Skip to main content
Log in

Pure culture of Metarhizium anisopliae LHL07 reprograms soybean to higher growth and mitigates salt stress

  • Original Paper
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Little is known about the role of endophytic fungi against abiotic stresses and isoflavonoids (IF) contents of soybean. In current study, we investigated the role of fungal endophytes on the growth of soybean under salt stress conditions. Pure cultures of nine endophytic fungi were isolated from the roots of field-grown soybean plants, and their culture filtrates were screened on Waito-C and Dongjin-byeo rice cultivars; for identification of plant growth promoting fungal strains. It was observed that fungal isolate GMC-2B significantly promoted the growth of both Waito-C and Dongjin-byeo. GMC-2B was later identified as a new strain of Metarhizium anisopliae LHL07 on the basis of 18S rDNA sequences and phylogenetic analysis. Metarhizium anisopliae LHL07 inoculated soybean plants recorded significantly higher shoot length, shoot fresh and dry biomass, chlorophyll contents, transpiration rate, photosynthetic rate and leaf area; under sodium chloride induced salt stress as compared to non-inoculated control plants. An elevated proline and reduced superoxide dismutase and malondialdehyde contents in M. anisopliae LHL07 inoculated soybean plants demonstrated mitigation of salt induced oxidative stress. Furthermore, reduced abscisic acid and elevated jasmonic acid contents in soybean plants confirmed that lesser stress was convened to M. anisopliae inoculated-plants under salinity stress. We also assessed the role of M. anisopliae interaction on IF biosynthesis of soybean, and found significantly higher IF contents in M. anisopliae inoculated soybean plants. In conclusion, endophytic fungal interactions with soybean can be beneficial to improve soybean quality and quantity under salt affected agricultural systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Allen MF, Moore TS, Christensen M (1982) Phytohormone changes in Bouteloua gracilis infected by vesicular-arbuscular mycorrhizae. II. Altered levels of gibberellin-like substances and abscisic acid in the host plant. Can J Bot 60:468–471

    Article  CAS  Google Scholar 

  • Al-Tawaha AM, Seguin P, Smith DL, Beaulieu C (2005) Biotic elicitors as a means of increasing isoflavone concentration of soybean seeds. Ann App Biol 146:303–310

    Article  Google Scholar 

  • Arnold AE (2008) Endophytic fungi: hidden components of tropical community ecology. In: Carson WP, Schnitzer SA (eds) Tropical forest community ecology. Blackwell Publishing Ltd, West Sussex UK, pp 178–188

    Google Scholar 

  • Arnold AE, Henk DA, Eells RL, Lutzoni F, Vilgalys R (2007) Diversity and phylogenetic affinities of foliar fungal endophytes in loblolly pine inferred by culturing and environmental PCR. Mycologia 99:185–206

    Article  CAS  Google Scholar 

  • Augé RM (2001) Water relations, drought and vesicular–arbuscular mycorrhizal symbiosis. Mycorrhiza 11:3–42

    Article  Google Scholar 

  • Bartels D, Sunkar R (2005) Drought and salt tolerance in plants. Crit Rev Plant Sci 24:23–58

    Article  CAS  Google Scholar 

  • Bates LS, Waldren RP, Teare ID (1973) Rapid determination of free proline for water stress studies. Plant Soil 39:205–207

    Article  CAS  Google Scholar 

  • Bohm W (1979) Methods of studying root systems. Berlin, Springer-Verlag, pp 115–124

    Google Scholar 

  • Catford JG, Staehelin C, Larose G, Piché Y, Vierheilig H (2006) Systemically suppressed isoflavonoids and their stimulating effects on nodulation and mycorrhization in alfalfa split-root systems. Plant Soil 285:257–266

    Article  CAS  Google Scholar 

  • Chandanie WA, Kubota M, Hyakumachi M (2009) Interactions between arbuscular mycorrhizal fungus Glomus mosseae and plant growth-promoting fungi and their significance for enhancing plant growth and suppressing damping-off of cucumber (Cucumis sativus L.). Appl Soil Ecol 41:336–341

    Article  Google Scholar 

  • Chaves MM, Flexas J, Pinheiro C (2009) Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cell. Ann Bot 103:551–560

    Article  CAS  Google Scholar 

  • Dakora FD, Phillips DA (1996) Diverse functions of isoflavonoids in legumes transcend anti-microbial definitions of phytoalexins. Physiol Mol Plant Pathol 49:1–20

    Article  CAS  Google Scholar 

  • Dardanelli MS, Manyani H, González-Barroso S, Rodríguez-Carvajal MA, Gil-Serrano AM, Espuny MR, López-Baena FJ, Bellogín RA, Megías M, Ollero FJ (2010) Effect of the presence of the plant growth promoting rhizobacterium (PGPR) Chryseobacterium balustinum Aur9 and salt stress in the pattern of flavonoids exuded by soybean roots. Plant Soil 328:483–493

    Article  CAS  Google Scholar 

  • Dixon RA, Paiva NL (1995) Stress-induced phenylpropanoid metabolism. Plant Cell 7:1085–1097

    Article  CAS  Google Scholar 

  • Gadallah MAA (1999) Effect of proline and glycinebetaine on Vicia faba responses to salt stress. Biol Plantarum 42:247–249

    Article  Google Scholar 

  • Gamalero E, Berta G, Glick BR (2009) The use of microorganisms to facilitate the growth of plants in saline soils. In: Khan MS et al (eds) Microbial strategies for crop improvement. Springer, Berlin, pp 112–118

    Google Scholar 

  • Gough C, Galera C, Vasse J, Webster G, Cocking EC, Dénarié J (1997) Specific flavonoids promote intercellular root colonization of Arabidopsis thaliana by Azorhizobium caulinodans ORS571 10. Mol Plant Microb Interact 5:560–570

    Article  Google Scholar 

  • Hamayun M, Khan SA, Khan AL, Rehman G, Kim YH, Iqbal I, Hussain J, Sohn EY, Lee IJ (2010) Gibberellin production and plant growth promotion from pure cultures of Cladosporium sp. MH-6 isolated from Cucumber (Cucumis sativus. L.). Mycologia 102:989–995

    Article  CAS  Google Scholar 

  • Herrera-Medina MJ, Steinkellner S, Vierheilig H, Bote JAO, Garrido JMG (2007) Abscisic acid determines arbuscule development and functionality in the tomato arbuscular mycorrhiza. New Phytol 175:554–564

    Article  CAS  Google Scholar 

  • Hodges DM, DeLong JM, Forney CF, Prange RK (1999) Improving the thiobarbituric acid-reactive-substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds. Planta 207:604–611

    Article  CAS  Google Scholar 

  • Hossain MM, Sultana F, Kubota M, Koyama H, Hyakumachi M (2007) The plant growth-promoting fungus penicillium simplicissimum GP17–2 induces resistance in Arabidopsis thaliana by activation of multiple defense signals. Plant Cell Physiol 48(12):1724–1736

    Article  CAS  Google Scholar 

  • Hussain TM, Chandrasekhar T, Hazara M, Sultan Z, Saleh BK, Gopal GR (2008) Recent advances in salt stress biology–a review. Biotech Mol Biol Rev 3:008–013

    Google Scholar 

  • Hyde KD, Soytong K (2008) The fungal endophyte dilemma. Fungal Div 33:163–173

    Google Scholar 

  • Ikeda A, Ueguchi-Tanaka M, Sonoda Y, Kitano H, Koshioka H, Futsuhara Y, Matsuoka M, Yamaguchi J (2001) Slender rice, a constitutive gibberellin response mutant, is caused by a null Mutation of the SLR1 gene, an ortholog of the height-regulating gene GAI/RGA/RHT/D8. Plant Cell 13:999–1010

    Article  CAS  Google Scholar 

  • Iwashina T (2003) Flavonoid function and activity to plants and other organisms. Biol Sci Space 17:24–44

    Article  Google Scholar 

  • Jahromi F, Aroca R, Porcel R, Ruiz-Lozano JM (2008) Influence of salinity on the in vitro development of Glomus intraradices and on the in vivo physiological and molecular responses of mycorrhizal lettuce plants. Microb Ecol 55:45–53

    Article  Google Scholar 

  • Jang SW, Hamayun M, Sohn WY, Kang SM, Choi KI, Shin DH, Lee IJ (2008) Growth and gibberellins levels of two rice cultivars as influenced by different Nitrogen containing compounds. J Crop Sci Biotech 11(4):223–226

    Google Scholar 

  • Khan SA, Hamayun M, Yoon HJ, Kim HY, Suh SJ, Hwang SK et al (2008) Plant growth promotion and Penicillium citrinum. BMC Microbiol 8:231–237

    Article  Google Scholar 

  • Khan I, Ahmad A, Iqbal M (2009) Modulation of antioxidant defence system for arsenic detoxification in Indian mustard. Ecotox Environ Safe 72:626–634

    Article  CAS  Google Scholar 

  • Khan AL, Hamayun M, Kim YH, Kang SM, Lee IJ (2011) Ameliorative symbiosis of endophyte (Penicillium funiculosum LHL06) under salt stress elevated plant growth of Glycine max L. Plant Physiol Biochem 49:852–862

    Article  CAS  Google Scholar 

  • Khaosaad T, Krenn L, Medjakovic S, Ranner A, Loss A, Nell M, Jungbauer A, Vierheilig H (2008) Effect of mycorrhization on the isoflavone content and the phytoestrogen activity of red clover. J Plant Physiol 165:1161–1167

    Article  CAS  Google Scholar 

  • Kuldau G, Bacon C (2008) Clavicipitaceous endophytes: their ability to enhance resistance of grasses to multiple stresses. Biol Control 46:57–71

    Article  Google Scholar 

  • Masunaka A, Hyakumachi M, Takenaka S (2011) Plant growth–promoting fungus, Trichoderma koningi suppresses isoflavonoid phytoalexin vestitol production for colonization on/in the roots of Lotus japonica. Microbes Environ 26:128–134

    Article  Google Scholar 

  • Mauch-Mani B, Mauch F (2005) The role of abscisic acid in plant–pathogen interactions. Curr Opin Plant Biol 8:409–414

    Article  CAS  Google Scholar 

  • McCloud ES, Baldwin IT (1997) Herbivory and caterpillar regurgitants amplify the wound induced increases in jasmonic acid but not nicotine in Nicotiana sylvestris. Planta 203:430–435

    Article  CAS  Google Scholar 

  • Misra N, Gupta AK (2005) Effect of salt stress on proline metabolism in two high yielding genotypes of green gram. Plant Sci 169:331–339

    Article  CAS  Google Scholar 

  • Mittler R (2006) Abiotic stress, the field environment and stress combination. Trends Plant Sci 11:15–19

    Article  CAS  Google Scholar 

  • Moesta P, Grisebach H (1980) Effects of biotic and abiotic elicitors on phytoalexin metabolism in soybean. Nature 286:710–711

    Article  CAS  Google Scholar 

  • Morandi D (1996) Occurrence of phytoalexins and phenolic compounds on endomycorrhizal interactions, and their potential role in biological control. Plant Soil 185:241–251

    Article  CAS  Google Scholar 

  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681

    Article  CAS  Google Scholar 

  • Ohkawa H, Ohishi N, Yagi K (1979) Assay of lipid peroxides in animal tissue by thiobarbituric acid reaction. Anal Biochem 95:351–358

    Article  CAS  Google Scholar 

  • Paranidharan V, Palaniswami A, Vidhyasekaran P, Velazhahan R (2005) A host-specific toxin of Rhizoctonia solani triggers superoxide dismutase (SOD) activity in rice. Arch Phytopath Plant Prot 38(2):151–156

    Article  CAS  Google Scholar 

  • Pathan MS, Lee JD, Shannon JG, Nguyen HT (2007) Recent advances in breeding for drought and salt stress tolerance in soybean. In: Jenks MA, Hasegawa PM, Jain SM (eds) Advances in molecular breeding toward drought and salt tolerant crops. Springer, Netherlands, pp 739–773

    Chapter  Google Scholar 

  • Phommalth S, Jeong Y, Kim Y, Dhakal KH, Hwang Y (2008) Effects of light treatment on isoflavone content of germinated soybean seeds. J Agric Food Chem 56:10123–10128

    Article  Google Scholar 

  • Pinior A, Grunewaldt-Stöcker G, Alten H, Strasser RJ (2005) Mycorrhizal impact on drought stress tolerance of rose plants probed by chlorophyll a fluorescence, proline content and visual scoring. Mycorrhiza 15:596–605

    Article  CAS  Google Scholar 

  • Placer ZA, Cushman LL, Johnson BC (1966) Estimation of product of lipid peroxidation (malonyl dialdehyde) in biochemical systems. Ann Biochem 16:359–364

    Article  CAS  Google Scholar 

  • Porcel R, Ruiz-Lozano JM (2004) Arbuscular mycorrhizal influence on leaf water potential, solute accumulation, and oxidative stress in soybean plants subjected to drought stress. J Exp Bot 55:1743–1750

    Article  CAS  Google Scholar 

  • Qi QG, Rose PA, Abrams GD, Taylor DC, Abrams SR, Cutler AJ (1998) Abscisic acid metabolism, 3-ketoacyl-coenzyme a synthase gene expression and very-long-chain monounsaturated fatty acid biosynthesis in Brassica napus embryos. Plant Physiol 117:979–987

    Article  CAS  Google Scholar 

  • Redman RS, Kim YO, Woodward CJDA, Greer C, Espino L et al (2011) Increased fitness of rice plants to abiotic stress via habitat adapted symbiosis: a strategy for mitigating impacts of climate change. PLoS ONE 6(7):e14823. doi:10.1371/journal.pone.0014823

    Article  CAS  Google Scholar 

  • Richardson AE, Barea J, McNeill AM, Prigent-Combaret C (2009) Acquisition of phosphorus and nitrogen in the rhizosphere and plant growth promotion by microorganisms. Plant Soil 321:305–339

    Article  CAS  Google Scholar 

  • Rincón A, Priha O, Lelu-Walter MA, Bonet M, Sotta B, Tacon F (2005) Shoot water status and ABA responses of transgenic hybrid larch Larix kaempfieri × L. decidua to ectomycorrhizal fungi and osmotic stress. Tree Physiol 25:1101–1108

    Article  Google Scholar 

  • Sannazzaro AI, Ruiz OA, Albetró EO, Menendez AB (2006) Alleviation of salt stress in lotus glaber by Glomus intraradies. Plant Soil 285:279–287

    Article  CAS  Google Scholar 

  • Schmidt PE, Broughton WJ, Werner D (1994) Nod factors of Bradyrhizobium japonicum and Rhizobium sp. NGR234 induce flavonoid accumulation in soybean root exudates. Mol Plant Microbe Interact 7:384–390

    Article  CAS  Google Scholar 

  • Schulz B, Boyle C (2005) The endophytic continuum. Mycol Res 109:661–686

    Article  Google Scholar 

  • Sharifi M, Ghorbanli M, Ebrahimzadeh H (2007) Improved growth of salinity-stressed soybean after inoculation with pre-treated mycorrhizal fungi. J Plant Physiol 164:1144–1151

    Article  CAS  Google Scholar 

  • Sharp ER, LeNoble ME, Else MA, Thorne ET, Gherardi F (2000) Endogenous ABA maintains shoot growth in tomato independtly of effects on plant water balance: evidence for an interaction with ethylene. J Exp Bot 51:1575–1584

    Article  CAS  Google Scholar 

  • Shaw LJ, Morris P, Hooker JE (2006) Perception and modification of plant flavonoid signals by rhizosphere microorganisms. Enivon Microbiol 8:1867–1880

    Article  CAS  Google Scholar 

  • Stumpe M, Carsjens JG, Stenzel I, Gobel C, Lang I, Pawlowski K, Hause B, Feussner I (2005) Lipid metabolism in arbuscular mycorrhizal roots of Medicago truncatula. Phytochem 66:781–791

    Article  CAS  Google Scholar 

  • Subramanian S, Stacey G, Yu O (2007) Distinct, crucial roles of flavonoids during legume nodulation. Trends Plant Sci 12:282–285

    Article  CAS  Google Scholar 

  • Sudhir P, Murthy SDS (2004) Effects of salt stress on basic processes of photosynthesis. Photosynthetica 42(4):481–486

    Article  CAS  Google Scholar 

  • Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599

    Article  CAS  Google Scholar 

  • Tretner C, Huth U, Hause B (2008) Mechanostimulation of Medicago truncatula leads to enhanced levels of jasmonic acid. J Exp Bot 59:2847–2856

    Article  CAS  Google Scholar 

  • Türkan T, Demiral T (2009) Recent developments in understanding salinity tolerance. Environ Exper Bot 67:2–9

    Article  Google Scholar 

  • Verbruggen N, Hermans C (2008) Proline accumulation in plants: a review. Amino Acids 35:753–759

    Article  CAS  Google Scholar 

  • Volpin H, Elkind Y, Okon Y, Kapulnik Y (1994) A vesicular arbuscular mycorrhizal fungus (Glomus intrarudix) induces a defense response in alfalfa roots. Plant Physiol 104:683–689

    CAS  Google Scholar 

  • Waller F, Achatz B, Baltruschat H, Fodor J, Becker K, Fischer M, Heier T, Huckelhoven R, Neumann C, Von-Wettstein D, Franken P, Kogel KH (2005) The endophytic fungus Piriformis indica reprograms barley to salt-stress tolerance, disease resistance and higher yield. P Natl Acad Sci 102:13386–13391

    Article  CAS  Google Scholar 

  • Wang Y, Mopper S, Hasenstein KH (2001) Effects of salinity on endogenous ABA, IAA, JA, and SA in Iris hexagona. J Chem Eco 27:327–342

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research work was supported by Eco-Innovation Project, Korean Government’s R & D program on Environmental Technology & Development and Brain Korea 21 (BK21) Project, Republic of Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to In-Jung Lee.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 32 kb)

Supplementary material 2 (DOC 107 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khan, A.L., Hamayun, M., Khan, S.A. et al. Pure culture of Metarhizium anisopliae LHL07 reprograms soybean to higher growth and mitigates salt stress. World J Microbiol Biotechnol 28, 1483–1494 (2012). https://doi.org/10.1007/s11274-011-0950-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11274-011-0950-9

Keywords

Navigation