Skip to main content
Log in

Impact of Repeated Applications of Metalaxyl on Its Dissipation and Microbial Community in Soil

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Metalaxyl, an important phenylamide fungicide, is widely used for controlling fungal diseases caused by pathogens of the orders Peronosporales and Pythiales. Under laboratory conditions, metalaxyl was applied to soil samples at the recommended field rate (1×FR) and double of recommended field rate (2×FR) for two and three times. Soil subsamples were taken at 0, 1, 3, 7, 14, 28, and 45 days after the last application of metalaxyl for determination of metalaxyl residues and 7, 14, 28, and 56 days for enumeration of cultivable microorganisms and DGGE profile of soil microbial community. Soil incubation experiments revealed that metalaxyl was degraded faster in the third application than in the second application of the fungicide, half-lives of metalaxyl decreasing from 16.2 to 9.9 days for recommended field rate and 22.1 to 20.0 days for double of recommended field rate. Soil bacterial and fungal populations decreased in the first 14 days and then recovered to the control levels; population of actinomycetes did not alter in the first 28 days but increased at the end of the experiment after the second application. However, after the third treatment, temporary increase in soil bacteria population, nonsignificant inhibition effect on fungal population, and obvious stimulation effect on actinomycetes number were observed. DGGE results showed that successive inputs of metalaxyl altered the bacterial community structure. There were differences in the persistence and effects of metalaxyl on microbial community between the second and the third metalaxyl treatments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Bailey, A. M., & Coffey, M. D. (1985). Biodegradation of metalaxyl in avocado soils. Phytopathology, 75, 135–137.

    Article  CAS  Google Scholar 

  • Bailey, A. M., & Coffey, M. D. (1986). Characterization of microorganisms involved in accelerated biodegradation of metalaxyl and metolachlor in soils. Canadian Journal of Microbiology, 32(7), 562–569.

    Article  CAS  Google Scholar 

  • Baxter, J., & Cummings, S. P. (2008). The degradation of the herbicide bromoxynil and its impact on bacterial diversity in a top soil. Journal of Applid Microbiology, 104, 1605–1616.

    Article  CAS  Google Scholar 

  • Celis, R., Gámiz, B., Adelino, M. A., Cornejo, J., & Hermosín, M. C. (2015). Effect of formulation and repeated applications on the enantioselectivity of metalaxyl dissipation and leaching in soil. Pest Management Science. doi:10.1002/ps.3963.

    Google Scholar 

  • Droby, S., & Coffey, M. D. (1991). Biodegradation process and the nature of metabolism of metalaxyl in soil. Annals of Applied Biology, 118, 543–553.

    Article  CAS  Google Scholar 

  • Fang, H., Tang, F. F., Zhou, W., Cao, Z. Y., Wang, D. D., Liu, K. L., Wu, X. W., & Yu, Y. L. (2012). Persistence of repeated triadimefon application and its impact on soil microbial functional diversity. Journal of Environmental Science and Health. Part. B, 47(2), 104–110.

    Article  CAS  Google Scholar 

  • Fernandes, M. C., Cox, L., Hermosín, M. C., & Cornejo, J. (2006). Organic amendments affecting sorption, leaching and dissipation of fungicides in soils. Pest Management Science, 62, 1207–1215.

    Article  CAS  Google Scholar 

  • Ferreira, E. P. B., Dusi, A., Costa, J. R., Xavier, G. R., & Rumjanek, N. G. (2009). Assessing insecticide and fungicide effects on the culturable soil bacterial community by analyses of variance of their DGGE fingerprinting data. European Journal of Soil Biology, 45, 466–472.

    Article  CAS  Google Scholar 

  • Jones, W. J., & Ananyeva, N. D. (2001). Correlations between pesticide transformation rate and microbial respiration activity in soil of different ecosystems. Biology and Fertility of Soils, 33, 477–483.

    Article  CAS  Google Scholar 

  • Kalathoor, R., Botterweck, J., Schäffer, A., Schmidt, B., & Schwarzbauer, J. (2015). Quantitative and enantioselective analyses of non-extractable residues of the fungicide metalaxyl in soil. Journal of Soils and Sediments, 15, 659–670.

    Article  CAS  Google Scholar 

  • Lancaster, S. H., Hollister, E. B., Senseman, S. A., & Gentry, T. J. (2010). Effects of repeated glyphosate applications on soil microbial community composition and the mineralization of glyphosate. Pest Management Science, 66, 59–64.

    Article  CAS  Google Scholar 

  • Li, Y. B., Dong, F. S., Liu, X. G., Xu, J., Chen, X., Han, Y. T., Cheng, Y. P., Jian, Q., & Zheng, Y. Q. (2013). Enantioselective separation and transformation of metalaxyl and its major metabolite metalaxyl acid in tomato and cucumber. Food Chemisty, 141, 10–17.

    Article  CAS  Google Scholar 

  • Liu, M., Yin, F. Q., & Zhang, W. Y. (2011). Determination of phytophthora parasitica var. nicotianae resistance to metalaxyl in Panxi region. Journal of Henan Agricultural Sciences, 40(7), 93–97.

    Google Scholar 

  • Liu, C. Y., Wan, K., Huang, J. X., Wang, Y. C., & Wang, F. H. (2012). Behavior of mixed formulation of metalaxyl and dimethomorph in grape and soil under field conditions. Ecotoxicology and Environmental Safety, 84, 112–116.

    Article  CAS  Google Scholar 

  • Macur, R. E., Wheeler, J. T., Burr, M. D., & Inskeep, W. P. (2007). Impacts of 2, 4-D application on soil microbial community structure and on populations associated with 2, 4-D degradation. Microbiological Research, 162, 37–45.

    Article  CAS  Google Scholar 

  • Malhat, F. M. (2012). Persistence of metalaxyl residues on tomato fruit using high performance liquid chromatography and QuEChERS methodology. Arabian Journal of Chemistry. doi:10.1016/ j.arabjc.2012.12.002.

    Google Scholar 

  • Massoud, A. H., Derbalah, A. S., & Belal, E. B. (2008). Microbial detoxification of metalaxyl in aquatic system. Journal of Environmental Sciences-China, 20, 262–267.

    Article  CAS  Google Scholar 

  • Monkiedje, A., & Spiteller, M. (2002). Effects of the phenylamide fungicides, mefenoxam and metalaxyl, on the microbiological properties of a sandy loam and a sandy clay soil. Biology and Fertility of Soils, 35, 393–398.

    Article  CAS  Google Scholar 

  • Monkiedje, A., & Spiteller, M. (2005). Degradation of Metalaxyl and Mefenoxam and Effects on the Microbiological Properties of Tropical and Temperate Soils. International Journal of Environmental Research and Public Health, 2(2), 272–285.

    Article  CAS  Google Scholar 

  • Monkiedje, A., Ilori, M. O., & Spiteller, M. (2002). Soil quality changes resulting from the application of the fungicides mefenoxam and metalaxyl to a sandy loam soil. Soil Biology & Biochemistry, 34, 1939–1948.

    Article  CAS  Google Scholar 

  • Morimoto, S., Ogawa, N., Hasebe, A., & Fujii, T. (2008). Isolation of effective 3-chlorobenzoate-degraders in soil using community analyses by PCR-DGGE. Microbes and Environments, 23(4), 285–292.

    Article  Google Scholar 

  • Mukalazi, J., Adipala, E., Sengooba, T., Hakiza, J. J., Olanya, M., & Kidanemariam, H. M. (2001). Metalaxyl resistance, mating type and pathogenicity of Phytophthora infestans in Uganda. Crop Protection, 20(5), 379–388.

    Article  CAS  Google Scholar 

  • Mulla, S. I., Manjunatha, T. P., Hoskeri, R. S., Tallur, P. N., & Ninnekar, H. Z. (2011). Biodegradation of 3-nitrobenzoate by Bacillus flexus strain XJU-4. World Journal of Microbiology & Biotechnology, 27(7), 1587–1592.

    Article  CAS  Google Scholar 

  • Müller, A. K., Westergaard, K., Christensen, S., & Sorensen, S. J. (2002). The Diversity and Function of Soil Microbial Communities Exposed to Different Disturbances. Microbial Ecology, 44, 49–58.

    Article  CAS  Google Scholar 

  • Muyzer, G., deWaal, E. C., & Uitterlinden, A. G. (1993). Profiling of complex microbial-populations by denaturing gradient gel-electrophoresis analysis of polymerase chain reaction amplified genes-coding for 16S ribosomal-RNA. Applied and Environmental Microbiology, 59, 695–700.

    CAS  Google Scholar 

  • Papini, S., & de Andrea, M. M. (2001). Enhanced degradation of metalaxyl in agricultural soils of São Paulo State, Brazil. Pesquisa Agropecuária Brasileira, 36, 1–5.

    Article  Google Scholar 

  • Pavelková, J., Lebeda, A., & Sedláková, B. (2014). Efficacy of fosetyl-Al, propamocarb, dimethomorph, cymoxanil, metalaxyl and metalaxyl-M in Czech Pseudoperonospora cubensis populations during the years 2005 through 2010. Crop Protection, 60, 9–19.

    Article  CAS  Google Scholar 

  • Rodríguez-Cruz, M. S., Marín-Benito, J. M., Ordax, J. M., Azejjel, H., & Sánchez-Martín, M. J. (2012). Influence of pine or oak wood on the degradation of alachlor and metalaxyl in soil. Journal of Environmental Management, 95, S228–S232.

    Article  CAS  Google Scholar 

  • Story, S. P., Kline, E. L., Hughes, T. A., Riley, M. B., & Hayasaka, S. S. (2004). Degradation of aromatic hydrocarbons by Sphingomonas paucimobilis strain EPA505. Archives of Environmental Contamination and Toxicology, 47, 168–176.

    Article  CAS  Google Scholar 

  • Sukul, P. (2006). Enzymatic activities and microbial biomass in soil as influenced by metalaxyl residues. Soil Biology & Biochemistry, 38, 320–326.

    Article  CAS  Google Scholar 

  • Sukul, P., & Spiteller, M. (2001). Persistence, Fate, and Metabolism of [14C]Metalaxyl in Typical Indian Soils. Journal of Agricultural and Food Chemistry, 49, 2352–2358.

    Article  CAS  Google Scholar 

  • Sukul, P., Majumder, A., & Spiteller, M. (2008). Microbial population and their activities in soil as influenced by metalaxyl residues. Fresenius Environmental Bulletin, 17(1), 103–110.

    CAS  Google Scholar 

  • Tortella, G. R., Mella-Herrera, R. A., Sousa, D. Z., Rubilar, O., Briceño, G., Parra, L., & Diez, M. C. (2013). Carbendazim dissipation in the biomixture of on-farm biopurification systems and its effect on microbial communities. Chemosphere, 93, 1084–1093.

    Article  CAS  Google Scholar 

  • Triky-Dotan, S., Ofek, M., Austerweil, M., Steiner, B., Minz, D., Katan, J., & Gamliel, A. (2010). Microbial aspects of accelerated degradation of metam sodium in soil. Phytopathology, 100(4), 367–375.

    Article  CAS  Google Scholar 

  • Vischetti, C., Monaci, E., Cardinali, A., Casucci, C., & Perucci, P. (2008). The effect of initial concentration, co-application and repeated applications on pesticide degradation in a biobed mixture. Chemosphere, 72, 1739–1743.

    Article  CAS  Google Scholar 

  • Wang, X. G., Song, M., Wang, Y. Q., Gao, C. M., Zhang, Q., Chu, X. Q., Fang, H., & Yu, Y. L. (2012). Response of soil bacterial community to repeated applications of carbendazim. Ecotoxicology and Environmental Safety, 75, 33–39.

    Article  CAS  Google Scholar 

  • Wang, M. Y., Zhang, Q., Cong, L. J., Yin, W., & Wang, M. H. (2014). Enantioselective degradation of metalaxyl in cucumber, cabbage, spinach and pakchoi. Chemosphere, 95, 241–246.

    Article  CAS  Google Scholar 

  • Wilson, P. C., Whitwell, T., & Klaine, S. J. (2001). Metalaxyl toxicity, uptake, and distribution in several ornamental plant species. Journal of Environmental Quality, 30, 411–417.

    Article  CAS  Google Scholar 

  • Wu, X. W., Cheng, L. Y., Cao, Z. Y., & Yu, Y. L. (2012). Accumulation of chlorothalonil successively applied to soil and its effect on microbial activity in soil. Ecotoxicology and Environmental Safety, 81, 65–69.

    Article  CAS  Google Scholar 

  • Xu, J., Zhang, Y., Dong, F. H., Liu, X. G., Wu, X. H., & Zheng, Y. Q. (2014). Effects of repeated applications of chlorimuron-ethyl on the soil microbial biomass, activity and microbial community in the greenhouse. Bulletin of Environmental Contamination and Toxicology, 92, 175–182.

    Article  CAS  Google Scholar 

  • Yu, Y. L., Chu, X. Q., Pang, G. H., Xiang, Y. Q., & Fang, H. (2009). Effects of repeated applications of fungicide carbendazim on its persistence and microbial community in soil. Journal of Environmental Sciences-China, 21, 179–185.

    Article  CAS  Google Scholar 

  • Zhang, P., Zhu, W. T., Qiu, J., Wang, D. Z., Wang, X. R., Wang, Y., & Zhou, Z. Q. (2014a). Evaluating the enantioselective degradation and novel metabolites following a single oral dose of metalaxyl in mice. Pesticide Biochemistry and Physilogy, 116, 32–39.

    Article  CAS  Google Scholar 

  • Zhang, Q. M., Zhu, L. S., Wang, J., Xie, H., Wang, J. H., Wang, F. H., & Sun, F. X. (2014b). Effects of fomesafen on soil enzyme activity, microbial population, and bacterial community composition. Environmental Monitoring and Assessment, 186, 2801–2812.

    Article  CAS  Google Scholar 

  • Zhang, J., Qin, J., Zhao, C. C., Liu, C., Xie, H. J., & Liang, S. (2015). Response of bacteria and fungi in soil microcosm under the presence of pesticide endosulfan. Water, Air, and Soil Pollution, 226, 109.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The present study was supported by grants from the National Natural Science Foundation of China [21377075] and the Specialized Research Fund for the Doctoral Program of Higher Education [20113702110007].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lusheng Zhu.

Ethics declarations

Conflict of Interest

The authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, F., Zhu, L., Wang, X. et al. Impact of Repeated Applications of Metalaxyl on Its Dissipation and Microbial Community in Soil. Water Air Soil Pollut 226, 430 (2015). https://doi.org/10.1007/s11270-015-2686-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-015-2686-x

Keywords

Navigation