Skip to main content
Log in

Effect of sulfonamide antibiotics on microbial diversity and activity in a Californian Mollic Haploxeralf

  • SOILS, SEC 2 • GLOBAL CHANGE, ENVIRON RISK ASSESS, SUSTAINABLE LAND USE • RESEARCH ARTICLE
  • Published:
Journal of Soils and Sediments Aims and scope Submit manuscript

Abstract

Purpose

Up to 90% of antibiotics that are fed to livestock are excreted unaltered or as metabolites and thus are present in manure. By application of manure as fertilizer, veterinary antibiotics can reach soil and groundwater. The aim of this study is to determine the effect of three commonly used (and simultaneously applied) sulfonamide antibiotics on both function and structural diversity of soil microorganisms. To this end, the activity of the enzymes urease and dehydrogenase was determined, and the composition of phospholipid fatty acids (PLFA) was analyzed.

Materials and methods

Soil and manure were sampled at a dairy farm located in the Northern San Joaquin Valley, California, USA. Soil (700 g) was amended with either mineral water only (W-treatments), liquid manure (M-treatments), or with glucose solution (G-treatments). Each of these soil treatments was mixed with a cocktail of three sulfonamides: sulfadimethoxine (SDT), sulfamethoxazole (SMX), and sulfamethazine (SMZ) at five total concentration levels ranging from 0 (control) to 900 µg g −1dm . After 24, 48, 96, 168, 264, 384, and 504 h, UA and DHA were determined; PLFA composition in selected samples was analyzed at t = 168 h and 504 h of incubation.

Results and discussion

In the G-treatments, urease activity decreased with higher sulfonamide concentrations; no effect was observed when no glucose was added (W-treatments). While a dose–response relationship was observed for urease activity after 168 h, a similar inhibition was measured after 380 h at all sulfonamide concentrations. Sulfonamides also reduced dehydrogenase activity in the G-treatments, but results are less conclusive than for urease. With increasing sulfonamide concentration, microbial and bacterial biomass decreased in the G-treatments compared to the control at 168 h. Sulfonamides caused a relative community shift towards gram-negative bacteria and towards an increased proportion of fungal biomass. Strong inhibition of urease by manure (M-treatments) was observed even without the addition of sulfonamides.

Conclusions

Sulfonamides clearly affected both the function and structural diversity of the soil microbial community over at least 16 days. The soil microbial community was affected by sulfonamides even at a relatively low concentration, although this soil receives regular input of manure that contains several antibiotics. Further research is needed addressing both long-term effects and lower sulfonamide concentrations under dynamic boundary conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Böhme L, Langer U, Böhme F (2005) Microbial biomass, enzyme activities and microbial community structure in two European long-term field experiments. Agric Ecosyst Environ 109:141–152

    Article  Google Scholar 

  • Bol R, Kandeler E, Amelung W, Glaser B, Marx MC, Preedy N, Lorenz K (2003) Short-term effects of dairy slurry amendment on carbon sequestration and enzyme activities in a temperate grassland. Soil Biol Biochem 35:1411–1421

    Article  CAS  Google Scholar 

  • Esiobu N, Armenta L, Ike J (2002) Antibiotic resistance in soil and water environments. Int J Environ Health Res 12:133–144

    Article  Google Scholar 

  • Frostegard A, Tunlid A, Baath E (1991) Microbial biomass measured as total lipid phosphate in soils of different organic content. J Microbiol Meth 14:151–163

    Article  Google Scholar 

  • Hackl E, Pfeffer M, Donat C, Bachmann G, Zechmeister-Boltenstern S (2005) Composition of the microbial communities in the mineral soil under different types of natural forest. Soil Biol Biochem 37:661–671

    Article  CAS  Google Scholar 

  • Halling-Sørensen B, Nors Nielsen S, Lanzky PF, Ingerslev F, Holten Lützhøft HC, Jørgensen SE (1998) Occurrence, fate and effects of pharmaceutical substances in the environment—a review. Chemosphere 36:357–393

    Article  Google Scholar 

  • Hammesfahr U, Heuer H, Manzke B, Smalla K, Thiele-Bruhn S (2008) Impact of the antibiotic sulfadiazine and pig manure on the microbial community structure in agricultural soils. Soil Biol Biochem 40:1583–1591

    Article  CAS  Google Scholar 

  • Hamscher G, Pawelzick HT, Höper H, Nau H (2005) Different behaviour of tetracyclines and sulfonamides in sandy soils after repeated fertilization with liquid manure. Environ Toxicol Chem 24:861–868

    Article  CAS  Google Scholar 

  • Harter T, Davis H, Mathews MC, Meyer RD (2002) Shallow groundwater quality on dairy farms with irrigated forage crops. J Contam Hydrol 55:287–315

    Article  CAS  Google Scholar 

  • Heise J, Höltge S, Schrader S, Kreuzig R (2006) Chemical and biological characterization of non-extractable sulfonamide residues in soil. Chemosphere 65:2352–2357

    Article  CAS  Google Scholar 

  • Kahle M, Stamm C (2007) Time and pH-dependent sorption of the veterinary antimicrobial sulfathiazole to clay minerals and ferrihydrite. Chemosphere 68:1224–1231

    Article  CAS  Google Scholar 

  • Kandeler E, Gerber H (1988) Short-term assay of soil urease activity using colorimetric determination of ammonium. Biol Fertil Soils 6:68–72

    Article  CAS  Google Scholar 

  • Kandeler E, Kampichler C, Horak O (1996) Influence of heavy metals on the functional diversity of soil microbial communities. Biol Fertil Soils 23:299–306

    Article  CAS  Google Scholar 

  • Kandeler E, Stemmer M, Klimanek EM (1999) Response of soil microbial biomass, urease and xylanase within particle size fractions to long-term soil management. Soil Biol Biochem 31:261–273

    Article  CAS  Google Scholar 

  • Klose S, Tabatabai MA (1999) Urease activity of microbial biomass in soils. Soil Biol Biochem 31:205–211

    Article  CAS  Google Scholar 

  • Kong WD, Zhu YG, Fu BJ, Marschner P, He JZ (2006) The veterinary antibiotic oxytetracycline and cu influence functional diversity of the soil microbial community. Environ Pollut 143:129–137

    Article  CAS  Google Scholar 

  • Kotzerke A, Sharma S, Schauss K, Heuer H, Thiele-Bruhn S, Smalla K, Wilke BM, Schloter M (2008) Alterations in soil microbial activity and N-transformation processes due to sulfadiazine loads in pig-manure. Environ Pollut 153:315–322

    Article  CAS  Google Scholar 

  • Madigan MT, Martinko JM, Dunlap PV, Clark DP (2009) Brock biology of microorganisms. 12th international ed., Pearson, San Francisco

  • Sarmah AK, Meyer MT, Boxall ABA (2006) A global perspective on the use, sales, exposure pathways, occurrence, fate and effects of veterinary antibiotics (VAs) in the environment. Chemosphere 65:725–759

    Article  CAS  Google Scholar 

  • Scheffer P, Schachtschabel P, Blume H-P, Brümmer G, Hartge KH, Schwertmann U, Auerswald K, Beyer L, Fischer WR, Kögel-Knaber I, Renger M, Strebel O (1998) Lehrbuch der Bodenkunde, 14th edn. Ferdinand Enke, Stuttgart, p 494

    Google Scholar 

  • Schmitt H, Haapakangas H, van Beelen P (2005) Effects of antibiotics on soil microorganisms: time and nutrients influence pollution-induced community tolerance. Soil Biol Biochem 37:1882–1892

    Article  CAS  Google Scholar 

  • Schmitt H, van Beelen P, Tolls J, van Leeuwen CL (2004) Pollution-induced community tolerance of soil microbial communities caused by the antibiotic sulfachloropyridazine. Environ Sci Technol 38:1148–1153

    Article  CAS  Google Scholar 

  • Schmitt A, Glaser B, Borken W, Matzner E (2008) Repeated freeze–thaw cycles changed organic matter quality in a temperate forest soil. J Plant Nutr Soil Sci 171:707–718

    Article  CAS  Google Scholar 

  • Snedecor GW, Cochran WT (1989) Statistical methods. Ames, Iowa

    Google Scholar 

  • Thalmann A (1968) Zur Methodik der Bestimmung der Dehydrogenaseaktivität im Boden mittels Triphenyltetrazoliumchlorid (TTC). Landwirtsch Forsch 21:249–258

    CAS  Google Scholar 

  • Thiele-Bruhn S, Beck IC (2005) Effects of sulfonamide and tetracycline antibiotics on soil microbial activity and microbial biomass. Chemosphere 59:457–465

    Article  CAS  Google Scholar 

  • Watanabe N, Harter T, Bergamaschi BA (2010) Environmental occurrence of antibiotics from dairy farms. In press

  • Watanabe N, Harter TH, Bergamaschi BA (2008) Environmental occurrence and shallow ground water detection of the antibiotic monensin from dairy farms. J Environ Qual 37:78–85

    Article  Google Scholar 

  • Zelles L (1999) Fatty acid patterns of phospholipids and lipopolysaccharides in the characterisation of microbial communities in soil: a review. Biol Fertil Soils 29:111–129

    Article  CAS  Google Scholar 

  • Zielezny Y, Groeneweg J, Vereecken H, Tappe W (2006) Impact of sulfadiazine and chlorotetracycline on soil bacterial community structure and respiratory activity. Soil Biol Biochem 38:2372–2380

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was financially supported by grants from the Bavaria California Technology Center (BaCaTeC) to MR and the German Academic Exchange Service (DAAD) to IRG. We thank two anonymous reviewers for their constructive comments on earlier versions of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Radke.

Additional information

Responsible editor: Chengrong Chen

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

Electronic supplementary material. (DOC 84 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gutiérrez, I.R., Watanabe, N., Harter, T. et al. Effect of sulfonamide antibiotics on microbial diversity and activity in a Californian Mollic Haploxeralf . J Soils Sediments 10, 537–544 (2010). https://doi.org/10.1007/s11368-009-0168-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11368-009-0168-8

Keywords

Navigation