Skip to main content
Log in

Evaluating hyperspectral vegetation indices for estimating nitrogen concentration of winter wheat at different growth stages

  • Published:
Precision Agriculture Aims and scope Submit manuscript

Abstract

Many hyperspectral vegetation indices (VIs) have been developed to estimate crop nitrogen (N) status at leaf and canopy levels. However, most of these indices have not been evaluated for estimating plant N concentration (PNC) of winter wheat (Triticum aestivum L.) at different growth stages using a common on-farm dataset. The objective of this study was to evaluate published VIs for estimating PNC of winter wheat in the North China Plain for different growth stages and years using data from both N experiments and farmers’ fields, and to identify alternative promising hyperspectral VIs through a thorough evaluation of all possible two band combinations in the range of 350–1075 nm. Three field experiments involving different winter wheat cultivars and 4–6 N rates were conducted with cooperative farmers from 2005 to 2007 in Shandong Province, China. Data from 69 farmers’ fields were also collected to evaluate further the published and newly identified hyperspectral VIs. The results indicated that best performing published and newly identified VIs could explain 51% (R700/R670) and 57% (R418/R405), respectively, of the variation in PNC at later growth stages (Feekes 8–10), but only 22% (modified chlorophyll absorption ratio index, MCARI) and 43% (R763/R761), respectively, at the early stages (Feekes 4–7). Red edge and near infrared (NIR) bands were more effective for PNC estimation at Feekes 4–7, but visible bands, especially ultraviolet, violet and blue bands, were more sensitive at Feekes 8–10. Across site-years, cultivars and growth stages, the combination of R370 and R400 as either simple ratio or a normalized difference index performed most consistently in both experimental (R 2 = 0.58) and farmers’ fields (R 2 = 0.51). We conclude that growth stage has a significant influence on the performance of different vegetation indices and the selection of sensitive wavelengths for PNC estimation, and new approaches need to be developed for monitoring N status at early growth stages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Barnes, J. D., Balaguer, L., Manrique, E., Elvira, S., & Davison, A. W. (1992). A reappraisal of the use of DMSO for the extraction and determination of chlorophylls a and b in lichens and higher plants. Environmental and Experimental Botany, 32, 85–100.

    Article  CAS  Google Scholar 

  • Barraclough, P. B., & Kyle, J. (2001). Effect of water stress on chlorophyll meter readings in winter wheat. In W. J. Horst, et al. (Eds.), Plant nutrition-food security and sustainability of agro-ecosystems (pp. 722–723). Dordrecht, The Netherlands: Kluwer Academic Publishers.

    Google Scholar 

  • Blackburn, G. A. (1998). Quantifying chlorophylls and carotenoids at leaf and canopy scales: An evaluation of some hyper-spectral approaches. Remote Sensing of Environment, 66, 273–285.

    Article  Google Scholar 

  • Broge, N. H., & Leblanc, E. (2000). Comparing prediction power and stability of broadband and hyper-spectral vegetation indices for estimation of green leaf area index and canopy chlorophyll density. Remote Sensing of Environment, 76, 156–172.

    Article  Google Scholar 

  • Buschman, C., & Nagel, E. (1993). In vivo spectroscopy and internal optics of leaves as a basis for remote sensing of vegetation. International Journal of Remote Sensing, 14, 711–722.

    Article  Google Scholar 

  • Chaerle, L., & Straeten, D. V. D. (2000). Imaging techniques and the early detection of plant stress. Trends in Plant Science, 5, 495–501.

    Article  CAS  PubMed  Google Scholar 

  • Chappelle, E. W., Kim, M. S., & McMurtrey, J. E. (1992). Ratio analysis of reflectance spectra (RARS): An algorithm for the remote estimation of the concentrations of chlorophyll A, chlorophyll B, and the carotenoids in soybean leaves. Remote Sensing of Environment, 39, 239–247.

    Article  Google Scholar 

  • Chen, J. (1996). Evaluation of vegetation indices and modified simple ratio for boreal applications. Canadian Journal of Remote Sensing, 22, 229–242.

    Google Scholar 

  • Chen, X. P., Zhang, F. S., Römheld, V., Horlacher, D., Schulz, R., Böning-Zilkens, M., et al. (2006). Synchronizing N supply from soil and fertilizer and N demand of winter wheat by an improved Nmin method. Nutrient Cyclying in Agroecosystems, 74, 91–98.

    Article  Google Scholar 

  • Cui, Z. L., Zhang, F. S., Chen, X. P., Miao, Y. X., Li, J. L., Shi, L. W., et al. (2008). On-farm evaluation of an in-season nitrogen management strategy based on soil Nmin test. Field Crops Research, 105, 48–55.

    Article  Google Scholar 

  • Dash, J., & Curran, P. J. (2004). The MERIS terrestrial chlorophyll index. International Journal of Remote Sensing, 25, 5403–5413.

    Article  Google Scholar 

  • Datt, B. (1998). Remote sensing of chlorophyll a, chlorophyll b, chlorophyll a + b and total carotenoid content in eucalyptus leaves. Remote Sensing of Environment, 66, 111–121.

    Article  Google Scholar 

  • Datt, B. (1999). A new reflectance index for remote sensing of chlorophyll content in higher plants: Tests using eucalyptus leaves. Journal of Plant Physiology, 154, 30–36.

    CAS  Google Scholar 

  • Daughtry, C. S. T., Walthall, C. L., Kim, M. S., Colstoun, E. B., & McMurtrey, J. E., I. I. I. (2000). Estimating corn leaf chlorophyll concentration from leaf and canopy reflectance. Remote Sensing of Environment, 74, 229–239.

    Article  Google Scholar 

  • Fageria, N. K. (2009). The use of nutrients in crop plants. Boca Raton, Florida, USA: CRC Press, Taylor & Francis Group, LLC.

    Google Scholar 

  • Fava, F., Colombo, R., Bocchi, S., Meroni, M., Sitzia, M., Fois, N., et al. (2009). Identification of hyperspectral vegetation indices for Mediterranean pasture characterization. International Journal of Applied Earth Observation and Geoinformation, 11, 233–243.

    Article  Google Scholar 

  • Feng, W., Yao, X., Zhu, Y., Tian, Y. C., & Cao, W. X. (2008). Monitoring leaf nitrogen status with hyperspectral reflectance in wheat. Europe Journal of Agronomy, 28, 394–404.

    Article  CAS  Google Scholar 

  • Gamon, J. A., Penuelas, J., & Field, C. B. (1992). A narrow-waveband spectral index that tracks diurnal changes in photosynthetic efficiency. Remote Sensing of environment, 41, 35–44.

    Article  Google Scholar 

  • Gitelson, A., Kaufman, Y., & Merzlyak, M. (1996). Use of a green channel in remote sensing of global vegetation from EOS-MODIS. Remote Sensing of Environment, 58, 289–298.

    Article  Google Scholar 

  • Gitelson, A., & Merzlyak, M. (1994). Quantitative estimation of chlorophyll-a using reflectance spectra: Experiments with autumn chestnut and maple leaves. Journal of Photochemistry and Photobiology B: Biology, 22, 247–252.

    Article  CAS  Google Scholar 

  • Gitelson, A. A., Viña, A., Ciganda, V., Rundquist, D. C., & Arkebauer, T. J. (2005). Remote estimation of canopy chlorophyll content in crops. Geophysical Research Letters, 32, L08403. doi:10.1029/2005GL022688.

    Article  CAS  Google Scholar 

  • Greenwood, D. J., Neeteson, J. J., & Draycott, A. (1986). Quantitative relationships for the dependence of growth rate of arable crops to their nitrogen content, dry weight and aerial environment. Plant and Soil, 91, 281–301.

    Article  Google Scholar 

  • Guyot, G., Baret, F., & Major, D. J. (1988). High spectral resolution: Determination of spectral shifts between the red and the near infrared. International Archives of Photogrammetry and Remote Sensing, 11, 750–760.

    Google Scholar 

  • Haboudane, D., Miller, J. R., Pattey, E., Zarco-Tejada, P. J., & Strachan, I. B. (2004). Hyperspectral vegetation indices and novel algorithms for predicting green LAI of crop canopies: Modeling and validation in the context of precision agriculture. Remote Sensing Environment, 90, 337–352.

    Article  Google Scholar 

  • Haboudane, D., Miller, J. R., Tremblay, N., Zarco-Tejada, P. J., & Dextraze, L. (2002). Integrated narrow-band vegetation indices for prediction of crop chlorophyll content for application to precision agriculture. Remote Sensing of Environment, 81, 416–426.

    Article  Google Scholar 

  • Haboudane, D., Tremblay, N., Miller, J. R., & Vigneault, P. (2008). Remote estimation of crop chlorophyll content using spectral indices derived from hyperspectral data. IEEE Transactions on Geoscience and Remote Sensing, 46, 423–437.

    Article  Google Scholar 

  • Hansen, P. M., & Schjoerring, J. K. (2003). Reflectance measurement of canopy biomass and nitrogen status in wheat crops using normalized difference vegetation indices and partial least square regression. Remote Sensing of Environment, 86, 542–553.

    Article  Google Scholar 

  • Hatfield, J. L., Gitelson, A. A., Schepers, J. S., & Walthall, C. L. (2008). Application of spectral remote sensing for agronomic decisions. Agronomy Journal, 100, 117–131.

    Article  CAS  Google Scholar 

  • Heege, H. J., Reusch, S., & Thiessen, E. (2008). Prospects and results for optical systems for site-specific on-the-go control of nitrogen-top-dressing in Germany. Precision Agriculture, 9, 115–131.

    Article  Google Scholar 

  • Houlès, V., Guérif, M., & Mary, B. (2007). Elaboration of a nitrogen nutrition indicator for winter wheat based on leaf area index and chlorophyll content for making nitrogen recommendations. European Journal of Agronomy, 27, 1–11.

    Article  CAS  Google Scholar 

  • Jacobsen, S.-E., Pedersen, H., & Jensen, C. R. (1998). Reflectance measurements, a quick and non-destructive technique for use in agricultural research. In International conference on sustainable agriculture in tropical and subtropical highlands with special reference to Latin America (SATHLA) (pp. 1–5), Rio de Janeiro, 9–13 March 1998. http://www.condesan.org/memoria/AGRO0198.pdf (verified Nov. 14, 2009). Condensan, Lima.

  • Jasper, J., Reusch, S., & Link, A. (2009). Active sensing of the N status of wheat using optimized wavelength combination: Impact of seed rate, variety and growth stage. In E. J. van Henten, D. Goense, & C. Lokhorst (Eds.), Precision agriculture ‘09 (pp. 23–30). Wageningen, The Netherlands: Wageningen Academic Publishers.

    Google Scholar 

  • Jordan, C. F. (1969). Derivation of leaf area index from quality of light on the forest floor. Ecology, 50, 663–666.

    Article  Google Scholar 

  • Ju, X. T., Kou, C. L., Zhang, F. S., & Christie, P. (2006). Nitrogen balance and groundwater nitrate contamination: Comparison among three intensive cropping systems on the North China Plain. Environmental Pollution, 143, 117–125.

    Article  CAS  PubMed  Google Scholar 

  • Ju, X. T., Xing, G. X., Chen, X. P., Zhang, S. L., Zhang, L. J., Liu, X. J., et al. (2009). Reducing environmental risk by improving N management in intensive Chinese agricultural systems. Proceedings of the National Academy of Sciences of the United States of America, 106, 3041–3046.

    Article  CAS  PubMed  Google Scholar 

  • Kim, M. S. (1994). The use of narrow spectral bands for improving remote sensing estimation of fractionally absorbed photosynthetically active radiation (f APAR ). Masters Thesis. Department of Geography, University of Maryland, College Park, MD.

  • Large, E. C. (1954). Growth stage in cereals. Plant Pathology, 3, 128–129.

    Article  Google Scholar 

  • Le Maire, G., François, C., & Dufrêne, E. (2004). Towards universal broad leaf chlorophyll indices using PROSPECT simulated database and hyperspectral reflectance measurements. Remote Sensing of Environment, 89, 1–28.

    Article  Google Scholar 

  • Lemaire, G., & Gastal, F. (1997). On the critical N concentration in agricultural crops. N uptake and distribution in plant canopies. In L. Gilles (Ed.), Diagnosis of the nitrogen status in crops (pp. 3–44). Heidelberg: Springer-Verlag.

    Google Scholar 

  • Lemaire, G., Jeuffroy, M. H., & Gastal, F. (2008). Diagnosis tool for plant and crop N status in vegetative stage. Theory and practices for crop N management. European Journal of Agronomy, 28, 614–624.

    Article  CAS  Google Scholar 

  • Li, F., Gnyp, M. L., Jia, L., Miao, Y., Yu, Z., Koppe, W., et al. (2008). Estimating N status of winter wheat using a handheld spectrometer in the North China Plain. Field Crops Research, 106, 77–85.

    Article  Google Scholar 

  • Li, X. X., Hu, C. S., Delgado, J. A., Zhang, Y. M., & Ouyang, Z. Y. (2007). Increased nitrogen use efficiencies as a key mitigation alternative to reduce nitrate leaching in North China Plain. Agricultural Water Management, 89, 137–147.

    Article  Google Scholar 

  • Li, F., Miao, Y., Zhang, F., Cui, Z., Li, R., Chen, X., et al. (2009). In-season optical sensing improves nitrogen use efficiency for winter wheat. Soil Science Society of America Journal, 73, 1566–1574.

    Article  CAS  Google Scholar 

  • Ma, B. L., Morrison, M. J., & Dwyer, M. L. (1996). Canopy light reflectance and field greenness to assess nitrogen fertilization and yield of maize. Agronomy Journal, 88, 915–920.

    Google Scholar 

  • Marino, M. A., Mazzanti, A., Assuero, S. G., Gastal, F., Echeverrı′a, H. E., & Andrade, F. (2004). Nitrogen dilution curves and nitrogen use efficiency during winter–spring growth of annual ryegrass. Agronomy Journal, 96, 601–607.

    Article  Google Scholar 

  • McMurtrey, J. E., I. I. I., Chappelle, E. W., Kim, M. S., Meisinger, J. J., & Corp, L. A. (1994). Distinguishing nitrogen fertilization levels in field corn (Zea mays L.) with actively induced fluorescence and passive reflectance measurements. Remote Sensing of Environment, 47, 36–44.

    Article  Google Scholar 

  • Miao, Y., Mulla, D. J., Randall, G. W., Vetsch, J. A., & Vintila, R. (2009). Combining chlorophyll meter readings and high spatial resolution remote sensing images for in-season site-specific nitrogen management of corn. Precision Agriculture, 10, 45–62.

    Article  Google Scholar 

  • Mistele, B., Gutser, R., & Schmidhalter, U. (2004). Validation of field-scaled spectral measurements of the nitrogen status in winter wheat. In D. J. Mulla (Ed.), Proceedings of the 7th international conference on precision agriculture and other precision resources management (pp. 1187–1195). Minneapolis, MN (CD ROM).

  • Mistele, B., & Schmidhalter, U. (2008). Spectral measurements of the total aerial N and biomass dry weight in maize using a quadrilateral-view optic. Field Crops Research, 106, 94–103.

    Article  Google Scholar 

  • Oppelt, N., & Mauser, W. (2004). Hyperspectral monitoring of physiological parameters of wheat during a vegetation period using AVIS data. International Journal of Remote Sensing, 25, 145–159.

    Article  Google Scholar 

  • Penuelas, J., Baret, F., & Filella, I. (1995). Semi-empirical indices to assess carotenoids/chlorophyll a ratio from leaf spectral reflectance. Photosynthetica, 31, 221–230.

    CAS  Google Scholar 

  • Penuelas, J., & Filella, I. (1998). Visible and near-infrared reflectance techniques for diagnosing plant physiological status. Trends in Plant Science, 3, 151–156.

    Article  Google Scholar 

  • Peñuelas, J., Gamon, J. A., Fredeen, A. L., Merino, J., & Field, C. B. (1994). Reflectance indices associated with physiological changes in nitrogen- and water-limited sunflower leaves. Remote Sensing of Environment, 48, 135–146.

    Article  Google Scholar 

  • Perrin, C. H. (1953). Rapid modified procedure for determination of Kjeldahl nitrogen. Analytical Chemistry, 25, 968–971.

    Article  CAS  Google Scholar 

  • Prost, L., & Jeuffroy, M.-H. (2007). Replacing the nitrogen nutrition index by the chlorophyll meter to assess wheat N status. Agronomy for Sustainable Development, 27, 1–10.

    Article  Google Scholar 

  • Qi, J., Chehbouni, A., Huete, A. R., Keer, Y. H., & Sorooshian, S. (1994). A modified soil vegetation adjusted index. Remote Sensing of Environment, 48, 119–126.

    Article  Google Scholar 

  • Read, J. J., Tarpley, J. M. M., & Reddy, K. R. (2002). Narrow waveband reflectance ratio for remote estimation of nitrogen status in cotton. Journal of Environmental Quality, 31, 1442–1452.

    Article  CAS  PubMed  Google Scholar 

  • Rondeaux, G., Steven, M., & Baret, F. (1996). Optimization of soil-adjusted vegetation indices. Remote Sensing of Environment, 55, 95–107.

    Article  Google Scholar 

  • Rougean, J. L., & Breon, F. M. (1995). Estimating PAR absorbed by vegetation from bidirectional reflectance measurements. Remote Sensing of Environment, 51, 375–384.

    Article  Google Scholar 

  • Schepers, J. S., Blackmer, T. M., Wilhelm, W. W., & Resende, M. (1996). Transmittance and reflectance measurements of corn leaves from plants with different nitrogen and water supply. Journal of Plant Physiology, 148, 523–529.

    CAS  Google Scholar 

  • Serrano, L., Filella, I., & Peñuelas, J. (2000). Remote sensing of biomass and yield of winter wheat under different nitrogen supplies. Crop Science, 40, 723–731.

    Article  Google Scholar 

  • Sims, D. A., & Gamon, J. A. (2002). Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and developmental stages. Remote Sensing of Environment, 81, 337–354.

    Article  Google Scholar 

  • Smith, R. C. G., Adams, J., Stephens, D. J., & Hick, P. T. (1995). Forecasting wheat yield in a Mediterranean-type environment from the NOAA satellite. Australian Journal of Agricultural Research, 46, 113–125.

    Article  Google Scholar 

  • Steddom, K., Heidel, G., Jones, D., & Rush, C. M. (2003). Remote detection of rhizomania in sugar beets. Phytopathology, 93, 720–726.

    Article  CAS  PubMed  Google Scholar 

  • Stroppiana, D., Boschetti, M., Brivio, P. A., & Bocchi, S. (2009). Plant nitrogen concentration in paddy rice from field canopy hyperspectral radiometry. Field Crops Research, 111, 119–129.

    Article  Google Scholar 

  • Ulrich, A. (1952). Physiological bases for assessing the nutritional requirements of plants. Annual Review of Plant Physiology, 3, 207–228.

    Article  Google Scholar 

  • Vogelmann, J. E., Rock, B. N., & Moss, D. M. (1993). Red edge spectral measurements from sugar maple leaves. International Journal of Remote Sensing, 14, 1563–1575.

    Article  Google Scholar 

  • Wu, C. Y., Niu, Z., Tang, Q., & Huang, W. J. (2008). Estimating chlorophyll content from hyperspectral vegetation indices: Modeling and validation. Agricultural and Forest Meteorology, 148, 1230–1241.

    Article  Google Scholar 

  • Xue, L. H., Cao, W. X., Luo, W. H., Dai, T. B., & Zhu, Y. (2004). Monitoring leaf nitrogen status in rice with canopy spectral reflectance. Agronomy Journal, 96, 135–142.

    Article  Google Scholar 

  • Yi, Q. X., Huang, J. F., Wang, F. M., Wang, X. Z., & Liu, Z. Y. (2007). Monitoring rice nitrogen status using hyperspectral reflectance and artificial neural network. Environmental Science and Technology, 41, 6770–6775.

    Article  CAS  PubMed  Google Scholar 

  • Yoder, B. J., & Pettigrew-Crosby, R. E. (1995). Predicting nitrogen and chlorophyll content and concentrations from reflectance spectra (400–2500 nm) at leaf and canopy scales. Remote Sensing of Environment, 53, 199–211.

    Article  Google Scholar 

  • Zarco-Tejada, P. J., Miller, J. R., Morales, A., Berjon, A., & Aguera, J. (2004). Hyperspectral indices and model simulation for chlorophyll estimation in open-canopy tree crops. Remote Sensing of Environment, 90, 463–476.

    Article  Google Scholar 

  • Zarco-Tejada, P. J., Miller, J., Noland, T. L., Mohammed, G. H., & Sampson, P. H. (2001). Scaling-up and model inversion methods with narrowband optical indices for chlorophyll content estimation in closed forest canopies with hyperspectral data. IEEE Transactions on Geoscience and Remote Sensing, 39, 1491–1507.

    Article  Google Scholar 

  • Ziadi, N., Brassard, M., Bélanger, G., Cambouris, A. N., Tremblay, N., Nolin, M. C., et al. (2008a). Critical nitrogen curve and nitrogen nutrition index for corn in eastern Canada. Agronomy Journal, 100, 271–276.

    Article  CAS  Google Scholar 

  • Ziadi, N., Brassard, M., Bélanger, G., Claessens, A., Tremblay, N., Cambouris, A. N., et al. (2008b). Chlorophyll measurements and nitrogen nutrition index for the evaluation of corn nitrogen status. Agronomy Journal, 100, 1264–1273.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was financially supported by the National Basic Research Program (973-2009CB118606), Key Project of National Science & Technology Support Plan (2008BADA4B02), Sino-German Cooperative Nitrogen Management Project (2007DFA30850), International Bureau of the German Federal Ministry of Research and Technology (BMBF, Project No. CHN 08/051), Special Fund for Agriculture Profession (200803030), The Innovative Group Grant of NSFC (No. 30821003) and the GIS & RS Group of the University of Cologne, Germany.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuxin Miao.

Additional information

This is an “enhanced” version of the paper published as “Comparing hyperspectral vegetation indices for estimating nitrogen concentration of winter wheat” in E.J. van Henten, D. Goense and C. Lokhorst (Ed.) Precision Agriculture’09. Proceedings of the 7th European Conference on Precision Agriculture (7ECPA), 5–9 July 2009, Wagningen, The Netherlands. Wageningen Academic Publishers, Wageningen, The Netherlands.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, F., Miao, Y., Hennig, S.D. et al. Evaluating hyperspectral vegetation indices for estimating nitrogen concentration of winter wheat at different growth stages. Precision Agric 11, 335–357 (2010). https://doi.org/10.1007/s11119-010-9165-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11119-010-9165-6

Keywords

Navigation