotropes: Lessons from comparative endocrinology. Ann N Y Acad Sci, 2009, 1163: 137–153 19456335, 10.1111/j.1749-6632.2008.03660.x, 1:CAS:528:DC%2BD1MXmvVSqu7Y%3D

    PubMed  Google Scholar 

  3. Canosa L F, Chang J P, Peter R E. Neuroendocrine control of growth hormone in fish. Gen Comp Endocrinol, 2007, 151: 1–26 17286975, 10.1016/j.ygcen.2006.12.010, 1:CAS:528:DC%2BD2sXitFeksr4%3D

    PubMed  Google Scholar 

  4. Grey C L, Chang J P. Ghrelin-induced growth hormone release from goldfish pituitary cells involves voltage-sensitive calcium channels. Gen Comp Endocrinol, 2009, 160: 148–157 19038258, 10.1016/j.ygcen.2008.11.006, 1:CAS:528:DC%2BD1MXksVGgtQ%3D%3D

    PubMed  Google Scholar 

  5. Picha M E, Strom C N, Riley L G, et al. Plasma ghrelin and growth hormone regulation in response to metabolic state in hybrid striped bass: effects of feeding, ghrelin and insulin-like growth factor-I on in vivo and in vitro GH secretion. Gen Comp Endocrinol, 2009, 161: 365–372 19523371, 10.1016/j.ygcen.2009.01.026, 1:CAS:528:DC%2BD1MXkt1Sgsr8%3D

    PubMed  Google Scholar 

  6. Fox B K, Breves J P, Hirano T, et al. Effects of short- and long-term fasting on plasma and stomach ghrelin, and the growth hormone/insulin-like growth factor I axis in the tilapia, Oreochromis mossambicus. Domest Anim Endocrinol, 2009, 37: 1–11 19339132, 10.1016/j.domaniend.2009.01.001, 1:CAS:528:DC%2BD1MXntVyqs7k%3D

    PubMed  Google Scholar 

  7. Zhou H, Ko W K, Stojilkovic S S, et al. Novel aspects of growth hormone (GH) autoregulation: GH-induced GH gene expression in grass carp pituitary cells through autocrine/paracrine mechanisms. Endocrinology, 2004, 145: 4615–4628 15231712, 10.1210/en.2004-0163, 1:CAS:528:DC%2BD2cXnvFOqtLY%3D

    PubMed  Google Scholar 

  8. Chang J P, Johnson J D, Van Goor F, et al. Signal transduction mechanisms mediating secretion in goldfish gonadotropes and somatotropes. Biochem Cell Biol, 2000, 78: 139–153 10949070, 10.1139/bcb-78-3-139, 1:CAS:528:DC%2BD3cXltlKnt7s%3D

    PubMed  Google Scholar 

  9. Wong A O, Li W, Leung C Y, et al. Pituitary adenylate cyclase-activating polypeptide (PACAP) as a growth hormone (GH)-releasing factor in grass carp. I. Functional coupling of cyclic adenosine 3′, 5′-monophosphate and Ca2+/calmodulin-dependent signaling pathways in PACAP-induced GH secretion and GH gene expression in grass carp pituitary cells. Endocrinology, 2005, 146: 5407–5424 16123157, 10.1210/en.2005-0294, 1:CAS:528:DC%2BD2MXht1OgurvO

    PubMed  Google Scholar 

  10. Klein S E, Sheridan M A. Somatostatin signaling and the regulation of growth and metabolism in fish. Mol Cell Endocrinol, 2008, 286:148–154 17919810, 10.1016/j.mce.2007.08.010, 1:CAS:528:DC%2BD1cXmtVSmt7w%3D

    PubMed  Google Scholar 

  11. Wong A O L, Li W S, Lee E K Y, et al. Pituitary adenylate cyclase activating polypeptide as a novel hypophysiotropic factor in fish. Biochem Cell Biol, 2000, 78: 329–343 10949084, 10.1139/bcb-78-3-329, 1:CAS:528:DC%2BD3cXltlKntLc%3D

    PubMed  Google Scholar 

  12. Sawisky G R, Chang J P. Intracellular calcium involvement in pituitary adenylate cyclase-activating polypeptide stimulation of growth hormone and gonadotrophin secretion in goldfish pituitary cells. J Neuroendocrinol, 2005, 17: 353–371 15929741, 10.1111/j.1365-2826.2005.01312.x, 1:CAS:528:DC%2BD2MXltFOktbg%3D

    PubMed  Google Scholar 

  13. Sze K H, Zhou H, Yang Y, et al. Pituitary adenylate cyclase- activating polypeptide (PACAP) as a growth hormone (GH)-releasing factor in grass carp: II. Solution structure of a brain-specific PACAP by nuclear magnetic resonance spectroscopy and functional studies on GH release and gene expression. Endocrinology, 2007, 148: 5042–5059 17615143, 10.1210/en.2007-0576, 1:CAS:528:DC%2BD2sXhtFWls7fN

    PubMed  Google Scholar 

  14. Parker D B, Power M E, Swanson P, et al. Exon skipping in the gene encoding pituitary adenylate cyclase-activating polypeptide in salmon alters the expression of two hormones that stimulate growth hormone release. Endocrinology, 1997, 138: 414–423 8977431, 10.1210/en.138.1.414, 1:CAS:528:DyaK2sXjs1Oh

    PubMed  Google Scholar 

  15. Montero M, Yon L, Rousseau K, et al. Distribution, characterization, and growth hormone-releasing activity of pituitary adenylate cyclase activating polypeptide in the European eel, Anguilla anguilla. Endocrinology, 1998, 139: 4300–4310 9751513, 10.1210/en.139.10.4300, 1:CAS:528:DyaK1cXmsVGmsrY%3D

    PubMed  Google Scholar 

  16. Lugo J M, Rodriguez A, Helguera Y, et al. Recombinant novel pituitary adenylate cyclase-activating polypeptide from African catfish (Clarias gariepinus) authenticates its biological function as a growth-promoting factor in low vertebrates. J Endocrinol, 2008, 197: 583–597 18492822, 10.1677/JOE-07-0555, 1:CAS:528:DC%2BD1cXntVCgsLw%3D

    PubMed  Google Scholar 

  17. Jiang Y, Li W S, Lin H R. The prokaryotic expression and biological activity of the pituitary adenylate cyclase activating polypeptide in groupers Epinephelus coioides. Acta Zool Sin (in Chinese), 2005, 51: 1162–1166 1:CAS:528:DC%2BD28Xht1Srsr7I

    Google Scholar 

  18. Arimura A, Shioda S. Pituitary adenylate cyclase polypeptide (PACAP) and its receptors: Neuroendocrne and endocrine interaction. Front. Neuroendocrinol, 1995, 16: 53–88 7768322, 10.1006/frne.1995.1003, 1:CAS:528:DyaK2MXkvF2gs7c%3D

    PubMed  Google Scholar 

  19. Harmar A J, Arimura A, Gozes I, et al. International Union of Pharmacology. XVIII. Nomenclature of receptors for vasoactive intestinal peptide and pituitary adenylate cyclase-activating polypeptide. Pharmacol Rev, 1998, 50: 265–270 9647867, 1:CAS:528:DyaK1cXksFCltr4%3D

    PubMed  Google Scholar 

  20. Fradinger E A, Tello J A, Rivier J E, et al. Characterization of four receptor cDNAs: PAC1, VPAC1, a novel PAC1 and a partial GHRH in zebrafish. Mol Cell Endocrinol, 2005, 231: 49–63 15713535, 10.1016/j.mce.2004.12.002, 1:CAS:528:DC%2BD2MXhtlOlsbs%3D

    PubMed  Google Scholar 

  21. Wong A O L, Leung M Y, Shea W L C, et al. Hypophysiotropic action of pituitary adenylate cyclase activating polypeptide (PACAP) in the goldfish: Immunohistochemical demonstration of PACAP in the pituitary, PACAP stimulation of growth hormone release from pituitary cells, and molecular cloning of pituitary type I PACAP receptor. Endocrinology, 1998, 139: 3465–3476 9681497, 10.1210/en.139.8.3465, 1:CAS:528:DyaK1cXkvVGrsbc%3D

    PubMed  Google Scholar 

  22. Xiao D, Chu M M, Lee E K, et al. Regulation of growth hormone release in common carp pituitary cells by pituitary adenylate cyclase-activating polypeptide: Signal transduction involves cAMP-and calcium-dependent mechanisms. Neuroendocrinology, 2002, 76: 325–338 12457043, 10.1159/000066627, 1:CAS:528:DC%2BD38XptFaqtbw%3D

    PubMed  Google Scholar 

  23. Wong C J H, Johnson J D, Yunker W K, et al. Caffeine-stores and dopamine differentially require Ca2+/channels in goldfish somatotrope. Am J Physiol, 2001, 280: R494–R503 1:CAS:528:DC%2BD3MXjtVWksbg%3D

    Google Scholar 

  24. Chang J P, Wong C J H, Davis P J, et al. Role of Ca2+ stores in dopamine- and PACAP-evoked growth hormone release in goldfish. Mol Cell Endocrinol, 2003, 206: 63–74 12943990, 10.1016/S0303-7207(03)00234-X, 1:CAS:528:DC%2BD3sXms1ymur0%3D

    PubMed  Google Scholar 

  25. Johnson J D, Chang J P. Agonist-specific and sexual stagedependent inhibition of gonadotropin-releasing hormone-stimulated gonadotropin and growth hormone release by ryanodine: relationship to sexual stage-dependent caffeine-sensitive hormone release. J Neuroendocrinol, 2002, 14: 144–155 11849374, 10.1046/j.0007-1331.2001.00756.x, 1:CAS:528:DC%2BD38XpsFagsQ%3D%3D

    PubMed  Google Scholar 

  26. Wang X, Chu M M, Wong A O. Signaling mechanisms for alpha2-adrenergic inhibition of PACAP-induced growth hormone secretion and gene expression grass carp pituitary cells. Am J Physiol Endocrinol Metab, 2007, 292: E1750–E1762 17311897, 10.1152/ajpendo.00001.2007, 1:CAS:528:DC%2BD2sXmvF2mtLg%3D

    PubMed  Google Scholar 

  27. Yunker W K, Chang J P. Somatostatin-14 actions on dopamine- and pituitary adenylate cyclase-activating polypeptide-evoked Ca2+ signals and growth hormone secretion. J Neuroendocrinol, 2004, 16: 684–694 15271061, 10.1111/j.1365-2826.2004.01218.x, 1:CAS:528:DC%2BD2cXntVCjtbk%3D

    PubMed  Google Scholar 

  28. Hoyle C H V. Neuropeptide families and their receptors: Evolutionary perspectives. Brain Res, 1999, 848: 1–25 10612694, 10.1016/S0006-8993(99)01975-7, 1:CAS:528:DC%2BD3cXotVOj

    PubMed  Google Scholar 

  29. Doyon C, Gilmour K M, Trudeau V L, et al. Corticotropin-releasing factor and neuropeptide Y mRNA levels are elevated in the preoptic area of socially subordinate rainbow trout. Gen Comp Endocrinol, 2003, 133: 260–271 12928015, 10.1016/S0016-6480(03)00195-3, 1:CAS:528:DC%2BD3sXmsVCmsLk%3D

    PubMed  Google Scholar 

  30. Blomqvist A G, Söderberg C, Lundell I, et al. Strong evolutionary conservation of neuropeptide Y: Sequence of chicken, goldfish and Torpedo marmorata DNA clones. Proc Natl Acad Sci USA, 1992, 89: 2350–2354 1549597, 10.1073/pnas.89.6.2350, 1:CAS:528:DyaK3sXitVOktb4%3D

    PubMed  PubMed Central  Google Scholar 

  31. Cerdá-Reverter J M, Martínez-Rodríguez G, Zanuy S, et al. Cloning the neuropeptide Y Exon 2 from sea bass (Dicentrarchus labrax). Comp Biochem Physiol B Biochem Mol Biol, 2001, 123: 181–186 10.1016/S0305-0491(99)00055-3

    Google Scholar 

  32. Leonard J B, Waldbieser G C, Silverstein J T. Neuropeptide Y sequence and messenger RNA distribution in channel catfish (Ictalurus punctatus). Mar Biotechnol, 2001, 3: 111–118 14961373, 10.1007/s101260000050, 1:CAS:528:DC%2BD3MXksVGnu7s%3D

    PubMed  Google Scholar 

  33. Kurokawa T, Suzuki T. Development of neuropeptide Y-related peptides in the digestive organs during the larval stage of Japanese flounder, Paralichthys olivaceus. Gen Comp Endocrinol, 2002, 126: 30–38 11944964, 10.1006/gcen.2001.7774, 1:CAS:528:DC%2BD38Xis1ygsbY%3D

    PubMed  Google Scholar 

  34. Carpio Y, Acosta J, Morales A, et al. Cloning, expression and growth promoting action of Red tilapia (Oreochromis sp.) neuropeptide Y. Peptides, 2006, 27: 710–718 16202477, 10.1016/j.peptides.2005.08.013, 1:CAS:528:DC%2BD28XjtFWru7Y%3D

    PubMed  Google Scholar 

  35. Soderberg C, Wraith A, Ringvall M, et al. Zebrafish genes for Neuropeptide Y and peptide YY reveal origin by chromosome duplication from an ancestral gene linked to the homeobox cluster. J Neurochem, 2000, 75: 908–918 10936170, 10.1046/j.1471-4159.2000.0750908.x, 1:CAS:528:DC%2BD3cXmtFykurc%3D

    PubMed  Google Scholar 

  36. Pedrazzini T, Pralong F, Grouzmann E. Neuropeptide Y: The universal soldier. Cell Mol Life Sci, 2003, 60: 350–377 12678499, 10.1007/s000180300029, 1:STN:280:DC%2BD3s7mtFaluw%3D%3D

    PubMed  Google Scholar 

  37. Magliulo-Cepriano L, Schreibman M P. The distribution of neuropeptide Y and dynorphin immunoreactivity in the brain and pituitary gland of the platyfish, Xiphophorus maculates, from birth to sexual maturity. Cell Tissue Res, 1993, 271: 87–92 10.1007/BF00297545

    Google Scholar 

  38. Vallarino M, Masini M A, Trabucchi M, et al. Autoradiographic distribution of neuropeptide tyrosine binding sites in the brain of the African lungfish, Protopterus annectens. Neurosci Lett, 1998, 254: 5–8 9780078, 10.1016/S0304-3940(98)00607-7, 1:CAS:528:DyaK1cXmsFCls7g%3D

    PubMed  Google Scholar 

  39. Rodriguez-Gomez F J, Rendon-Unceta C, Sarasquete C, et al. Distribution of neuropeptide Y-like immunoreactivity in the brain of the Senegalese sole (Solea senegalensis). Anat Rec, 2001, 262: 227–237 11241192, 10.1002/1097-0185(20010301)262:3<227::AID-AR1027>3.0.CO;2-X, 1:CAS:528:DC%2BD3MXhsFCru7w%3D

    PubMed  Google Scholar 

  40. Larhammar D, Salaneck E. Molecular evolution of NPY receptor subtypes. Neuropeptides, 2004, 38: 141–151 15337367, 10.1016/j.npep.2004.06.002, 1:CAS:528:DC%2BD2cXntVOjsLg%3D

    PubMed  Google Scholar 

  41. Larsson T A, Olsson F, Sundström G, et al. Pufferfish and zebrafish have five distinct NPY receptor subtypes, but have lost appetite receptors Y1 and Y5. Ann N Y Acad Sci, 2005, 1040: 375–377 15891066, 10.1196/annals.1327.066, 1:CAS:528:DC%2BD2MXos1egtr4%3D

    PubMed  Google Scholar 

  42. Larsson T A, Larson E T, Fredriksson R, et al. Characterization of NPY receptor subtypes Y2 and Y7 in rainbow trout Oncorhynchus mykiss. Peptides, 2006, 27: 1320–1327 16359756, 10.1016/j.peptides.2005.10.008, 1:CAS:528:DC%2BD28XltFOgtbk%3D

    PubMed  Google Scholar 

  43. Larsson T A, Tay B H, Sundström G, et al. Neuropeptide Y-family peptides and receptors in the elephant shark, Callorhinchus milii confirm gene duplications before the gnathostome radiation. Genomics, 2009, 93: 254–260 18977429, 10.1016/j.ygeno.2008.10.001, 1:CAS:528:DC%2BD1MXhvFaku7w%3D

    PubMed  Google Scholar 

  44. Larsson T A, Larson E T, Larhammar D. Cloning and sequence analysis of the neuropeptide Y receptors Y5 and Y6 in the coelacanth Latimeria chalumnae. Gen Comp Endocrinol, 2007, 150: 337–342 17070811, 10.1016/j.ygcen.2006.09.002, 1:CAS:528:DC%2BD28Xhtlagt7vO

    PubMed  Google Scholar 

  45. Peng C, Trudeau V L, Peter R E. Seasonal variation of neuropeptide Y actions on growth hormone and gonadotropin-II secretion in the goldfish: effects of sex steroids. J Neuroendocrinol, 1993, 5: 273–280 8319001, 10.1111/j.1365-2826.1993.tb00483.x, 1:CAS:528:DyaK3sXmt1aiu78%3D

    PubMed  Google Scholar 

  46. Miura T, Maruyama K, Shimakura S, et al. Neuropeptide Y mediates ghrelin-induced feeding in the goldfish, Carassius auratus. Neurosci Lett, 2006, 407: 279–283 16979293, 10.1016/j.neulet.2006.08.071, 1:CAS:528:DC%2BD28XpvV2qtbg%3D

    PubMed  Google Scholar 

  47. Peddu S C, Breves J P, Kaiya H, et al. Pre- and postprandial effects on ghrelin signaling in the brain and on the GH/IGF-I axis in the Mozambique tilapia (Oreochromis mossambicus). Gen Comp Endocrinol, 2009, 161: 412–418 19245815, 10.1016/j.ygcen.2009.02.008, 1:CAS:528:DC%2BD1MXkt1Sgsrk%3D

    PubMed  Google Scholar 

  48. Brazeau P, Vale W W, Burgus R, et al. Hypothalamic polypeptide that inhibits the secretion of immunoreactive pituitary growth hormone. Science, 1973, 179: 77–79 4682131, 10.1126/science.179.4068.77, 1:CAS:528:DyaE3sXnvF2ksA%3D%3D

    PubMed  Google Scholar 

  49. Sheridan M A, Kittilson J D, Slagter B J. Structure-function relationships of the signaling system for the somatostatin peptide hormone family. Am Zool, 2000, 40: 269–286 10.1668/0003-1569(2000)040[0269:SFROTS]2.0.CO;2, 1:CAS:528:DC%2BD3cXlsFGjsLg%3D

    Google Scholar 

  50. Very N M, Sheridan M A. The role of somatostatins in the regulation of growth in fish. Fish Physiol Biochem, 2002, 27: 217–226 10.1023/B:FISH.0000032727.75493.e8, 1:CAS:528:DC%2BD2cXltVOnsLo%3D

    Google Scholar 

  51. Very N M, Knutson D, Kittilson J D, et al. Somatostatin inhibits growth of rainbow trout. J Fish Biol, 2001, 59: 157–165 10.1111/j.1095-8649.2001.tb02345.x, 1:CAS:528:DC%2BD3MXksF2mtLY%3D

    Google Scholar 

  52. Nishii B M, Bukovskaya O, Yakahashi A, et al. Isolation and characterization of [Pro2]somatostatin-14 and melanotropins from Russian sturgeon, Acipenser gueldenstaedti Brant. Gen Comp Endocrinol, 1995, 99: 6–12 7657157, 10.1006/gcen.1995.1078, 1:CAS:528:DyaK2MXms1WmtLg%3D

    PubMed  Google Scholar 

  53. Lin X, Peter R E. Somatostatin-like receptors in goldfish: Cloning of four new receptors. Peptides, 2003, 24: 53–63 12576085, 10.1016/S0196-9781(02)00276-0

    PubMed  Google Scholar 

  54. Trabucchi M, Tostivint H, Lihrmann I, et al. Molecular cloning of the cDNAs and distribution of the mRNAs encoding two somatostatin precursors in the African lungfish Protopterus annectens. J Comp Neurol, 1999, 410: 643–652 10398054, 10.1002/(SICI)1096-9861(19990809)410:4<643::AID-CNE10>3.0.CO;2-#, 1:CAS:528:DyaK1MXksVais7Y%3D

    PubMed  Google Scholar 

  55. Devos N, DeXorian G, Biemar F, et al. Differential expression of two somatostatin genes during zebrafish embryonic development. Mech Dev, 2002, 115: 133–137 12049777, 10.1016/S0925-4773(02)00082-5, 1:CAS:528:DC%2BD38XktFyhurs%3D

    PubMed  Google Scholar 

  56. Nelson L E, Sheridan M A. Regulation of somatostatins and their receptors in fish. Gen Comp Endocrinol, 2005, 142: 117–133 15862556, 10.1016/j.ygcen.2004.12.002, 1:CAS:528:DC%2BD2MXjs1Crtr8%3D

    PubMed  Google Scholar 

  57. Ye X, Li W S, Lin H R. Polygenic expression of somatostatin in orange-spotted grouper (Epinephelus coioides): Molecular cloning and distribution of the mRNAs encoding three somatostatin precursors. Mol Cell Endocrinol, 2005, 241: 62–72 10.1016/j.mce.2005.05.008, 1:CAS:528:DC%2BD2MXpvFelsbY%3D

    Google Scholar 

  58. Patel Y C. Somatostatin and its receptor family. Front Neuroedocrinol, 1999, 20: 157–198 10.1006/frne.1999.0183, 1:CAS:528:DyaK1MXkvVOrsLc%3D

    Google Scholar 

  59. Kumar U, Laird D, Srikant C B, et al. Expression of the five somatostatin receptor SSTR1-5 subtypes in rat pituitary somatotrophes: Quantitative analysis by double-label immunofluorescence confocal microscopy. Endocrinology, 1997, 138: 4473–4476 9322965, 10.1210/en.138.10.4473, 1:CAS:528:DyaK2sXmsVais7o%3D

    PubMed  Google Scholar 

  60. Park S, Kamegai J, Johnson T A, et al. Modulation of pituitary somatostatin receptor subtype sst1-5 messenger ribonucleic acid levels by changes in the growth hormone axis. Endocrinology, 2000, 141: 3556–3563 11014208, 10.1210/en.141.10.3556, 1:CAS:528:DC%2BD3cXmvVGmsrY%3D

    PubMed  Google Scholar 

  61. Slagter B J, Sheridan M A. Differential expression of two somatostatin receptor subtype 1 mRNAs in rainbow trout (Oncorhynchus mykiss). J Mol Endocrinol, 2004, 32: 165–177 14766000, 10.1677/jme.0.0320165, 1:CAS:528:DC%2BD2cXhvVOgsbc%3D

    PubMed  Google Scholar 

  62. Lin X, Janovick J A, Brothers S, et al. Molecular cloning and expression of two type one somatostatin receptors in goldfish brain. Endocrinology, 1999, 140: 5211–5219 10537151, 10.1210/en.140.11.5211, 1:CAS:528:DyaK1MXmvFemt7c%3D

    PubMed  Google Scholar 

  63. Gong J Y, Kittilson J D, Sheridan M A. The two subtype 1 sst of rainbow trout, Tsst1A and Tsst1B, possess both distinct and overlapping ligand binding and agonist-induced regulation features. Comp Biochem Physiol B, 2004, 138: 295–303 15253878, 10.1016/j.cbpc.2004.04.005, 1:CAS:528:DC%2BD2cXlslyrsr0%3D

    PubMed  Google Scholar 

  64. Lin X, Janovick J A, Cardenas R, et al. Molecular cloning and expression of a type two somatostatin receptor in goldfish brain and pituitary. Mol Cell Endocrinol, 2000, 166: 75–87 10996426, 10.1016/S0303-7207(00)00278-1, 1:CAS:528:DC%2BD3cXmtlGktLs%3D

    PubMed  Google Scholar 

  65. Zupanc G K H, Siehler S, Jones E M C, et al. Molecular cloning and pharmacological characterization of a somatostatin receptor subtype in the gymnotiform fish Apteronotus albifrons. Gen Comp Endocrinol, 1999, 115: 333–345 10480984, 10.1006/gcen.1999.7316, 1:CAS:528:DyaK1MXlslCmtbc%3D

    PubMed  Google Scholar 

  66. Siehler S, Zupanc G K H, Seuwen K, et al. Characterization of the fish sst3 receptor, a member of the SRIF1 receptor family: Atypical pharmacological features. Neuropharmacology, 1999, 38: 449–462 10219983, 10.1016/S0028-3908(98)00179-8, 1:CAS:528:DyaK1MXit1ertrc%3D

    PubMed  Google Scholar 

  67. Moler L N, Stidsen C E, Hartmann B, et al. Somatostatin receptors. Biochim Biophys Acta, 2003, 1616: 1–84 10.1016/S0005-2736(03)00235-9, 1:CAS:528:DC%2BD3sXnsVagu78%3D

    Google Scholar 

  68. Otto C J, Lin X, Peter R E. Dopaminergic regulation of three somatostatin mRNAs in goldfish brain. Regul Peptides, 1999, 83: 97–104 10.1016/S0167-0115(99)00052-X, 1:CAS:528:DyaK1MXlsFOqtbY%3D

    Google Scholar 

  69. Lin X, Peter R E. Somatostatins and their receptors in fish. Comp. Biochem Physiol B, 2001, 129: 543–550 11399490, 10.1016/S1096-4959(01)00362-1, 1:STN:280:DC%2BD3MzjtFKrtw%3D%3D

    PubMed  Google Scholar 

  70. Canosa L F, Lin X, Peter R E. Regulation of expression of somatostatin genes by sex steroid hormones in goldfish forebrain. Neuroendocrinology, 2002, 76: 8–17 12097812, 10.1159/000063679, 1:CAS:528:DC%2BD38XltVKlu7k%3D

    PubMed  Google Scholar 

  71. Holloway A C, Melroe G T, Ehrman M M, et al. Effect of 17β-estradiol on the expression of somatostatin genes in rainbow trout (Oncorhynchus mykiss). Am J Physiol, 2000, 279: R389–R393 1:STN:280:DC%2BD3cvhtFeksw%3D%3D

    Google Scholar 

  72. Cardenas R, Lin X, Canosa L F, et al. Estradiol reduces pituitary responsiveness to somatostatin (SRIF-14) and down-regulates the expression of somatostatin sst2 receptors in female goldfish tuitary. Gen Comp Endocrinol, 2003, 132: 119–124 12765651, 10.1016/S0016-6480(03)00055-8, 1:CAS:528:DC%2BD3sXjvFWmsLY%3D

    PubMed  Google Scholar 

  73. Zhang L, Li W S, Hong X, et al. Regulation of preprosomatostatin 1 (PSS1) gene expression by 17-estradiol and identification of the PSS1 promoter region in orange-spotted grouper (Epinephelus coioides). Mol Cell Endocrinol, 2009, 311: 87–93 19559750, 10.1016/j.mce.2009.06.008, 1:CAS:528:DC%2BD1MXhtV2ksLzL

    PubMed  Google Scholar 

  74. Melroe G T, Ehrman M M, Kittilson J D, et al. Growth hormone and insulin-like growth factor-1 differentially stimulate the expression of preprosomatostatin mRNAs in the Brockmann bodies of rainbow trout, Oncorhynchus mykiss. Gen Comp Endocrinol, 2004, 136: 353–359 15081835, 10.1016/j.ygcen.2004.01.011, 1:CAS:528:DC%2BD2cXjtVegsbs%3D

    PubMed  Google Scholar 

  75. Dubowsky S, Sheridan M A. Chronic ovine growth hormone exposure to rainbow trout, Oncorhynchus mykiss, reduces plasma insulin concentration, elevates plasma somatostatin-14 concentration, and reduces hepatic growth hormone binding capacity. Exp Clin Endocrinol, 1995, 14: 107–111

    Google Scholar 

  76. Slagter B J, Kittilson J D, Sheridan M A. Expression of somatostatin receptor mRNAs is regulated in vivo by growth hormone, insulin, and insulin-like growth factor-1 in rainbow trout (Oncorhynchus mykiss). Regul Pept, 2005, 128: 27–32 15721484, 10.1016/j.regpep.2004.12.014, 1:CAS:528:DC%2BD2MXhsVOgur0%3D

    PubMed  Google Scholar 

  77. Rocheville M, Lange D C, Kumar U, et al. Subtypes of the somatostatin receptor assemble as functional homo- and heterodimers. J Biol Chem, 2000, 275: 7862–7869 10713101, 10.1074/jbc.275.11.7862, 1:CAS:528:DC%2BD3cXitVyltr4%3D

    PubMed  Google Scholar 

  78. Kojima M, Hosoda H, Date Y, et al. Ghrelin is a growth-hormone-releasing acylated peptide from stomach. Nature, 1999, 402: 656–660 10604470, 10.1038/45230, 1:CAS:528:DC%2BD3cXjs1Ki

    PubMed  Google Scholar 

  79. Nakazato M, Murakami N, Date Y, et al. A role for ghrelin in the central regulation of feeding. Nature, 2001, 409: 194–198 11196643, 10.1038/35051587, 1:CAS:528:DC%2BD3MXlvFSmsg%3D%3D

    PubMed  Google Scholar 

  80. Masuda Y, Tanaka T, Inomata N, et al. Ghrelin stimulates gastric acid secretion and motility in rats. Biochem Biophys Res Commun, 2000, 276: 905–908 11027567, 10.1006/bbrc.2000.3568, 1:CAS:528:DC%2BD3cXntFOqsrg%3D

    PubMed  Google Scholar 

  81. Tschop M, Smiley D L, Heiman M L. Ghrelin induces adiposity in rodents. Nature, 2000, 407: 908–913 11057670, 10.1038/35038090, 1:CAS:528:DC%2BD3cXns1Oltbw%3D

    PubMed  Google Scholar 

  82. Nagaya N, Kojima M, Uematsu M, et al. Hemodynamic and hormonal effects of human ghrelin in healthy volunteers. Am J Physiol Regul Integr Comp Physiol, 2001, 280: R1483–1487 11294772, 1:CAS:528:DC%2BD3MXjsVequrY%3D

    PubMed  Google Scholar 

  83. Duxbury M S, Waseem T, Ito H, et al. Ghrelin promotes pancreatic adenocarcinoma cellular proliferation and invasiveness. Biochem Biophys Res Commun, 2003, 309: 464–468 12951072, 10.1016/j.bbrc.2003.08.024, 1:CAS:528:DC%2BD3sXmvVKmsr0%3D

    PubMed  Google Scholar 

  84. Ishida Y, Sakahara S, Tsutsui C, et al. Identification of ghrelin in the house musk shrew (Suncus murinus): cDNA cloning, peptide purification and tissue distribution. Peptides, 2009, 30: 982–990 19428777, 10.1016/j.peptides.2009.01.006, 1:CAS:528:DC%2BD1MXltlKrsbk%3D

    PubMed  Google Scholar 

  85. Unniappan S, Lin X, Cervini L, et al. Goldfish ghrelin: Molecular characterization of the complementary deoxyribonucleic acid, partial gene structure, and evidence for its stimulatory role in food intake. Endocrinology, 2002, 143: 4143–4146 12239128, 10.1210/en.2002-220644, 1:CAS:528:DC%2BD38Xnt1ygtLo%3D

    PubMed  Google Scholar 

  86. Kaiya H, Kojima M, Hosoda H, et al. Amidated fish ghrelin: Purification, cDNA cloning in the Japanese eel and its biological activity. J Endocrinol, 2003, 176: 415–423 12630926, 10.1677/joe.0.1760415, 1:CAS:528:DC%2BD3sXis1amt7o%3D

    PubMed  Google Scholar 

  87. Kaiya H, Kojima M, Hosoda H, et al. Identification of tilapia ghrelin and its effects on growth hormone and prolactin release in the tilapia, Oreochromis mossambicus. Comp Biochem Physiol B Biochem Mol Biol, 2003, 135: 421–429 12831762, 10.1016/S1096-4959(03)00109-X, 1:CAS:528:DC%2BD3sXkvVSqtbY%3D

    PubMed  Google Scholar 

  88. Kaiya H, Kojima M, Hosoda H, et al. Peptide purification, cDNA and genomic DNA cloning, and functional characterization of ghrelin in rainbow trout. Endocrinology, 2003, 144: 5215–5226 12970156, 10.1210/en.2003-1085, 1:CAS:528:DC%2BD3sXpsV2gtLg%3D

    PubMed  Google Scholar 

  89. Kaiya H, Small B C, Bilodeau A L, et al. Purification, cDNA cloning, and characterization of ghrelin in channel catfish, Ictalurus punctatus. Gen Comp Endocrinol, 2005, 143: 201–210 16111526, 10.1016/j.ygcen.2005.03.012, 1:CAS:528:DC%2BD2MXos1ajsLg%3D

    PubMed  Google Scholar 

  90. Yeung C M, Chan C B, Woo N Y, et al. Seabream ghrelin: cDNA cloning, genomic organization and promoter studies. J Endocrinol, 2006, 189: 365–379 16648303, 10.1677/joe.1.06593, 1:CAS:528:DC%2BD28XltVyqtbY%3D

    PubMed  Google Scholar 

  91. Miura T, Maruyama K, Kaiya H, et al. Purification and properties of ghrelin from the intestine of the goldfish, Carassius auratus. Peptides, 2009, 30: 758–765 19150635, 10.1016/j.peptides.2008.12.016, 1:CAS:528:DC%2BD1MXjvVWgsro%3D

    PubMed  Google Scholar 

  92. Yang J, Brown M S, Liang G, et al. Identification of the acyltransferase that octanoylates ghrelin, an appetite-stimulating peptide hormone. Cell, 2008, 132: 387–396 18267071, 10.1016/j.cell.2008.01.017, 1:CAS:528:DC%2BD1cXivVahur8%3D

    PubMed  Google Scholar 

  93. Davenport A P, Bonner T I, Foord S M, et al. International Union of Pharmacology. LVI. Ghrelin receptor nomenclature, distribution, and function. Pharmacol Rev, 2005, 57: 541–546 16382107, 10.1124/pr.57.4.1, 1:CAS:528:DC%2BD28XhtFWnsrg%3D

    PubMed  Google Scholar 

  94. Camina J P. Cell biology of the ghrelin receptor. J Neuroendocrinol, 2006, 18: 65–76 16451222, 10.1111/j.1365-2826.2005.01379.x, 1:CAS:528:DC%2BD28XhvFKmtLw%3D

    PubMed  Google Scholar 

  95. Yamazaki M, Kobayashi H, Tanaka T, et al. Ghrelin-induced growth hormone release from isolated rat anterior pituitary cells depends on intracellullar and extracellular Ca2+ sources. J Neuroendocrinol, 2004, 16: 825–831 15500542, 10.1111/j.1365-2826.2004.01237.x, 1:CAS:528:DC%2BD2cXhtVSis7fE

    PubMed  Google Scholar 

  96. Lorenzi T, Meli R, Marzioni D, et al. Ghrelin: A metabolic signal affecting the reproductive system. Cytokine Growth Factor Rev, 2009, 20: 137–152 19297235, 10.1016/j.cytogfr.2009.02.003, 1:CAS:528:DC%2BD1MXktl2jtL8%3D

    PubMed  Google Scholar 

  97. Palyha O C, Feighner S D, Tan C P, et al. Ligand activation domain of human orphan growth hormone (GH) secretagogue receptor (GHS-R) conserved from pufferfish to humans. Mol Endocrinol, 2000, 14: 160–169 10628755, 10.1210/me.14.1.160, 1:CAS:528:DC%2BD3cXislWisA%3D%3D

    PubMed  Google Scholar 

  98. Chan C B, Cheng C H. Identification and functional characterization of two alternatively spliced growth hormone secretagogue receptor transcripts from the pituitary of black seabream, Acanthopagrus schlegeli. Mol Cell Endocrinol, 2004, 214: 81–95 15062547, 10.1016/j.mce.2003.11.020, 1:CAS:528:DC%2BD2cXhtFWgsrk%3D

    PubMed  Google Scholar 

  99. Kaiya H, Riley L G, Janzen W, et al. Identification and genomic sequence of ghrelin receptor (GHS-R)-like receptor in the Mozambique tilapia, Oreochromis mossambicus. Zool Sci, 2009, 26: 330–337 19715502, 10.2108/zsj.26.330, 1:CAS:528:DC%2BD1MXhsVOltbzO

    PubMed  Google Scholar 

  100. Chen T, Tang Z G, Yan A F, et al. Molecular cloning and mRNA expression analysis of two GH secretagogue receptor transcripts in orange-spotted grouper (Epinephelus coioides). J Endocrinol, 2008, 199: 253–265 18753333, 10.1677/JOE-08-0325, 1:CAS:528:DC%2BD1cXhsVClsb7P

    PubMed  Google Scholar 

  101. Chan C B, Leung P K, Wise H, et al. Signal transduction mechanism of the seabream growth hormone secretagogue receptor. FEBS Lett, 2004, 577: 147–153 15527776, 10.1016/j.febslet.2004.08.088, 1:CAS:528:DC%2BD2cXpsFersr8%3D

    PubMed  Google Scholar 

  102. Unniappan S, Peter R E. In vitro and in vivo effects of ghrelin on luteinizing hormone and growth hormone release in goldfish. Am J Physiol Regul Integr Comp Physiol, 2004, 286: 1093–1101

    Google Scholar 

  103. Arvat E, Maccario M, Di Vito, et al. Endocrine activities of ghrelin, a natural growth hormone secretagogue (GHS), in humans: Comparison and interactions with hexarelin, a nonnatural peptidyl GHS, and GH-releasing hormone. J Clin Endocrinol Metab, 2001, 86: 1169–1174 11238504, 10.1210/jc.86.3.1169, 1:CAS:528:DC%2BD3MXitFWntrk%3D

    PubMed  Google Scholar 

  104. Hataya Y, Akamizu T, Takaya K, et al. A low dose of ghrelin stimulates growth hormone (GH) release synergistically with GH-releasing hormone in humans. J Clin Endocrinol Metab, 2001, 86: 4552–4555 11549707, 10.1210/jc.86.9.4552, 1:CAS:528:DC%2BD3MXmvFCrsb8%3D

    PubMed  Google Scholar 

  105. Cunha S R, Mayo K E. Ghrelin and growth hormone (GH) secretagogues potentiate GH-releasing hormone (GHRH)-induced cyclic adenosine 3′,5′-monophosphate production in cells expressing transfected GHRH and GH secretagogue receptors. Endocrinology, 2002, 143: 4570–4582 12446584, 10.1210/en.2002-220670, 1:CAS:528:DC%2BD38Xpt1elsbc%3D

    PubMed  Google Scholar 

  106. Schwartz J. Intercellular communication in the anterior pituitary. Endocr Rev, 2000, 21: 488–513 11041446, 10.1210/er.21.5.488, 1:CAS:528:DC%2BD3cXnvV2ru7g%3D

    PubMed  Google Scholar 

  107. Fraser R A, Harvey S. Ubiquitous distribution of growth hormone receptors and/or binding proteins in adenohypophyseal tissue. Endocrinology, 1992, 130: 3593–3600 1597156, 10.1210/en.130.6.3593, 1:CAS:528:DyaK38XltVCmu70%3D

    PubMed  Google Scholar 

  108. Iida K, Del Rincon J P, Kim D S, et al. Tissue-specific regulation of growth hormone (GH) receptor and insulin-like growth factor-I gene expression in the pituitary and liver of GH deficient (lit/lit) mice and transgenic mice that overexpress bGH or a bGH antagonist. Endocrinology, 2004, 145: 1564–1570 14726438, 10.1210/en.2003-1486, 1:CAS:528:DC%2BD2cXis1Sjurs%3D

    PubMed  Google Scholar 

  109. Mertani H C, Morel G. In situ gene expression of growth hormone (GH) receptor and GH binding protein in adult male rat tissues. Mol Cell Endocrinol, 1995, 109: 47–61 7789615, 10.1016/0303-7207(95)03485-P, 1:CAS:528:DyaK2MXktFCitb4%3D

    PubMed  Google Scholar 

  110. Rosenthal S M, Silverman B L, Wehrenberg W B. Exogenous growth hormone inhibits bovine but not murine pituitary growth hormone secretion in vitro: evidence for a direct feedback of growth hormone on the pituitary. Neuroendocrinology, 1991, 53: 597–600 1876236, 10.1159/000125779, 1:CAS:528:DyaK3MXit1WksrY%3D

    PubMed  Google Scholar 

  111. Piwien-Pilipuk G, Huo J S, Schwartz J. Growth hormone signal transduction. J Pediatr Endocrinol Metab, 2002, 15: 771–786 12099386, 1:CAS:528:DC%2BD38XptFagur8%3D

    PubMed  Google Scholar 

  112. Kopchick J J, Andry J M. Growth hormone (GH), GH receptor, and signal transduction. Mol Genet Metab, 2000, 71: 293–314 11001823, 10.1006/mgme.2000.3068, 1:CAS:528:DC%2BD3cXms1yisr4%3D

    PubMed  Google Scholar 

  113. Zhou H, Wang X Y, Ko W K, et al. Evidence for a Novel Intrapituitary Autocrine/Paracrine Feedback loop regulating growth hormone synthesis and secretion in grass carp pituitary cells by functional interactions between gonadotrophs and somatotrophs. Endocrinology, 2004, 145: 5548–5559 15331572, 10.1210/en.2004-0362, 1:CAS:528:DC%2BD2cXhtVaqu73L

    PubMed  Google Scholar 

  114. Mertani H C, Pechoux C, Garcia-Caballero T, et al. Cellular localization of the growth hormone receptor/binding protein in the human anterior pituitary gland. J Clin Endocrinol Metab, 1995, 80: 3361–3367 7593452, 10.1210/jc.80.11.3361, 1:CAS:528:DyaK2MXptlehsrw%3D

    PubMed  Google Scholar 

  115. Harvey S, Baumbach W R, Sadeghi H, et al. Ultrastructural colocalization of growth hormone binding protein and pituitary hormones in adenohypophyseal cells of the rat. Endocrinology, 1993, 133: 1125–1130 8396011, 10.1210/en.133.3.1125, 1:CAS:528:DyaK3sXmsVWltL8%3D

    PubMed  Google Scholar 

  116. Chandrashekar V, Bartke A. The role of growth hormone in the control of gonadotropin secretion in adult male rats. Endocrinology, 1998, 139: 1067–1074 9492039, 10.1210/en.139.3.1067, 1:CAS:528:DyaK1cXhtlejtL4%3D

    PubMed  Google Scholar 

  117. Gonzalez-Parra S, Argente J, Garcia-Segura L M, et al. Cellular composition of the adult rat anterior pituitary is influenced by the neonatal sex steroid environment. Neuroendocrinology, 1998, 68: 152–162 9733999, 10.1159/000054361, 1:CAS:528:DyaK1cXmt1Wks7k%3D

    PubMed  Google Scholar 

  118. Peter R E, Yu K L. Neuroendocrine regulation of ovulation in fishes: Basic and applied aspects. Rev Fish Biol Fisheries, 1997, 7: 173–197 10.1023/A:1018431610220

    Google Scholar 

  119. Weil C, Carre F, Blaise O, et al. Differential effect of insulin-like growth factor I on in vitro gonadotropin (I and II) and growth hormone secretions in rainbow trout (Oncorhynchus mykiss) at different stages of the reproductive cycle. Endocrinology, 1999, 140: 2054–2062 10218954, 10.1210/en.140.5.2054, 1:CAS:528:DyaK1MXislSnsbw%3D

    PubMed  Google Scholar 

  120. Li W S, Wong Anderson O L, Lin H R. Effects of Gonadotropin-releasing hormone on the growth hormone secretion and gene expression in common carp pituitary. Comp Biochem Physiol B, 2002, 132: 335–341 12031458, 10.1016/S1096-4959(02)00039-8

    PubMed  Google Scholar 

  121. Melamed P, Eliahu N, Levavi-Sivan B, et al. Hypothalamic and thyroidal regulation of growth hormone in tilapia. Gen Comp Endocrinol, 1995, 97: 13–30 7713377, 10.1006/gcen.1995.1002, 1:CAS:528:DyaK2MXjtVOguro%3D

    PubMed  Google Scholar 

  122. Ravni A, Vaudry D, Gerdin M J, et al. A cAMP-dependent, protein kinase A-independent signaling pathway mediating neuritogenesis through Egr1 in PC12 cells. Mol Pharmacol, 2008, 73:1688–1708 18362103, 10.1124/mol.107.044792, 1:CAS:528:DC%2BD1cXms1emsrY%3D

    PubMed  PubMed Central  Google Scholar 

  123. Gorbman A. Olfactory origins and evolution of the brain-pituitary endocrine system: Facts and speculation. Gen Comp Endocrinol, 1995, 97: 171–178 7622012, 10.1006/gcen.1995.1016, 1:CAS:528:DyaK2MXjvF2qur8%3D

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to WenSheng Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, W., Lin, H. The endocrine regulation network of growth hormone synthesis and secretion in fish: Emphasis on the signal integration in somatotropes. Sci. China Life Sci. 53, 462–470 (2010). https://doi.org/10.1007/s11427-010-0084-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11427-010-0084-6

Keywords

Navigation