Skip to main content

Advertisement

Log in

Rapeseed rotation, compost and biocontrol amendments reduce soilborne diseases and increase tuber yield in organic and conventional potato production systems

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Aims

Integrating multiple soil and disease management practices may improve crop productivity and disease control, but potential interactions and limitations need to be determined.

Methods

Three different potential disease-suppressive management practices, including a Brassica napus (rapeseed) green manure rotation crop, conifer-based compost amendment, and three biological control organisms (Trichoderma virens, Bacillus subtilis, and Rhizoctonia solani hypovirulent isolate Rhs1A1) were evaluated alone and in combination at sites with both organic and conventional management histories for their effects on soilborne diseases and tuber yield.

Results

Rapeseed rotation reduced all observed soilborne diseases (stem canker, black scurf, common scab, and silver scurf) by 10 to 52 % in at least one year at both sites. Compost amendment had variable effects on tuber diseases, but consistently increased yield (by 9 to 15 %) at both sites. Biocontrol effects on disease varied, though Rhs1A1 decreased black scurf at the conventional site and T. virens reduced multiple diseases at the organic site in at least one year. Combining rapeseed rotation with compost amendment both reduced disease and increased yield, whereas biocontrol additions produced only marginal additive effects.

Conclusions

Use of these treatments alone, and in combination, can be effective at reducing disease and increasing yield under both conventional and organic production practices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Al-Mughrabi KI, Berthélémé C, Livingston T, Burgoyne A, Poirier R, Vikram A (2008) Aerobic compost tea, compost and a combination of both reduce the severity of common scab (Streptomyces scabiei) on potato tubers. J Plant Sci 3:168–175. doi:10.3923/jps.2008.168.175

    Article  Google Scholar 

  • Alvarez R, Alvarez CR, Steinbach HS (2002) Association between soil organic matter and wheat yield in humid pampa of Argentina. Commun Soil Sci Plant Anal 33:749–757. doi:10.1081/CSS-120003063

    Article  CAS  Google Scholar 

  • Asaka O, Shoda M (1996) Biocontrol of Rhizoctonia solani damping-off of tomato with Bacillus subtilis RB14. Appl Environ Microbiol 62:4081–4085

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bandy BP, Tavantzis SM (1990) Effect of hypovirulent Rhizoctonia solani on rhizoctonia disease, growth, and development of potato plants. Am Potato J 67:189–199. doi:10.1007/BF02987071

    Article  Google Scholar 

  • Bénítez T, Rincón AM, Limón MC, Codón AC (2004) Biocontrol mechanisms of Trichoderma strains. Int Microbiol 7:249–260

    PubMed  Google Scholar 

  • Bernard E, Larkin RP, Tavantzis SM, Erich MS, Alyokhin A, Sewell G, Lannan A, Gross S (2012) Compost, rapeseed rotation, and biocontrol agents significantly impact soil microbial communities in organic and conventional potato production systems. App Soil Ecol 52:29–41. doi:10.1016/j.apsoil.2011.10.002

    Article  Google Scholar 

  • Bonanomi G, Antignani V, Capodilupo M, Scala F (2010) Identifying the characteristics of organic soil amendments that suppress soil-borne plant diseases. Soil Biol Biochem 42:136–144. doi:10.1016/j.soilbio.2009.10.012

    Article  CAS  Google Scholar 

  • Boudet A (1973) Les acides quinique et shikimique chez les angiosperms arborescentes. Phytochemistry 12:363–370. doi:10.1016/0031-9422(73)880019-6

    Article  CAS  Google Scholar 

  • Brewer MT, Larkin RP (2005) Efficacy of several potential biocontrol organisms against Rhizoctonia solani on potato. Crop Protect 24:939–950. doi:10.1016/j.cropro.2005.01.012

    Article  Google Scholar 

  • Brinton WF Jr, Evans E, Droffner ML, Brinton RB (1995) Standardized test for evaluation of compost self-heating. Biocycle 36:64–69

    CAS  Google Scholar 

  • Campiglia E, Paolini R, Colla G, Mancinelli R (2009) The effects of cover cropping on yield and weed control of potato in a transitional system. Field Crops Res 112:16–23. doi:10.1016/j.fcr.2009.01.010

    Article  Google Scholar 

  • Carrera LM, Buyer JS, Vinyar B, Abdul-Baki AA, Sikora LJ, Teasdale JR (2007) Effects of cover crops, compost, and manure amendments on soil microbial community structure in tomato production systems. Appl Soil Ecol 37:247–255. doi:10.1016/j.apsoil.2007.08.003

    Article  Google Scholar 

  • Carter MR, Kunelius HT, Sanderson JB, Kimpinski J, Platt HW, Bolinder MA (2003) Productivity parameters and soil health dynamics under long-term 2-year potato rotations in Atlantic Canada. Soil Till Res 72:153–168. doi:10.1016/S0167-1987(03)00085-0

    Article  Google Scholar 

  • Cohen MF, Yamasaki H, Mazzola M (2005) Brassica napus seed meal soil amendment modifies microbial community structure, nitric oxide production and incidence of Rhizoctonia root rot. Soil Biol Biochem 37:1215–1227. doi:10.1016/j.soilbio.2004.11.027

    Article  CAS  Google Scholar 

  • Davis JR, Huisman OC, Westermann DT, Hafez SL, Everson DO, Sorensen LH, Schneider AT (1996) Effects of green manures on Verticillium wilt of potato. Phytopath 86:444–453. doi:10.1094/Phyto-86-444

    Article  Google Scholar 

  • Errampalli D, Saunders JM, Holley JD (2001) Emergence of silver scurf (Helminthosporium solani) as an economically important disease of potato. Plant Path 50:141–153. doi:10.1046/j.1365-3059.2001.00555.x

    Article  CAS  Google Scholar 

  • Gross SD (2010) Effect of Soil Amendments on Pest Insects in Potatoes. M.S. Thesis, University of Maine

  • Han JS, Cheng JH, Yoon TM, Song J, Rajkarnikar A, Kim WG, Yoo ID, Yang YY, Suh JW (2005) Biological control agent of common scab disease by antagonistic strain Bacillus sp. sunhua. J Appl Microb 99:213–221. doi:10.1111/j.1365-2672.2005.02614.x

    Article  CAS  Google Scholar 

  • Hoitink HAJ, Boehm MJ (1999) Biocontrol within the context of soil microbial communities: A substrate-dependent phenomenon. Ann Rev Phytopathology 37:427–446. doi:10.1146/annurev.phyto.37.1.427

    Article  CAS  Google Scholar 

  • Jian J, Lakshman DK, Tavantzis SM (1997) Association of distinct double-stranded RNAs with enhanced or diminished virulencein Rhizoctonia solani infecting potato. Mol Plant Microb Int 10:1002–1009. doi:10.1094/MPMI.1997.10.8.1002

  • Johnston AE (1991) Soil fertility and soil organic matter. In: Wilson WS (ed) Advances in soil organic matter research: The impact on agriculture and the environment. The Royal Society of Chemistry, Melksham, Wiltshire, pp 299–314

    Google Scholar 

  • Kirkegaard JA, Sarwar M (1998) Biofumigation potential of Brassicas. I. Variation in glucosinolate profiles of diverse field-grown brassicas. Plant Soil 201:71–89. doi:10.1023/A:1004364713152

    Article  CAS  Google Scholar 

  • Kloepper JW, Ryu C-M, Zhang S (2004) Induced systemic resistance and promotion of plant growth by Bacillus spp. Phytopath 94:1259–1266. doi:10.1094/PHYTO.2004.94.11.1259

    Article  CAS  Google Scholar 

  • Kurzawińska H (2006) An interaction of potato crop soil fungi population on fungi responsible for superficial tuber diseases. J Plant Prot Res 46:339–346

    Google Scholar 

  • Larkin RP (2008) Relative effects of biological amendments and crop rotations on soil microbial communities and soil-borne diseases of potato. Soil Biol Biochem 40:1341–1351. doi:10.1016/j.soilbio.2007.03.005

    Article  CAS  Google Scholar 

  • Larkin RP, Brewer MT (2005) Effects of biological amendments on soil microbiology and soil-borne potato diseases in different cropping systems. Phytopathology (Abstr) 94:S56–S57

    Google Scholar 

  • Larkin RP, Griffin TS (2007) Control of soil-borne potato diseases using Brassica green manures. Crop Protect 26:1067–1077. doi:10.1016/j.cropro.2006.10.004

    Article  Google Scholar 

  • Larkin RP, Honeycutt CW (2006) Effects of different 3-year cropping systems on soil microbial communities and rhizoctonia diseases of potato. Phytopath 96:68–79. doi:10.1094/PHYTO-96-0068

    Article  Google Scholar 

  • Larkin RP, Tavantzis SM (2013) Use of biocontrol organisms and compost amendments for improved control of soilborne diseases and increased potato production. Am J Potato Res 90:261–270. doi:10.1007/s12230-013-9301-8

    Article  Google Scholar 

  • Larkin RP, Griffin TS, Honeycutt CW (2010) Rotation and cover crop effects on soil-borne potato diseases, tuber yield, and soil microbial communities. Plant Dis 94:1491–1502. doi:10.1094/PDIS-03-10-0172

    Article  Google Scholar 

  • Larkin RP, Honeycutt CW, Griffin TS, Olanya OM, Halloran JM, He Z (2011a) Effects of different potato cropping system approaches and water management on soil-borne diseases and soil microbial communities. Phytopathology 101:58–67. doi:10.1094/PHYTO-04-10-0100

    Article  PubMed  Google Scholar 

  • Larkin RP, Honeycutt CW, Olanya OM (2011b) Management of Verticillium wilt of potato with disease-suppressive green manures and as affected by previous cropping history. Plant Dis 95:568–576. doi:10.1094/PDIS-09-10-0670

    Article  Google Scholar 

  • Lazarovits G (2010) Managing soil-borne disease of potatoes using ecologically based approaches. Am J Potato Res 87:401–411. doi:10.1007/s12230-010-9157-0

    Article  Google Scholar 

  • Lewis JA, Papavizas GC (1987) Application of Trichoderma and Gliocladium in alginate pellets for control of Rhizoctonia damping-off. Plant Pathol 36:438–446. doi:10.1111/j.1365-3059.1987.tb02260.x

    Article  Google Scholar 

  • Liu C, Lakshman DK, Tavantzis SM (2003) Quinic acid induces hypovirulence and expression of a hypovirulence-associated double-stranded RNA in Rhizoctonia solani. Curr Genet 43:103–111. doi:10.1007/s00294-003-0375-6

    CAS  PubMed  Google Scholar 

  • Liu B, Gumpertz ML, Hu S, Ristaino JB (2007) Long-term effects of organic and synthetic soil fertility amendments on soil microbial communities and the development of southern blight. Soil Biol Biochem 39:2302–2316. doi:10.1016/j.soilbio.2007.04.001

    Article  CAS  Google Scholar 

  • Martinez C, Michaud M, Bélanger RR, Tweddell RJ (2002) Identification of soils suppressive against Helminthosporium solani, the causal agent of potato silver scurf. Soil Biol Biochem 34:1861–1868. doi:10.1016/S0038-0717(02)00199-2

    Article  CAS  Google Scholar 

  • Matthiesen JN, Kirkegaard JA (2006) Biofumigation and Biodegradation: Opportunity and Challenge in Soil-borne Pest and Disease Management. Crit Rev Plant Sci 25:235–265. doi:10.1080/07352680600611543

    Article  Google Scholar 

  • Noble R, Coventry E (2005) Suppression of soil-borne plant diseases with composts: A review. Biocontrol Sci Tech 15:3–20. doi:10.1080/09583150400015904

    Article  Google Scholar 

  • Pane C, Spaccini R, Piccolo A, Scala F, Bonanomi G (2011) Compost amendments enhance peat suppressiveness to Pythium ultimum, Rhizoctonia solani, and Sclerotinia minor. Biol Cont 56:115–124. doi:10.1016/j.biocontrol.2010.10.002

    Article  Google Scholar 

  • Peters RD, Sturz AV, Carter MR, Sanderson JB (2003) Developing disease-suppressive soils through crop rotation and tillage management practices. Soil Till Res 72:181–192. doi:10.1016/S0167-1987(03)00087-4

    Article  Google Scholar 

  • Peters RD, Sturz AV, Carter MR, Sanderson JB (2004) Influence of crop rotation and conservation tillage practices on the severity of soil-borne potato diseases in temperate humid agriculture. Can J Soil Sci 84:397–402. doi:10.4141/S03-060

    Article  Google Scholar 

  • Ros M, Klammer S, Knapp B, Aichberger K, Insam H (2006) Long-term effects of compost amendment of soil on functional and structural diversity and microbial activity. Soil Use Manage 22:209–218. doi:10.1111/j.1475-2743.2006.00027.x

    Article  Google Scholar 

  • Sarwar M, Kirkegaard JA, Wong PTW, Desmarchelier JM (1998) Biofumigation potential of Brassicas III. In vitro toxicity of isothiocyanates to soil-borne fungal pathogens. Plant Soil 210:103–112. doi:10.1023/A:1004381129991

    Article  Google Scholar 

  • Singhai PK, Sarma BK, Srivastava JS (2011) Biological management of common scab of potato through Pseudomonas species and vermicompost. Biol Cont 57:150–157. doi:10.1016/j.biocontrol.2011.02.008

    Article  Google Scholar 

  • Specht LP, Leach SS (1987) Effects of crop rotation on Rhizoctonia disease of white potato. Plant Dis 71:433–437. doi:10.1094/PD-71-0433

    Article  Google Scholar 

  • Steinberg B (1998) Soil attributes as predictors of crop production under standardized conditions. Biol Fertil Soils 27:104–112. doi:10.1007/s003740050407

    Article  Google Scholar 

  • Termorshiuzen AJ, van Rijn E, van der Gaag DJ, Alabouvette C, Chen Y, Lagerlöf J, Malandrakis AA, Paplomatas EJ, Rämert B, Ryckeboer J, Steinberg C, Zmora-Nahum S (2007) Suppressiveness of 18 composts against 7 pathosystems: variability in pathogen response. Soil Biol Biochem 38:2461–2477. doi:10.1016/j.soilbio.2006.03.002

    Article  Google Scholar 

  • Tsror (Lahkim) L, Barak R, Sneh B (2001) Biological control of black scurf on potato under organic management. 20:145–150. 10.1016/S0261-2194(00)00124-1

  • Vinale F, Sivasithamparam K, Ghisalberti EL, Marra R, Woo SL, Lorito M (2008) Trichoderma-plant-pathogen interactions. Soil Biol Biochem 40:1–10. doi:10.1016/j.soilbio.2007.07.002

    Article  CAS  Google Scholar 

  • Wharton P, Driscoll J, Douches D, Hammerschmidt R, Kirk W (2007) Common scab of potato. Mich Pot Dis Ext Bullet E-2990:1–4

    Google Scholar 

  • Wiggins BE, Kinkel LL (2005) Green manures and crop sequences influence potato disease and pathogen inhibitory activity of indigenous Streptomyces. Phytopathology 95:178–185. doi:10.1094/PHYTO-95-0178

    Article  CAS  PubMed  Google Scholar 

  • Wilson PS, Ahvenniemi PM, Lehtonen MJ, Kukkonen M, Rita H, Valkonen JPT (2008a) Biological and chemical control and their combined use to control different stages of the Rhizoctonia disease complex on potato through the growing season. Ann Appl Biol 153:307–320. doi:10.1111/j.1744-7348.2008.00292.x

    Article  Google Scholar 

  • Wilson PS, Ketola EO, Ahvenniemi PM, Lehtonen MJ, Valkonen JPT (2008b) Dynamics of soil-borne Rhizoctonia solani in the presence of Trichoderma harzianum: effects on stem canker, black scurf and progeny tubers of potato. Plant Pathol 57:152–161. doi:10.1111/j.1365-3059.2007.01706.x

    Google Scholar 

Download references

Acknowledgements

We would like to thank Leanne Matthiesen, Gary Sewell, Roger Jardine, Jim Gerritsen, Randy Smith, Ethel Champaco, Megan Patterson, Renee Rioux, Kristopher Cooper, Jen Brown, Sara Caldwell, Stephanie Cash, Caleb Gerritsen, Peter Gerritsen, Ryan Guillemette, Katie Moulton, Kylie Palmer, Katie Priest, Benjamin Richard, and Valerie Shaffer for technical assistance. This research was supported in part by the USDA Organic Transition Grant 2007-51106-03791, the Northeast IPM Grant 2007-34103-17076 and Hatch Grant. This is Maine Agricultural and Forest Experiment Station Publication No. 3344.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert P. Larkin.

Additional information

Responsible Editor: Hans Lambers.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bernard, E., Larkin, R.P., Tavantzis, S. et al. Rapeseed rotation, compost and biocontrol amendments reduce soilborne diseases and increase tuber yield in organic and conventional potato production systems. Plant Soil 374, 611–627 (2014). https://doi.org/10.1007/s11104-013-1909-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-013-1909-4

Keywords

Navigation