Skip to main content

Advertisement

Log in

Characterization of cadmium biosorption by Exiguobacterium sp. isolated from farmland soil near Cu-Pb-Zn mine

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Bacteria have the ability to bind heavy metals on their cell wall. Biosorption is a passive and energy-independent mechanism to adsorb heavy metals. The efficiency of heavy metal biosorption can vary depending on several factors such as the growth phase of bacteria, solution pH, and existence of competitive heavy metals. In this study, Exiguobacterium sp. isolated from farmland soil near a mine site were used, and optimal conditions for Cd biosorption in solution were investigated. As bacterial growth progressed, Cd biosorption increased, which is attributed to changes in the structure and composition of the cell wall during bacterial growth. The biosorption process was rapid and was completed within 30 min. Cadmium biosorption was highest at pH 7 due to the dissociation of hydrogen ions and the increase of negative charges with increasing pH. In the mixed metal solution of Cd, Pb, and Zn, the amount of biosorption was in the order of Pb>Cd>Zn while in a single metal solution, the order was Cd≥Pb>Zn. The maximum adsorption capacity for Cd by the isolated bacteria was 15.6 mg/g biomass, which was calculated from the Langmuir isotherm model. Different adsorption efficiencies under various environmental conditions indicate that, to control metal mobility, the conditions for biosorption should be optimized before applying bacteria. The results showed that the isolated bacteria can be used to immobilize metals in metal-contaminated wastewater.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig 1
Fig 2
Fig 3
Fig 4
Fig 5
Fig 6

Similar content being viewed by others

References

  • Aksu Z (2001) Equilibrium and kinetic modelling of cadmium(II) biosorption by C. vulgaris in a batch system: effect of temperature. Sep Purif Technol 21:285–294

    Article  CAS  Google Scholar 

  • Aksu Z (2002) Determination of the equilibrium, kinetic and thermodynamic parameters of the batch biosorption of nickel(II) ions onto Chlorella vulgaris. Process Biochem 38:89–99

    Article  CAS  Google Scholar 

  • Alam MZ, Ahmad S (2013) Multi-metal biosorption and bioaccumulation by Exiguobacterium sp. ZM-2. Annals of Microbiology 63:1137–1146

    Article  CAS  Google Scholar 

  • Arora M, Kiran B, Rani S, Rani A, Kaur B, Mittal N (2008) Heavy metal accumulation in vegetables irrigated with water from different sources. Food Chem 111:811–815

    Article  CAS  Google Scholar 

  • Batool R, Qurrat-ul-ain K, Naeem A (2014) Comparative study of Cr(VI) removal by Exiguobacterium sp. in free and immobilized forms Bioremediation Journal 18:317-327

  • Brady JM, Tobin JM (1995) Binding of hard and soft metal ions to Rhizopus arrhizus biomass. Enzyme Microb Technol 17:791–796

    Article  CAS  Google Scholar 

  • Butler JAV, Ockrent C (1930) Studies in electrocapillarity. III. J Phys Chem 34:2841–2859

    Article  CAS  Google Scholar 

  • Cervantes C, Gutierrez-Corona F (1994) Copper resistance mechanisms in bacteria and fungi. FEMS Microbiol Rev 14:121–137

    Article  CAS  Google Scholar 

  • Chang J, Law R, Chang C (1997) Biosorption of lead, copper and cadmium by biomass of Pseudomonas aeruginosa PU21. Water Res 31:1651–1658

    Article  CAS  Google Scholar 

  • Chong KH, Volesky B (2004) Biosorption of heavy metals by Saccharomyces cerevisiae: effects of nutrient conditions. Biotechnol Bioeng 47:451–460

    Article  Google Scholar 

  • Chaturvedi P, Shivaji S (2006) Exiguobacterium indicum sp. nov., a psychrophilic bacterium from the Hamta glacier of the Himalayan mountain ranges of India. Int J Syst Evol Microbiol 56:2765–2770

    Article  CAS  Google Scholar 

  • Chuan MC, Shu GY, Liu JC (1996) Solubility of heavy metals in a contaminated soil: effects of redox potential and pH. Water Air Soil Pollut 90:543–556

    Article  CAS  Google Scholar 

  • Collins MD, Lund BM, Farrow JAE, Schleifer KH (1983) Chemotaxonomic study of an alkalophilic bacterium, Exiguobacterium aurantiacum gen. nov., sp. nov. J Gen Microbiol 129:2037–2042

    CAS  Google Scholar 

  • Dang VBH, Doan HD, Dang-Vu T, Lohi A (2009) Equilibrium and kinetics of biosorption of cadmium(II) and copper(II) ions by wheat straw. Bioresour Technol 100:211–219

    Article  CAS  Google Scholar 

  • Daughney C, Fowle DA, Fortin D (2001) The effect of growth phase on proton and metal adsorption by Bacillus subtilis. Geochim Cosmochim Acta 65:1025–1035

    Article  CAS  Google Scholar 

  • Engl A, Kunz B (1995) Biosorption of heavy metals by Saccharomyces cerevisiae: effects of nutrient conditions. J Chem Technol Biotechnol 63:257–261

    Article  CAS  Google Scholar 

  • Esposito A, Pagnanelli F, Vegliò F (2002) pH-related equilibria models for biosorption in single metal systems. Chemical Engineering Science 57:307–313

    Article  CAS  Google Scholar 

  • Fan J, Okyay TO, Rodrigues DF (2014) The synergism of temperature, pH and growth phases on heavy metal biosorption by two environmental isolates. J Hazard Mater 279:236–243

    Article  CAS  Google Scholar 

  • Fein JB, Daughney CJ, Yee N, Davis TA (1997) A chemical equilibrium model for metal adsorption onto bacterial surfaces. Geochim Cosmochim Acta 61:3319–3328

    Article  CAS  Google Scholar 

  • Fourest E, Canal C, Roux J (1994) Improvement of heavy metal biosorption by mycelial dead biomasses (Rhizopus arrhizus, Mucor miehei and Penicillium chrysogenum): pH control and cationic activation. FEMS Microbiol Rev 14:325–332

    Article  CAS  Google Scholar 

  • Fu F, Wang Q (2011) Removal of heavy metal ions from wastewaters: a review. J Environ Manage 92:407–418

    Article  CAS  Google Scholar 

  • Gabr RM, Hassan SHA, Shoreit AAM (2008) Biosorption of lead and nickel by living and non-living cells of Pseudomonas aeruginosa ASU 6a. Int Biodeter Biodegr 62:195–203

    Article  CAS  Google Scholar 

  • Gadd GM (1992) Biosorption. J Chem Technol Biotechnol 55:302–304

    Google Scholar 

  • Gadd GM (2010) Metals, minerals and microbes: geomicrobiology and bioremediation. Microbiology 156:609–643

    Article  CAS  Google Scholar 

  • Gardea-Torresdey JL, Gonzalez JH, Tiemann KJ, Rodriguez O, Gamez G (1998) Phytofiltration of hazardous cadmium, chromium, lead and zinc ions by biomass of Medicago sativa (Alfalfa). J Hazard Mater 57:29–39

    Article  CAS  Google Scholar 

  • Green-Ruiz C, Rodriguez-Tirado V, Gomez-Gil B (2008) Cadmium and zinc removal from aqueous solutions by Bacillus jeotgali: pH, salinity and temperature effects. Bioresour Technol 99:3864–3870

    Article  CAS  Google Scholar 

  • Holan ZR, Volesky B, Prasetyo I (1993) Biosorption of cadmium by biomass of marine algae. Biotechnol Bioeng 41:819–825

    Article  CAS  Google Scholar 

  • Jo-Shu C, Juan H (1994) Biosorption of mercury by the inactivated cells of pseudomonas aeruginosa PU21 (Rip64). Biotechnol Bioeng 44:999–1006

    Article  Google Scholar 

  • Kaduková J, Virčíková E (2005) Comparison of differences between copper bioaccumulation and biosorption. Environ Int 31:227–232

    Article  Google Scholar 

  • Kefala MI, Zouboulis AI, Matis KA (1999) Biosorption of cadmium ions by Actinomycetes and separation by flotation. Environ Pollut 104:283–293

    Article  CAS  Google Scholar 

  • Kim DS (2003) The removal by crab shell of mixed heavy metal ions in aqueous solution. Bioresour Technol 87:355–357

    Article  CAS  Google Scholar 

  • Kim I, Lee M, Jung S, Song JJ, Oh T, Yoon J (2005) Exiguobacterium aestuarii sp. nov. and Exiguobacterium marinum sp. nov., isolated from a tidal flat of the Yellow Sea in Korea. Int J Syst Evol Microbiol 55:885–889

    Article  CAS  Google Scholar 

  • Kratochvil D, Volesky B (1998) Advances in the biosorption of heavy metals. Trends Biotechnol 16:291–300

    Article  CAS  Google Scholar 

  • Langmuir I (1918) The adsorption of gases on plane surfaces of glass, mica and platinum. The Journal of the American Chemical Society 40:1361–1403

    Article  CAS  Google Scholar 

  • Li G, Zhang D, Li Q, Chen G (2014) Effects of pH on isotherm modeling and cation competition for Cd(II) and Cu(II) biosorption on Myriophyllum spicatum from aqueous solutions. Environmental Earth Sciences 72:4237–4247

    Article  CAS  Google Scholar 

  • Lovley DR, Coates JD (1997) Bioremediation of metal contamination. Curr Opin Biotechnol 8:285–289

    Article  CAS  Google Scholar 

  • Li WW, Yu HQ (2014) Insight into the roles of microbial extracellular polymer substances in metal biosorption. Bioresour Technol 160:15–23

    Article  CAS  Google Scholar 

  • Markai S, Andrès Y, Montavon G, Grambow B (2003) Study of the interaction between europium (III) and Bacillus subtilis: fixation sites, biosorption modeling and reversibility. J Colloid Interface Sci 262:351–361

    Article  CAS  Google Scholar 

  • Mashitah MD, Yus Azila Y, Bhatia S (2008) Biosorption of cadmium (II) ions by immobilized cells of Pycnoporus sanguineus from aqueous solution. Bioresour Technol 99:4742–4748

    Article  CAS  Google Scholar 

  • Nagashetti V, Mahadevaraju GK, Muralidhar TS, Javed A, Trivedi D, Bhusal P (2013) Biosorption of heavy metals from soil by Pseudomonas aeruginosa. Int J innovative Technol Exploring Eng 2:22–24

    Google Scholar 

  • Namasivayam C, Ranganathan K (1995) Removal of Cd(II) from wastewater by adsorption on “waste” Fe(III)/Cr(III) hydroxide. Water Res 29:1737–1744

    Article  CAS  Google Scholar 

  • Nieboer E, McBryde WAE (1973) Free-energy relationships in coordination chemistry. III. A comprehensive index to complex stability Canadian Journal of Chemistry 51:2512–2524

    CAS  Google Scholar 

  • Nies DH (1992) Resistance to cadmium, cobalt, zinc, and nickel in microbes. Plasmid 27:17–28

    Article  CAS  Google Scholar 

  • Nies DH (2003) Efflux-mediated heavy metal resistance in prokaryotes. FEMS Microbiol Rev 27:313–339

    Article  CAS  Google Scholar 

  • Pagnanelli F, Esposito A, Toro L, Vegliò F (2003) Metal speciation and pH effect on Pb, Cu, Zn and Cd biosorption onto Sphaerotilus natans: Langmuir-type empirical model. Water Res 37:627–633

    Article  CAS  Google Scholar 

  • Puranik PR, Paknikar KM (1999) Influence of co-cations on biosorption of lead and zinc—a comparative evaluation in binary and multimetal systems. Bioresour Technol 70:269–276

    Article  CAS  Google Scholar 

  • Rangsayatorn N, Upatham ES, Kruatrachue M, Pokethitiyook P, Lanza GR (2002) Phytoremediation potential of Spirulina (Arthrospira) platensis: biosorption and toxicity studies of cadmium. Environ Pollut 119:45–53

    Article  CAS  Google Scholar 

  • Salleh MM, Illias R, Hassan O, Kamaruddin K, Shahab N (2006) Cloning and expression of pullulanase a gene from locally isolated bacillus. Report of the Universiti Teknologi Malaysia, Johor

  • Sanità di Toppi L, Gabbrielli R (1999) Response to cadmium in higher plants. Environ Exp Bot 41:105–130

    Article  Google Scholar 

  • Scott J, Palmer S (1988) Cadmium bio-sorption by bacterial exopolysaccharide. Biotechnol Lett 10:21–24

    Article  CAS  Google Scholar 

  • Selatnia A, Boukazoula A, Kechid N, Bakhti MZ, Chergui A, Kerchich Y (2004) Biosorption of lead (II) from aqueous solution by a bacterial dead Streptomyces rimosus biomass. Biochem Eng J 19:127–135

    Article  CAS  Google Scholar 

  • Sheng PX, Ting Y, Chen JP, Hong L (2004) Sorption of lead, copper, cadmium, zinc, and nickel by marine algal biomass: characterization of biosorptive capacity and investigation of mechanisms. J Colloid Interface Sci 275:131–141

    Article  CAS  Google Scholar 

  • Smolyakov SS, Ryzhikh AP, Romanov RE (2010) The fate of Cu, Zn, and Cd in the initial stage of water system contamination: the effect of phytoplankton activity. J Hazard Mater 184:819–825

    Article  CAS  Google Scholar 

  • Sud D, Mahajan G, Kaur MP (2008) Agricultural waste material as potential adsorbent for sequestering heavy metal ions from aqueous solutions—a review. Bioresour Technol 99:6017–6027

    Article  CAS  Google Scholar 

  • Tobin JM, White E, Gadd GM (1994) Metal accumulation by fungi: applications in environmental biotechnology. J Ind Microbiol 13:126–130

    Article  CAS  Google Scholar 

  • Vijayaraghavan K, Yun YS (2008) Bacterial biosorbents and biosorption. Biotechnol Adv 26:266–291

    Article  CAS  Google Scholar 

  • Volesky B (1990) Biosorption and biosorbents. In: Volesky B (ed) Biosorption of heavy metals. CRC Press, Boca Raton, pp 3–5

    Google Scholar 

  • Vullo DL, Ceretti HM, Daniel MA, Ramírez SAM, Zalts A (2008) Cadmium, zinc and copper biosorption mediated by Pseudomonas veronii 2E. Bioresour Technol 99:5574–5581

    Article  CAS  Google Scholar 

  • Yan G, Viraraghavan T (2003) Heavy-metal removal from aqueous solution by fungus Mucor rouxii. Water Res 37:4486–4496

    Article  CAS  Google Scholar 

  • Yang J, Volesky B (1999) Modeling uranium-proton ion exchange in biosorption. Environ Sci Technol 33:4079–4085

    Article  CAS  Google Scholar 

  • Yee N, Benning LG, Phoenix VR, Ferris FG (2004) Characterization of metal-cyanobacteria sorption reactions: a combined macroscopic and infrared spectroscopic investigation. Environ Sci Technol 38:775–782

    Article  CAS  Google Scholar 

  • Yetis U, Dolek A, Dilek FB, Ozcengiz G (2000) The removal of Pb(II) by Phanerochaete chrysosporium. Water Res 34:4090–4100

    Article  CAS  Google Scholar 

  • Yu H, Wang J, Fang W, Yuan J, Yang Z (2006) Cadmium accumulation in different rice cultivars and screening for pollution-safe cultivars of rice. Science of the Total Environment 370:302–309

    Article  CAS  Google Scholar 

  • Yu J, Tong M, Sun X, Li B (2007) Cystine-modified biomass for Cd(II) and Pb(II) biosorption. J Hazard Mater 143:277–284

    Article  CAS  Google Scholar 

  • Zouboulis AI, Loukidou MX, Matis KA (2004) Biosorption of toxic metals from aqueous solutions by bacteria strains isolated from metal-polluted soils. Process Biochem 39:909–916

    Article  CAS  Google Scholar 

  • Zouboulis AI, Matis KA (1995) Removal of cadmium from dilute solutions by flotation. Water Sci Technol 31:315–326

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the Basic Research Project (No. 3414) of the Korea Institute of Geoscience and Mineral Resources (KIGAM) funded by the Ministry of Science, ICT and Future Planning of Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin Hee Park.

Additional information

Responsible editor: Philippe Garrigues

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, J.H., Chon, HT. Characterization of cadmium biosorption by Exiguobacterium sp. isolated from farmland soil near Cu-Pb-Zn mine. Environ Sci Pollut Res 23, 11814–11822 (2016). https://doi.org/10.1007/s11356-016-6335-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-016-6335-8

Keywords

Navigation