Skip to main content

Advertisement

Log in

Application of antimicrobial peptides in agriculture and food industry

  • Review Paper
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Antimicrobial peptides have captured the attention of researchers in recent years because of their efficiency in fighting against pathogens. These peptides are found in nature and have been isolated from a wide range of organisms. Furthermore, analogs or synthetic derivatives have successfully been developed on the basis of natural peptide patterns. Long use of pesticides and antibiotics has led to development of resistance among pathogens and other pests as well as increase of environmental and health risks. Antimicrobial peptides are under consideration as new substitutes for conventional pesticides and antibiotics. Many plants and animals have been manipulated with antimicrobial peptide-encoding genes and several pesticides and drugs have been produced based on these peptides. Such strategies and products may still have a long way to go before being confirmed by regulatory bodies and others need to surmount technical problems before being accepted as applicable ones. In spite of these facts, several cases of successful use of antimicrobial peptides in agriculture and food industry indicate a promising future for extensive application of these peptides. In this review, we consider the developing field of antimicrobial peptide applications in various agricultural activities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akinbowale OL, Peng H, Barton MD (2006) Antimicrobial resistance in bacteria isolated from aquaculture sources in Australia. J Appl Microbiol 100:1103–1113. doi:10.1111/j.1365-2672.2006.02812.x

    Article  CAS  Google Scholar 

  • Alan AR, Earle ED (2002) Sensitivity of bacterial and fungal plant pathogens to the lytic peptides, MSI-99, magainin II, and cecropin B. Mol Plant Microbe Interact 15:701–708. doi:10.1094/MPMI.2002.15.7.701

    Article  CAS  Google Scholar 

  • Alan AR, Blowers A, Earle ED (2004) Expression of a magainin-type antimicrobial peptide gene (MSI-99) in tomato enhances resistance to bacterial speck disease. Plant Cell Rep 22:388–396. doi:10.1007/s00299-003-0702-x

    Article  CAS  Google Scholar 

  • Alexander MC (2005) Antimicrobial peptide microbicides targeting HIV. Protein Pept Lett 12:41–47. doi:10.2174/0929866053406101

    Article  Google Scholar 

  • Appendini P, Hotchkiss JH (2002) Review of antimicrobial food packaging. Innov Food Sci Emerg Technol 3:113–126. doi:10.1016/S1466-8564(02)00012-7

    Article  CAS  Google Scholar 

  • Arakawa T (2003) Chitin synthesis-inhibiting antifungal agents promote nucleopolyhedrovirus infection in silkworm, Bombyx mori (Lepidoptera: Bombycidae) larvae. J Invertebr Pathol 83:261–263. doi:10.1016/S0022-2011(03)00085-5

    Article  CAS  Google Scholar 

  • Bhargava A, Osusky M, Forward BS, Hancock RE, Kay WW, Misra S (2007) Expression of a polyphemusin variant in transgenic tobacco confers resistance against plant pathogenic bacteria, fungi and a virus. Plant Cell Tissue Organ Cult 88:301–312. doi:10.1007/s11240-007-9204-9

    Article  CAS  Google Scholar 

  • Brown KL, Hancock REW (2006) Cationic host defense (antimicrobial) peptides. Curr Opin Immunol 18:24–30. doi:10.1016/j.coi.2005.11.004

    Article  CAS  Google Scholar 

  • Chakrabarti A, Ganapathi TR, Mukherjee PK, Bapat VA (2003) MSI-99, a magainin analogue, imparts enhanced disease resistance in transgenic tobacco and banana. Planta 216:587–596

    CAS  Google Scholar 

  • Chan JC, Li-Chan EC (2007) Production of lactoferricin and other cationic peptides from food grade bovine lactoferrin with various iron saturation levels. J Agric Food Chem 55:493–501. doi:10.1021/jf0625149

    Article  CAS  Google Scholar 

  • Chernysh S, Kim SI, Bekker G, Pleskach VA, Filatova NA, Anikin VB, Platonov VG, Bulet P (2002) Antiviral and antitumor peptides from insects. Proc Natl Acad Sci USA 99:12628–12632. doi:10.1073/pnas.192301899

    Article  CAS  Google Scholar 

  • Chiou PP, Lin CM, Perez L, Chen TT (2002) Effect of cecropin B and a synthetic analogue on propagation of fish viruses in vitro. Mar Biotechnol 4:294–302. doi:10.1007/s10126-002-0021-1

    Article  CAS  Google Scholar 

  • Coca M, Penas G, Gomez J, Campo S, Bortolotti C, Messeguer J, Segundo BS (2006) Enhanced resistance to the rice blast fungus Magnaporthe grisea conferred by expression of a cecropin A gene in transgenic rice. Planta 223:392–406. doi:10.1007/s00425-005-0069-z

    Article  CAS  Google Scholar 

  • Conlon JM, Al-Ghaferi N, Abraham B, Leprince J (2007) Strategies for transformation of naturally-occurring amphibian antimicrobial peptides into therapeutically valuable anti-infective agents. Methods 42:349–357. doi:10.1016/j.ymeth.2007.01.004

    Article  CAS  Google Scholar 

  • De Lucca AJ, Walsh TJ (2000) Antifungal peptides: origin, activity, and therapeutic potential. Rev Iberoam Micol 17:116–120

    Google Scholar 

  • DeGray G, Rajasekaran K, Smith F, Sanford J, Daniell H (2001) Expression of an antimicrobial peptide via the chloroplast genome to control phytopathogenic bacteria and fungi. Plant Physiol 127:852–862. doi:10.1104/pp.010233

    Article  CAS  Google Scholar 

  • Delves-Broughton J (2005) Nisin as a food preservative. Food Aust 57:525–527

    CAS  Google Scholar 

  • Donovan DM, Kerr DE, Wall RJ (2005) Engineering disease resistant cattle. Transgenic Res 14:563–567. doi:10.1007/s11248-005-0670-8

    Article  CAS  Google Scholar 

  • Egorov TA, Odintsova TI, Pukhalsky VA, Grishin EV (2005) Diversity of wheat anti-microbial peptides. Peptides 26:2064–2073. doi:10.1016/j.peptides.2005.03.007

    Article  CAS  Google Scholar 

  • Fan W, Plaut K, Bramley AJ, Barlow JW, Kerr DE (2002) Adenoviral-mediated transfer of a lysostaphin gene into the goat mammary gland. J Dairy Sci 85:1709–1716

    Article  CAS  Google Scholar 

  • Florack DEA, Stiekema WJ, Bosch D (1996) Toxicity of peptides to bacteria present in the vase water of cut roses. Postharvest Biol Technol 8:285–291. doi:10.1016/0925-5214(96)00009-9

    Article  CAS  Google Scholar 

  • Franklin NB, Cooksey KD, Getty KJ (2004) Inhibition of Listeria monocytogenes on the surface of individually packaged hot dogs with a packaging film coating containing nisin. J Food Prot 67:480–485

    CAS  Google Scholar 

  • Gallagher T, Shaffer B, Rummer B (2006) An economic analysis of hardwood fiber production on dryland irrigated sites in the US Southeast. Biomass Bioenergy 30:794–802. doi:10.1016/j.biombioe.2005.08.004

    Article  Google Scholar 

  • Gao AG, Hakimi SM, Mittanck CA, Wu Y, Woerner BM, Stark DM, Shah DM, Liang J, Rommens CM (2000) Fungal pathogen protection in potato by expression of a plant defensin peptide. Nat Biotechnol 18:1307–1310. doi:10.1038/82436

    Article  CAS  Google Scholar 

  • Gennadios A, Hanna MA, Kurth LB (1997) Application of edible coatings on meats, poultry and seafoods: a review. Lebenson Wiss Technol 30:337–350. doi:10.1006/fstl.1996.0202

    Article  CAS  Google Scholar 

  • Giangaspero A, Sandri L, Tossi A (2001) Amphipathic α helical antimicrobial peptides A systematic study of the effects of structural and physical properties on biological activity. Eur J Biochem 268:5589–5600. doi:10.1046/j.1432-1033.2001.02494.x

    Article  CAS  Google Scholar 

  • Gordon YJ, Romanowski EG, McDermott AM (2005) A review of antimicrobial peptides and their therapeutic potential as anti-infective drugs. Curr Eye Res 30:505–515. doi:10.1080/02713680590968637

    Article  CAS  Google Scholar 

  • Hancock REW (2005) Mechanisms of action of newer antibiotics for Gram-positive pathogens. Lancet Infect Dis 5:209–218. doi:10.1016/S1473-3099(05)70051-7

    Article  CAS  Google Scholar 

  • Hancock REW, Chapple DS (1999) Peptide antibiotics. Antimicrob Agents Chemother 43:1317–1323

    CAS  Google Scholar 

  • Jang SH, Park Y, Park SC, Kim PI, Lee DG, Hahm KS (2004) Antinematodal activity and the mechanism of the antimicrobial peptide, HP (2–20), against Caenorhabditis elegans. Biotechnol Lett 26:287–291. doi:10.1023/B:BILE.0000015427.26410.d4

    Article  CAS  Google Scholar 

  • Janisiewicz WJ, Korsten L (2002) Biological control of postharvest diseases of fruits. Annu Rev Phytopathol 40:411–441. doi:10.1146/annurev.phyto.40.120401.130158

    Article  CAS  Google Scholar 

  • Jaynes JM, Nagpala P, Destefanobeltran L, Huang JH, Kim JH, Denny T, Centiner S (2002) Expression of a cecropin-B lytic peptide analog in transgenic tobacco confers enhanced resistance to bacterial wilt caused by Pseudomonas solanacearum. Plant Sci 89:43–53. doi:10.1016/0168-9452(93)90169-Z

    Article  Google Scholar 

  • Jia X, Patrzykat A, Devlin RH, Ackerman PA, Iwama GK, Hancock REW (2000) Antimicrobial peptides protect Coho salmon from Vibrio anguillarum infections. Appl Environ Microbiol 66:1928–1932. doi:10.1128/AEM.66.5.1928-1932.2000

    Article  CAS  Google Scholar 

  • Jones RW, Prusky D (2002) Expression of an antifungal peptide in Saccharomyces: a new approach for biological control of the postharvest disease caused by Colletotrichum coccodes. Phytopathology 92:33–37. doi:10.1094/PHYTO.2002.92.1.33

    Article  CAS  Google Scholar 

  • Jones RW, Ospina-Giraldo M, Clemente T (2004) Prosystemin-antimicrobial-peptide fusion reduces tomato late blight lesion expansion. Mol Breed 14:83–89. doi:10.1023/B:MOLB.0000038001.22029.07

    Article  CAS  Google Scholar 

  • Kamysz W, Okroj M, Lukasiak J (2003) Novel properties of antimicrobial peptides. Acta Biochim Pol 50:461–469

    CAS  Google Scholar 

  • Kazan K, Rusu A, Marcus JP, Goulter KC, Manners JM (2002) Enhanced quantitative resistance to Leptosphaeria maculans conferred by expression of a novel antimicrobial peptide in canola (Brassica napus L.). Mol Breed 10:63–70. doi:10.1023/A:1020354809737

    Article  CAS  Google Scholar 

  • Kerr DE, Plaut K, Bramley AJ, Williamson CM, Lax AJ, Moore K, Wells KD, Wall RJ (2001) Lysostaphin expression in mammary glands confers protection against staphylococcal infection in transgenic mice. Nat Biotechnol 19:66–70. doi:10.1038/83540

    Article  CAS  Google Scholar 

  • Khachatourians GG (1998) Agricultural use of antibiotics and the evolution and transfer of antibiotic-resistant bacteria. Can Med Assoc J 159:1129–1136

    CAS  Google Scholar 

  • Koo JC, Chun HJ, Park HC, Kim MC, Koo YD, Koo SC, Ok HM, Park SJ, Lee SH, Yun DJ, Lim CO, Bahk JD, Lee SY, Cho MJ (2002) Over-expression of a seed specific hevein-like antimicrobial peptide from Pharbitis nil enhances resistance to a fungal pathogen in transgenic tobacco plants. Plant Mol Biol 50:441–452. doi:10.1023/A:1019864222515

    Article  CAS  Google Scholar 

  • Lee DG, Shin SY, Hahm KS (2004) Structure and fungicidal activity of a synthetic antimicrobial peptide, P18, and its truncated peptides. Biotechnol Lett 26:337–341. doi:10.1023/B:BILE.0000015472.09542.6d

    Article  CAS  Google Scholar 

  • Le-Feuvre RR, Ramírez CC, Olea N, Meza-Basso L (2007) Effect of the antimicrobial peptide indolicidin on the green peach aphid Myzus persicae (Sulzer). J Appl Entomol 131:71–75

    CAS  Google Scholar 

  • Li Q, Lawrence CB, Davies HM, Everett NP (2002) A tridecapeptide possesses both antimicrobial and protease-inhibitory activities. Peptides 23:1–6. doi:10.1016/S0196-9781(01)00572-1

    Article  Google Scholar 

  • Liang H, Catranis CM, Maynard CA, Powell WA (2002) Enhanced resistance to the poplar fungal pathogen, Septoria musiva, in hybrid poplar clones transformed with genes encoding antimicrobial peptides. Biotechnol Lett 24:383–389. doi:10.1023/A:1014552503140

    Article  CAS  Google Scholar 

  • Liu Z, Zeng M, Dong S, Xu J, Song H, Zhao Y (2007) Effect of an antifungal peptide from oyster enzymatic hydrolysates for control of gray mold (Botrytis cinerea) on harvested strawberries. Postharvest Biol Technol 46:95–98. doi:10.1016/j.postharvbio.2007.03.013

    Article  CAS  Google Scholar 

  • Lopez-Garcia B, Veyrat A, Perez-Paya E, Gonzalez-Candelas L, Marcos JF (2003) Comparison of the activity of antifungal hexapeptides and the fungicides thiabendazole and imazalil against postharvest fungal pathogens. Int J Food Microbiol 89:163–170. doi:10.1016/S0168-1605(03)00118-1

    Article  CAS  Google Scholar 

  • Lortal S, Chapot-Chartier MP (2005) Role, mechanisms and control of lactic acid bacteria lysis in cheese. Int Dairy J 15:857–871. doi:10.1016/j.idairyj.2004.08.024

    Article  CAS  Google Scholar 

  • Lu G (2003) Engineering Sclerotinia sclerotiorum resistance in oilseed crops. Afr J Biotechnol 2:509–516

    CAS  Google Scholar 

  • Ma Z, Michailides TJ (2005) Advances in understanding molecular mechanisms of fungicide resistance and molecular detection of resistant genotypes in phytopathogenic fungi. Crop Prot 24:853–863. doi:10.1016/j.cropro.2005.01.011

    Article  CAS  Google Scholar 

  • Marcos JF, Beachy RN, Houghten RA, Blondelle SE, Perez-Paya E (1995) Inhibition of a plant virus infection by analogs of melittin. Proc Natl Acad Sci USA 92:12466–12469. doi:10.1073/pnas.92.26.12466

    Article  CAS  Google Scholar 

  • Marcos JF, Muñoz A, Pérez-Payá E, Misra S, López-García B (2008) Identification and rational design of novel antimicrobial peptides for plant protection. Annu Rev Phytopathol 46:273–301. doi:10.1146/annurev.phyto.121307.094843

    Article  CAS  Google Scholar 

  • Mentag R, Luckevich M, Morency MJ, Seguin A (2003) Bacterial disease resistance of transgenic hybrid poplar expressing the synthetic antimicrobial peptide D4E1. Tree Physiol 23:405–411

    CAS  Google Scholar 

  • Molina A, Molina MP, Althaus RL, Gallego L (2003) Residue persistence in sheep milk following antibiotic therapy. Vet J 165:84–89. doi:10.1016/S1090-0233(02)00173-9

    Article  CAS  Google Scholar 

  • Mullins E, Milbourne D, Petti C, Doyle-Prestwich BM, Meade C (2006) Potato in the age of biotechnology. Trends Plant Sci 11:254–260. doi:10.1016/j.tplants.2006.03.002

    Article  CAS  Google Scholar 

  • Newhouse AE, Schrodt F, Liang H, Maynard CA, Powell WA (2007) Transgenic American elm shows reduced Dutch elm disease symptoms and normal mycorrhizal colonization. Plant Cell Rep 26:977–987. doi:10.1007/s00299-007-0313-z

    Article  CAS  Google Scholar 

  • Norelli JL, Borejsza-Wysocka E, Reynoird JP, Aldwinckle HS (2000) Transgenic ‘Royal Gala’ apple expressing attacin E has increased field resistance to Erwinia amylovora (fire blight). Acta Hortic 538:631–633

    CAS  Google Scholar 

  • O’Callaghan M, Gerard EM, Waipara NW, Young SD, Glare TR, Barrell PJ, Conner AJ (2004) Microbial communities of Solanum tuberosum and magainin-producing transgenic lines. Plant Soil 266:47–56. doi:10.1007/s11104-005-3714-1

    Article  Google Scholar 

  • Oard SV, Enright FM (2006) Expression of the antimicrobial peptides in plants to control phytopathogenic bacteria and fungi. Plant Cell Rep 25:561–572. doi:10.1007/s00299-005-0102-5

    Article  CAS  Google Scholar 

  • Osusky M, Zhou G, Osuska L, Hancock RE, Kay WW, Misra S (2000) Transgenic plants expressing cationic peptide chimeras exhibit broad-spectrum resistance to phytopathogens. Nat Biotechnol 18:1162–1166. doi:10.1038/81145

    Article  CAS  Google Scholar 

  • Osusky M, Osuska L, Hancock RE, Kay WW, Misra S (2004) Transgenic potatoes expressing a novel cationic peptide are resistant to late blight and pink rot. Transgenic Res 13:181–190. doi:10.1023/B:TRAG.0000026076.72779.60

    Article  CAS  Google Scholar 

  • Osusky M, Osuska L, Kay W, Misra S (2005) Genetic modification of potato against microbial diseases: in vitro and in planta activity of a dermaseptin B1 derivative, MsrA2. Theor Appl Genet 111:711–722. doi:10.1007/s00122-005-2056-y

    Article  CAS  Google Scholar 

  • Oumer BA, Gaya P, Fernandez-Garcia E, Marciaca R, Garde S, Medina M, Nunez M (2001) Proteolysis and formation of volatile compounds in cheese manufactured with a bacteriocin-producing adjunct culture. J Dairy Res 68:117–129. doi:10.1017/S0022029900004568

    Article  CAS  Google Scholar 

  • Park Y, Jang SH, Lee DG, Hahm KS (2004) Antinematodal effect of antimicrobial peptide, PMAP-23, isolated from porcine myeloid against Caenorhabditis elegans. J Pept Sci 10:304–311. doi:10.1002/psc.518

    Article  CAS  Google Scholar 

  • Pawar DD, Malik SVS, Bhilegaonkar KN, Barbuddhe SB (2000) Effect of nisin and its combination with sodium chloride on the survival of Listeria monocytogenes added to raw buffalo meat mince. Meat Sci 56:215–219. doi:10.1016/S0309-1740(00)00043-7

    Article  CAS  Google Scholar 

  • Perron GG, Zasloff M, Bell G (2006) Experimental evolution of resistance to an antimicrobial peptide. Proc Biol Sci 273:251–256. doi:10.1098/rspb.2005.3301

    Article  CAS  Google Scholar 

  • Peters RJ (2006) Uncovering the complex metabolic network underlying diterpenoid phytoalexin biosynthesis in rice and other cereal crop plants. Phytochemistry 67:2307–2317. doi:10.1016/j.phytochem.2006.08.009

    Article  CAS  Google Scholar 

  • Ponti D, Mangoni ML, Mignogna G, Simmaco M, Barra D (2003) An amphibian antimicrobial peptide variant expressed in Nicotiana tabacum confers resistance to phytopathogens. Biochem J 370:121–127. doi:10.1042/BJ20021444

    Article  CAS  Google Scholar 

  • Powers JS, Hancock REW (2003) The relationship between peptide structure and antibacterial activity. Peptides 24:1681–1691. doi:10.1016/j.peptides.2003.08.023

    Article  CAS  Google Scholar 

  • Reed WA, Elzer PH, Enright FM, Jaynes JM, Morrey JD, White KL (1997) Interleukin 2 promoter/enhancer controlled expression of a synthetic cecropin-class lytic peptide in transgenic mice and subsequent resistance to Brucella abortus. Transgenic Res 6:337–347. doi:10.1023/A:1018423015014

    Article  CAS  Google Scholar 

  • Rekha, Naik SN, Prasad R (2006) Pesticide residue in organic and conventional food-risk analysis. J Chem Health Saf 13:12–19

    Article  CAS  Google Scholar 

  • Reuveni M, Cohen H, Zahavi T, Venezian A (2000) Polar-a potent Polyoxin B compound for controlling powdery mildews in apple and nectarine trees, and grapevines. Crop Prot 19:393–399. doi:10.1016/S0261-2194(00)00030-2

    Article  CAS  Google Scholar 

  • Reynoird JP, Mourgues F, Norelli J, Aldwinckle HS, Brisset MN, Chevreau E (1999) First evidence for improved resistance to fire blight in transgenic pear expressing the attacin E gene from Hyalophora cecropia. Plant Sci 149:23–31. doi:10.1016/S0168-9452(99)00139-9

    Article  CAS  Google Scholar 

  • Rommens CM (2004) All-native DNA transformation: a new approach to plant genetic engineering. Trends Plant Sci 9:457–464. doi:10.1016/j.tplants.2004.07.001

    Article  CAS  Google Scholar 

  • Rydlo T, Miltz J, Mor A (2006) Eukaryotic antimicrobial peptides: promises and premises in food safety. J Food Sci 71:125–135. doi:10.1111/j.1750-3841.2006.00175.x

    Article  CAS  Google Scholar 

  • Sarmasik A, Warr G, Chen TT (2002) Production of transgenic medaka with increased resistance to bacterial pathogens. Mar Biotechnol 4:310–322. doi:10.1007/s10126-002-0023-z

    Article  CAS  Google Scholar 

  • Schaefer SC, Gasic K, Cammue B, Broekaert W, van Damme EJ, Peumans WJ, Korban SS (2005) Enhanced resistance to early blight in transgenic tomato lines expressing heterologous plant defense genes. Planta 222:858–866. doi:10.1007/s00425-005-0026-x

    Article  CAS  Google Scholar 

  • Schröder JM, Harder J (2006) Antimicrobial peptides in skin disease. Drug Discov Today Ther Strateg 3:93–100. doi:10.1016/j.ddstr.2006.02.007

    Article  Google Scholar 

  • Sen AK, Narbad A, Horn N, Dodd HM, Parr AJ, Colquhoun I, Gasson MJ (1999) Post-translational modification of nisin. The involvement of NisB in the dehydration process. Eur J Biochem 261:524–532. doi:10.1046/j.1432-1327.1999.00303.x

    Article  CAS  Google Scholar 

  • Sharma A, Sharma R, Imamura M, Yamakawa M, Machii H (2000) Transgenic expression of cecropin B, an antibacterial peptide from Bombyx mori, confers enhanced resistance to bacterial leaf blight in rice. FEBS Lett 484:7–11. doi:10.1016/S0014-5793(00)02106-2

    Article  CAS  Google Scholar 

  • Soltani S, Keymanesh K, Sardari S (2007) In silico analysis of antifungal peptides: determining the lead template sequence of potent antifungal peptides. Expert Opin Drug Discov 2:1–11. doi:10.1517/17460441.2.6.837

    Article  Google Scholar 

  • Tripathi L (2003) Genetic engineering for improvement of Musa production in Africa. Afr J Biotechnol 2:503–508

    Google Scholar 

  • van der Biezen EA (2001) Quest for antimicrobial genes to engineer disease-resistant crops. Trends Plant Sci 6:89–91. doi:10.1016/S1360-1385(01)01870-2

    Article  Google Scholar 

  • Venkitanarayanan KS, Zhao T, Doyle MP (1999) Antibacterial effect of lactoferricin B on Escherichia coli O157:H7 in ground beef. J Food Prot 62:747–750

    CAS  Google Scholar 

  • Vidal JR, Kikkert JR, Malnoy MA, Wallace PG, Barnard J, Reisch BI (2006) Evaluation of transgenic ‘Chardonnay’ (Vitis vinifera) containing magainin genes for resistance to crown gall and powdery mildew. Transgenic Res 15:69–82. doi:10.1007/s00299-003-0682-x

    Article  CAS  Google Scholar 

  • Vizioli J, Salzet M (2002a) Antimicrobial peptides versus parasitic infections? Trends Parasitol 18:475–476. doi:10.1016/S1471-4922(02)02428-5

    Article  CAS  Google Scholar 

  • Vizioli J, Salzet M (2002b) Antimicrobial peptides from animals: focus on invertebrates. Trends Pharmacol Sci 23:494–496. doi:10.1016/S0165-6147(02)02105-3

    Article  CAS  Google Scholar 

  • Wang HX, Ng TB (2005) An antifungal peptide from the coconut. Peptides 26:2392–2396. doi:10.1016/j.peptides.2005.05.009

    Article  CAS  Google Scholar 

  • Wang Y, Nowak G, Culley D, Hadwiger LA, Fristensky B (1999) Constitutive expression of pea defense gene DRR206 confers resistance to blackleg (Leptosphaeria maculans) disease in transgenic canola (Brassica napus). Mol Plant Microbe Interact 12:410–418. doi:10.1094/MPMI.1999.12.5.410

    Article  CAS  Google Scholar 

  • Wang JX, Zhao XF, Liang YL, Li L, Zhang W, Ren Q, Wang LC, Wang LY (2006) Molecular characterization and expression of the antimicrobial peptide defensin from the housefly (Musca domestica). Cell Mol Life Sci 63:3072–3082. doi:10.1007/s00018-006-6284-3

    Article  CAS  Google Scholar 

  • Webb CA, Fellers JP (2004) Cereal rust fungi genomics and the pursuit of virulence and avirulence factors. FEMS Microbiol Lett 264:1–7. doi:10.1111/j.1574-6968.2006.00400.x

    Article  CAS  Google Scholar 

  • Weinberg ED (2003) The therapeutic potential of lactoferrin. Expert Opin Investig Drugs 12:841–851. doi:10.1517/13543784.12.5.841

    Article  CAS  Google Scholar 

  • Wisniewski ME, Bassett CL, Artlip TS, Janisiewicz WJ, Norelli JL, Droby S (2005) Overexpression of a peach defensin gene can enhance the activity of post-harvest biocontrol agents. Acta Hortic 682:1999–2006

    CAS  Google Scholar 

  • Yeaman MR, Yount NY (2003) Mechanisms of antimicrobial peptide action and resistance. Pharmacol Rev 55:27–55. doi:10.1124/pr.55.1.2

    Article  CAS  Google Scholar 

  • Yevtushenko DP, Romero R, Forward BS, Hancock RE, Kay WW, Misra S (2005) Pathogen-induced expression of a cecropin A-melittin antimicrobial peptide gene confers antifungal resistance in transgenic tobacco. J Exp Bot 56:1685–1695. doi:10.1093/jxb/eri165

    Article  CAS  Google Scholar 

  • Yin ZX, He W, Chen WJ, Yan JH, Yang JN, Chan SM, He JG (2006) Cloning, expression and antimicrobial activity of an antimicrobial peptide, epinecidin-1, from the orange-spotted grouper, Epinephelus coioides. Aquaculture 253:204–211. doi:10.1016/j.aquaculture.2005.10.002

    Article  CAS  Google Scholar 

  • Yount NY, Yeaman MR (2005) Immunocontinuum: perspectives in antimicrobial peptide mechanisms of action and resistance. Protein Pept Lett 12:49–67. doi:10.2174/0929866053405959

    Article  CAS  Google Scholar 

  • Zakharchenko NS, Rukavtsova EB, Gudkov AT, Buryanov Ya I (2005) Enhanced resistance to phytopathogenic bacteria in transgenic tobacco plants with synthetic gene of antimicrobial peptide cecropin P1. Russ J Genet 41:1445–1452. doi:10.1007/s11177-005-0218-2

    Article  CAS  Google Scholar 

  • Zasloff M (2002) Antimicrobial peptides of multicellular organisms. Nature 415:389–395. doi:10.1038/415389a

    Article  CAS  Google Scholar 

  • Zhang G, Ross CR, Blecha F (2000) Porcine antimicrobial peptides: new prospects for ancient molecules of host defense. Vet Res 31:277–296. doi:10.1051/vetres:2000121

    Article  CAS  Google Scholar 

  • Zhang JX, Zhang SF, Wang TD, Guo XJ, Hu RL (2007) Mammary gland expression of antibacterial peptide genes to inhibit bacterial pathogens causing mastitis. J Dairy Sci 90:5218–5225. doi:10.3168/jds.2007-0301

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soroush Sardari.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Keymanesh, K., Soltani, S. & Sardari, S. Application of antimicrobial peptides in agriculture and food industry. World J Microbiol Biotechnol 25, 933–944 (2009). https://doi.org/10.1007/s11274-009-9984-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11274-009-9984-7

Keywords

Navigation